Rice Disease Classification Using a Stacked Ensemble of Deep Convolutional Neural Networks
<p>Representative rice images used in this study. (<b>a</b>) Rice bacterial blight, (<b>b</b>) rice brown spot, (<b>c</b>) rice kernel smut, (<b>d</b>) rice false smut, and (<b>e</b>) healthy leaves.</p> "> Figure 2
<p>Framework of the proposed method.</p> "> Figure 3
<p>Architecture of CG-EfficientNet. (<b>a</b>) Overall structure, (<b>b</b>) MBConv1, and (<b>c</b>) MBConv6.</p> "> Figure 4
<p>Structure of the stacking ensemble algorithm.</p> ">
Abstract
:1. Introduction
2. Rice Image Datasets
3. Methods
3.1. EfficientNet
3.2. CG-EfficientNet
3.3. Stacking Ensemble Method
3.3.1. Construction of the Base Learners
3.3.2. Construction of the Integration Strategy
- (1)
- Train each base learner using the training subset and calculate the cross-entropy loss of each base learner on the validation set.
- (2)
- Optimize the loss function using the SLSQP algorithm and calculate the weight of each base learner. The feature-weighted training set for the meta-learner is constructed by combining the output and weight of each base learner, which have been obtained through -fold cross validation. For the th-fold cross validation, the feature weights can be represented as
- (3)
- Learn the logistic regression that combines the outputs of the base classifiers.
4. Results and Analysis
4.1. Performance Comparison of the Combined and Individual Classifiers
4.2. Performance Comparison with Classical CNN Methods
4.3. Performance Results on PlantVillage
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sriwanna, K. Weather-based rice blast disease forecasting. Comput. Electron. Agric. 2022, 193, 106685. [Google Scholar] [CrossRef]
- Zhou, C.; Zhong, Y.; Zhou, S.; Song, J.; Xiang, W. Rice leaf disease identification by residual-distilled transformer. Eng. Appl. Artif. Intell. 2023, 121, 106020. [Google Scholar] [CrossRef]
- Jiang, F.; Lu, Y.; Chen, Y.; Cai, D.; Li, G. Image recognition of four rice leaf diseases based on deep learning and support vector machine. Comput. Electron. Agric. 2020, 179, 105824. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, D.; Zeb, A.; Nanehkaran, Y.A. Identification of rice plant diseases using lightweight attention networks. Expert Syst. Appl. 2021, 169, 114514. [Google Scholar] [CrossRef]
- Dogra, R.; Rani, S.; Singh, A.; Albahar, M.A.; Barrera, A.E.; Alkhayyat, A. Deep learning model for detection of brown spot rice leaf disease with smart agriculture. Comput. Electr. Eng. 2023, 109, 108659. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Peng, Z. Rice diseases detection and classification using attention based neural network and bayesian optimization. Expert Syst. Appl. 2021, 178, 114770. [Google Scholar] [CrossRef]
- Feng, S.; Zhao, D.; Guan, Q.; Li, J.; Liu, Z.; Jin, Z.; Li, G.; Xu, T. A deep convolutional neural network-based wavelength selection method for spectral characteristics of rice blast disease. Comput. Electron. Agric. 2022, 199, 107199. [Google Scholar] [CrossRef]
- Pandi, S.S.; Senthilselvi, A.; Gitanjali, J.; ArivuSelvan, K.; Gopal, J.; Vellingiri, J. Rice plant disease classification using dilated convolutional neural network with global average pooling. Ecol. Model. 2022, 474, 110166. [Google Scholar] [CrossRef]
- Chen, L.; Zou, J.; Yuan, Y.; He, H. Improved domain adaptive rice disease image recognition based on a novel attention mechanism. Comput. Electron. Agric. 2023, 208, 107806. [Google Scholar] [CrossRef]
- Shafik, W.; Turqil, A.; Namoun, A.; De Silva, L.C.; Apong, R.A.A.H.M. A systematic literature review on plant disease detection: Motivations, classification techniques, datasets, challenges, and future trends. IEEE Access 2023, 11, 59174–59203. [Google Scholar] [CrossRef]
- Mukherjee, R.; Ghosh, A.; Chakraborty, C.; De, J.D.; Mishra, D.P. Rice leaf disease identification and classification using machine learning techniques: A comprehensive review. Eng. Appl. Artif. Intell. 2025, 139, 109639. [Google Scholar] [CrossRef]
- Barbedo, J.G.A. Digital image processing techniques for detecting, quantifying and classifying plant diseases. SpringerPlus 2013, 2, 660. [Google Scholar] [CrossRef]
- Phadikar, S.; Sil, J.; Das, A.K. Rice diseases classification using feature selection and rule generation techniques. Comput. Electron. Agric. 2013, 90, 76–85. [Google Scholar] [CrossRef]
