Microplastics Can Alter Plant Parameters Without Affecting the Soil Enzymatic Activity in White Lupine
<p>Soil Parameters. (<b>a</b>) Total Organic Carbon shown as mean ± standard error; (<b>b</b>) soil basal respiration shown as mean ± standard error; (<b>c</b>) FDA activity shown as mean ± standard error; (<b>d</b>) microbial biomass carbon shown as mean ± standard error. Different letters indicate significant differences among the groups (one-way ANOVA with Fisher’s test, <span class="html-italic">p</span> < 0.05).</p> "> Figure 2
<p>Soil enzyme activity. (<b>a</b>) β-Glucosidase activity is shown as mean ± standard error; (<b>b</b>) acid phosphatase activity is shown as mean ± standard error; and (<b>c</b>) urease activity is shown as mean ± standard error. Different letters indicate significant group differences (Kruskal–Wallis test, <span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>SEM images of pristine MPs and those extracted from each soil treatment. (<b>A</b>) Pristine Polypropylene (500× magnification), (<b>B</b>) Polypropylene extracted from experiment (1000× magnification), (<b>C</b>) Pristine Low-Density Propylene (500× magnification), (<b>D</b>) Low-Density Propylene extracted from experiment (1000× magnification), (<b>E</b>) Pristine Polyamide (500× magnification), (<b>F</b>) Polyamide extracted from experiment (1000× magnification).</p> "> Figure 4
<p>FTIR spectra of MPs samples from each treatment. Characteristic peaks corresponding to the (<b>a</b>) LDPE, (<b>b</b>) PP, and (<b>c</b>) PA functional groups were also observed.</p> "> Figure 5
<p>Plant Parameters. (<b>a</b>) Root length shown as mean ± standard error; (<b>b</b>) root dry biomass shown as mean ± standard error; (<b>c</b>) root volume shown as mean ± standard error; (<b>d</b>) number of nodules shown as mean ± standard error; (<b>e</b>) number of cluster roots shown as mean ± standard error; (<b>f</b>) plant height shown as mean ± standard error; (<b>g</b>) leaf dry biomass shown as mean ± standard error; (<b>h</b>) chlorophyll content shown as mean ± standard error; and (<b>i</b>) oxidative stress (MDA content) shown as mean ± standard error. Different letters indicate significant differences among the groups (one-way ANOVA with Fisher’s test, <span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>Root exudates. (<b>a</b>) Oxalate is shown as mean ± standard error; (<b>b</b>) malate is shown as mean ± standard error; (<b>c</b>) citrate is shown as mean ± standard error; and (<b>d</b>) succinate is shown as mean ± standard error. Different letters indicate significant differences among the groups (one-way ANOVA with Fisher’s test, <span class="html-italic">p</span> < 0.05).</p> "> Figure 7
<p>Principal component analysis (PCA) of different soil treatments, their chemical and microbiological properties, and plant parameters.</p> "> Figure 8
<p>Significant Pearson correlations were observed between the chemical and microbiological properties. (<b>a</b>) Control soil, (<b>b</b>) soil with LDPE-MPs, (<b>c</b>) soil with PA-MPs, and (<b>d</b>) soil with PP-MPs.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Site and Experimental Design
2.2. Microplastics Preparation
2.3. Determination of Plant Parameters
2.4. Soil Properties
2.5. Microplastics Analysis
2.5.1. Observation of MPs by Scanning Electron Microscopy (SEM)
2.5.2. MPs Characterization by Fourier Transform Infrared Spectrometer (FTIR)
2.6. Statistical Analysis
3. Results
3.1. Effects of LDPE, PP, and PA on Soil Parameters
3.2. Microplastics
3.3. Effects of LDPE, PP, and PA on Plant Parameters
3.4. Relationship Between Microbiological and Chemical Soil Properties
4. Discussion
4.1. Effects of MPs on Plant Physiology and Growth
4.2. Effects of MPs on Soil Properties
4.3. MPs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys; US Government Printing Office: Washington, DC, USA, 2006.
- Hodges, D.M.; DeLong, J.M.; Forney, C.F.; Prange, R.K. Improving the Thiobarbituric Acid-Reactive-Substances Assay for Estimating Lipid Peroxidation in Plant Tissues Containing Anthocyanin and Other Interfering Compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in Isolated Chloroplasts: I. Kinetics and Stoichiometry of Fatty Acid Peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Cawthray, G.R. An Improved Reversed-Phase Liquid Chromatographic Method for the Analysis of Low-Molecular Mass Organic Acids in Plant Root Exudates. J. Chromatogr. A 2003, 1011, 233–240. [Google Scholar] [CrossRef]
- Delgado, M.; Suriyagoda, L.; Zúñiga-Feest, A.; Borie, F.; Lambers, H. Divergent Functioning of Proteaceae Species: The South American Embothrium Coccineum Displays a Combination of Adaptive Traits to Survive in High-Phosphorus Soils. Funct. Ecol. 2014, 28, 1356–1366. [Google Scholar] [CrossRef]
- Delgado, M.; Zúñiga-Feest, A.; Reyes-Díaz, M.; Barra, P.J.; Ruiz, S.; Bertin-Benavides, A.; Valle, S.; Pereira, M.; Lambers, H. Ecophysiological Performance of Proteaceae Species from Southern South America Growing on Substrates Derived from Young Volcanic Materials. Front. Plant Sci. 2021, 12, 636056. [Google Scholar] [CrossRef]
- Eivazi, F.; Tabatabai, M.A. Factors Affecting Glucosidase and Galactosidase Activities in Soils. Soil Biol. Biochem. 1990, 22, 891–897. [Google Scholar] [CrossRef]
- Nannipieri, P.; Ceccanti, B.; Cervelli, S.; Matarese, E. Extraction of Phosphatase, Urease, Proteases, Organic Carbon, and Nitrogen from Soil. Soil Sci. Soc. Am. J. 1980, 44, 1011–1016. [Google Scholar] [CrossRef]
- Naseby, D.C.; Lynch, J.M. Rhizosphere Soil Enzymes as Indicators of Perturbations Caused by Enzyme Substrate Addition and Inoculation of a Genetically Modified Strain of Pseudomonas Fluorescens on Wheat Seed. Soil Biol. Biochem. 1997, 29, 1353–1362. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of P-Nitrophenyl Phosphate for Assay of Soil Phosphatase Activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Alef, K.N.P. Methods in Applied Soil Microbiology and Biochemistry; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An Extraction Method for Measuring Soil Microbial Biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Tate, K.R.; Ross, D.J.; Feltham, C.W. A Direct Extraction Method to Estimate Soil Microbial c: Effects of Experimental Variables and Some Different Calibration Procedures. Soil Biol. Biochem. 1988, 20, 329–335. [Google Scholar] [CrossRef]
- Rajandas, H.; Parimannan, S.; Sathasivam, K.; Ravichandran, M.; Su Yin, L. A Novel FTIR-ATR Spectroscopy Based Technique for the Estimation of Low-Density Polyethylene Biodegradation. Polym. Test. 2012, 31, 1094–1099. [Google Scholar] [CrossRef]
- Gopanna, A.; Mandapati, R.N.; Thomas, S.P.; Rajan, K.; Chavali, M. Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy and Wide-Angle X-Ray Scattering (WAXS) of Polypropylene (PP)/Cyclic Olefin Copolymer (COC) Blends for Qualitative and Quantitative Analysis. Polym. Bull. 2019, 76, 4259–4274. [Google Scholar] [CrossRef]
- Tang, C.Y.; Kwon, Y.N.; Leckie, J.O. Effect of Membrane Chemistry and Coating Layer on Physiochemical Properties of Thin Film Composite Polyamide RO and NF Membranes: I. FTIR and XPS Characterization of Polyamide and Coating Layer Chemistry. Desalination 2009, 242, 149–167. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Q.; Wei, Z.; Jiang, J.; Deng, J. Effects of Microplastic Type on Growth and Physiology of Soil Crops: Implications for Farmland Yield and Food Quality. Environ. Pollut. 2023, 326, 121512. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Shah, T.; Asad, M.; Amjad, K.; Alsahli, A.A.; Ahmad, P. Alleviation of Microplastic Toxicity in Soybean by Arbuscular Mycorrhizal Fungi: Regulating Glyoxalase System and Root Nodule Organic Acid. J. Environ. Manag. 2024, 349, 119377. [Google Scholar] [CrossRef]
- Gao, M.; Xu, Y.; Liu, Y.; Wang, S.; Wang, C.; Dong, Y.; Song, Z. Effect of Polystyrene on Di-Butyl Phthalate (DBP) Bioavailability and DBP-Induced Phytotoxicity in Lettuce. Environ. Pollut. 2021, 268, 115870. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Jia, H.; Zhao, S.; Xia, T.; Guo, X.; Wang, T.; Zhu, L. Formation of Environmentally Persistent Free Radicals on Microplastics under Light Irradiation. Environ. Sci. Technol. 2019, 53, 8177–8186. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, F.; Ding, L.; Zhang, G.; Bai, B.; Han, Y.; Xiao, L.; Song, Y.; Li, Y.; Wan, S.; et al. Microplastics Reduce Nitrogen Uptake in Peanut Plants by Damaging Root Cells and Impairing Soil Nitrogen Cycling. J. Hazard. Mater. 2023, 443, 130384. [Google Scholar] [CrossRef]
- Bargaz, A.; Faghire, M.; Farissi, M.; Drevon, J.J.; Ghoulam, C. Oxidative Stress in the Root Nodules of Phaseolus Vulgaris Is Induced under Conditions of Phosphorus Deficiency. Acta Physiol. Plant. 2013, 35, 1633–1644. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, Y.; Wang, J.; Zhang, M.; Jia, W.; Qin, X. LDPE Microplastic Films Alter Microbial Community Composition and Enzymatic Activities in Soil. Environ. Pollut. 2019, 254, 112983. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Liu, L.; Zhang, Y.; Fu, W.; Liu, X.; Wang, Q.; Tanveer, M.; Huang, L. Microplastic Stress in Plants: Effects on Plant Growth and Their Remediations. Front. Plant Sci. 2023, 14, 1226484. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, J.; Zhu, J.; Wang, J.; Wang, H.; Zhan, X. The Joint Toxicity of Polyethylene Microplastic and Phenanthrene to Wheat Seedlings. Chemosphere 2021, 282, 130967. [Google Scholar] [CrossRef]
- Gao, M.; Liu, Y.; Song, Z. Effects of Polyethylene Microplastic on the Phytotoxicity of Di-n-Butyl Phthalate in Lettuce (Lactuca sativa L. Var. Ramosa Hort). Chemosphere 2019, 237, 124482. [Google Scholar] [CrossRef] [PubMed]
- Arthur, E.; Moldrup, P.; Holmstrup, M.; Schjønning, P.; Winding, A.; Mayer, P.; de Jonge, L.W. Soil Microbial and Physical Properties and Their Relations along a Steep Copper Gradient. Agric. Ecosyst. Environ. 2012, 159, 9–18. [Google Scholar] [CrossRef]
- Naveed, M.; Herath, L.; Moldrup, P.; Arthur, E.; Nicolaisen, M.; Norgaard, T.; Ferré, T.P.A.; de Jonge, L.W. Spatial Variability of Microbial Richness and Diversity and Relationships with Soil Organic Carbon, Texture and Structure across an Agricultural Field. Appl. Soil Ecol. 2016, 103, 44–55. [Google Scholar] [CrossRef]
- Girvan, M.S.; Bullimore, J.; Pretty, J.N.; Osborn, A.M.; Ball, A.S. Soil Type Is the Primary Determinant of the Composition of the Total and Active Bacterial Communities in Arable Soils. Appl. Environ. Microbiol. 2003, 69, 1800–1809. [Google Scholar] [CrossRef]
- Liu, H.; Yang, X.; Liu, G.; Liang, C.; Xue, S.; Chen, H.; Ritsema, C.J.; Geissen, V. Response of Soil Dissolved Organic Matter to Microplastic Addition in Chinese Loess Soil. Chemosphere 2017, 185, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Rubol, S.; Manzoni, S.; Bellin, A.; Porporato, A. Modeling Soil Moisture and Oxygen Effects on Soil Biogeochemical Cycles Including Dissimilatory Nitrate Reduction to Ammonium (DNRA). Adv. Water Resour. 2013, 62, 106–124. [Google Scholar] [CrossRef]
- Mori, T.; Wang, S.; Wang, C.; Mo, J.; Zhang, W. Is Microbial Biomass Measurement by the Chloroform Fumigation Extraction Method Biased by Experimental Addition of N and P? IForest 2021, 14, 408. [Google Scholar] [CrossRef]
- Zhao, T.; Lozano, Y.M.; Rillig, M.C. Microplastics Increase Soil PH and Decrease Microbial Activities as a Function of Microplastic Shape, Polymer Type, and Exposure Time. Front. Environ. Sci. 2021, 9, 675803. [Google Scholar] [CrossRef]
- Fei, Y.; Huang, S.; Zhang, H.; Tong, Y.; Wen, D.; Xia, X.; Wang, H.; Luo, Y.; Barceló, D. Response of Soil Enzyme Activities and Bacterial Communities to the Accumulation of Microplastics in an Acid Cropped Soil. Sci. Total Environ. 2020, 707, 135634. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an Emerging Threat to Terrestrial Ecosystems. Glob. Chang. Biol. 2018, 24, 1405–1416. [Google Scholar] [CrossRef]
- De Souza Machado, A.A.; Lau, C.W.; Kloas, W.; Bergmann, J.; Bachelier, J.B.; Faltin, E.; Becker, R.; Görlich, A.S.; Rillig, M.C. Microplastics Can Change Soil Properties and Affect Plant Performance. Environ. Sci. Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Y.; Wang, Q.R.; Wang, T.Y.; Zhang, S.Q.; Yu, H.W. Impacts of Polypropylene Microplastics on the Distribution of Cadmium, Enzyme Activities, and Bacterial Community in Black Soil at the Aggregate Level. Sci. Total Environ. 2024, 917, 170541. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huang, K.; Yuan, G.; Yang, C. Effects of Polyethylene Microplastics and Phenanthrene on Soil Properties, Enzyme Activities and Bacterial Communities. Processes 2022, 10, 2128. [Google Scholar] [CrossRef]
Soil Properties | Control | PP | LDPE | PA |
---|---|---|---|---|
Nitrate (mg kg−1) | 1.76 ± 0.6 a | 2.02 ± 0.6 a | 2.30 ± 1.8 a | 1.46 ± 0.3 a |
Ammonium (mg kg−1) | 7.44 ± 1.5 b | 12.72 ± 1.9 a | 15.28 ± 9.5 ab | 10.78 ± 1.7 ab |
Available N (mg kg−1) | 9.22 ± 1.5 b | 14.74 ± 1.6 a | 17.58 ± 11.2 ab | 12.22 ± 2.0 ab |
P Olsen (mg kg−1) | 28.44 ± 0.7 a | 29.12 ± 1.4 a | 29.1 ± 1.9 a | 30.4 ± 1.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobarzo-Palma, C.; López-Belchí, M.D.; Noriega, F.A.; Zornoza, R.; Tortella, G.; Schoebitz, M. Microplastics Can Alter Plant Parameters Without Affecting the Soil Enzymatic Activity in White Lupine. Sustainability 2025, 17, 149. https://doi.org/10.3390/su17010149
Sobarzo-Palma C, López-Belchí MD, Noriega FA, Zornoza R, Tortella G, Schoebitz M. Microplastics Can Alter Plant Parameters Without Affecting the Soil Enzymatic Activity in White Lupine. Sustainability. 2025; 17(1):149. https://doi.org/10.3390/su17010149
Chicago/Turabian StyleSobarzo-Palma, Carla, María Dolores López-Belchí, Felipe Andrés Noriega, Raúl Zornoza, Gonzalo Tortella, and Mauricio Schoebitz. 2025. "Microplastics Can Alter Plant Parameters Without Affecting the Soil Enzymatic Activity in White Lupine" Sustainability 17, no. 1: 149. https://doi.org/10.3390/su17010149
APA StyleSobarzo-Palma, C., López-Belchí, M. D., Noriega, F. A., Zornoza, R., Tortella, G., & Schoebitz, M. (2025). Microplastics Can Alter Plant Parameters Without Affecting the Soil Enzymatic Activity in White Lupine. Sustainability, 17(1), 149. https://doi.org/10.3390/su17010149