- Xiao, M.; Ma, Y.; Feng, Z.; Deng, Z.; Hou, S.; Shu, L.; Lu, Z. Rice blast recognition based on principal component analysis and neural network. Comput. Electron. Agric. 2018, 154, 482–490. [Google Scholar] [CrossRef]
- Abdullah, S.N.H.S.; Abdullah, S.; Fitriayanshah, A.; Petrou, M.; Abdullah, S.; Razalan, M.H.A. A portable rice disease diagnosis tool based on bi-level color image thresholding. Appl. Eng. Agric. 2016, 32, 295–310. [Google Scholar]
- Prajapati, H.B.; Shah, J.P.; Dabhi, V.K. Detection and classification of rice plant diseases. Intell. Decis. Technol. 2017, 11, 357–373. [Google Scholar] [CrossRef]
- Kang, J.; Ma, Y.; Xiao, M.; Feng, Z.; Deng, Z.; Zhao, S. Rice blast recognition based on image processing and BP neural network. Int. Agric. Eng. J. 2018, 27, 250–256. [Google Scholar]
- Sethy, P.K.; Barpanda, N.K.; Rath, A.K.; Behera, S.K. Image processing techniques for diagnosing rice plant disease: A survey. Procedia Comput. Sci. 2020, 167, 516–530. [Google Scholar] [CrossRef]
- Bengio, Y.; Lecun, Y.; Hinton, G. Deep Learning for AI. Commun. ACM 2021, 64, 58–65. [Google Scholar] [CrossRef]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 2020, 53, 5455–5516. [Google Scholar] [CrossRef]
- Younesi, A.; Ansari, M.; Fazli, M.; Ejlali, A.; Shafique, M.; Henkel, J. A comprehensive survey of convolutions in deep learning: Applications, challenges, and future trends. IEEE Access 2024, 12, 41180–41218. [Google Scholar] [CrossRef]
- Abade, A.; Ferreira, P.A.; de Barros Vidal, F. Plant diseases recognition on images using convolutional neural networks: A systematic review. Comput. Electron. Agric. 2021, 185, 106125. [Google Scholar] [CrossRef]
- Yusuf, H.M.; Yusuf, S.A.; Abubakar, A.H.; Abdullahi, M.; Hassan, I.H. A systematic review of deep learning techniques for rice disease recognition: Current trends and future directions. Frankl. Open 2024, 8, 100154. [Google Scholar] [CrossRef]
- Cheng, D.; Zhao, Z.; Feng, J. Rice diseases identification method based on Improved YOLOv7-Tiny. Agriculture 2024, 14, 709. [Google Scholar] [CrossRef]
- Liu, H.; Cui, Y.; Wang, J.; Yu, H. Analysis and research on rice disease identification method based on deep learning. Sustainability 2023, 15, 9321. [Google Scholar] [CrossRef]
- Gülmez, B. Advancements in rice disease detection through convolutional neural networks: A comprehensive review. Heliyon 2024, 10, e33328. [Google Scholar] [CrossRef]
- Lu, Y.; Tao, X.P.; Jiang, F.; Du, J.J.; Li, G.F.; Liu, Y.R. Image recognition of rice leaf diseases using atrous convolutional neural network and improved transfer learning algorithm. Multimed. Tools Appl. 2024, 83, 12799–12817. [Google Scholar] [CrossRef]
- Pan, J.; Wang, T.; Wu, Q. RiceNet: A two stage machine learning method for rice disease identification. Biosyst. Eng. 2023, 225, 25–40. [Google Scholar] [CrossRef]
- Stephen, A.; Punitha, A.; Chandrasekar, A. Designing self attention-based ResNet architecture for rice leaf disease classification. Neural Comput. Appl. 2023, 35, 6737–6751. [Google Scholar] [CrossRef]
- Yang, L.; Yu, X.; Zhang, S.; Long, H.; Zhang, H.; Xu, S.; Liao, Y. GoogLeNet based on residual network and attention mechanism identification of rice leaf diseases. Comput. Electron. Agric. 2023, 204, 107543. [Google Scholar] [CrossRef]
- Bi, X.; Wang, H. Double-branch deep convolutional neural network-based rice leaf diseases recognition and classification. J. Agric. Eng. 2024, 55, 1544. [Google Scholar] [CrossRef]
- Abad, M.T.; Li, Y.; Song, B.; Bhuiyan, T. Comparison of CNN-based deep learning architectures for rice diseases classification. Artif. Intell. Agric. 2023, 9, 22–35. [Google Scholar]
- Mi, J.; Feng, J.; Huang, K. Designing efficient convolutional neural network structure: A survey. Neurocomputing 2022, 489, 139–156. [Google Scholar] [CrossRef]
- He, Y.; Xiao, L. Structured pruning for deep convolutional neural networks: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 2900–2919. [Google Scholar] [CrossRef]
- Ning, H.; Liu, S.; Zhu, Q.; Zhou, T. Convolutional neural network in rice disease recognition: Accuracy, speed and lightweight. Front. Plant Sci. 2023, 14, 1269371. [Google Scholar] [CrossRef]
- Yang, Y.; Jiao, G.; Liu, J.; Zhao, W.; Zheng, J. A lightweight rice disease identification network based on attention mechanism and dynamic convolution. Ecol. Inform. 2023, 78, 102320. [Google Scholar] [CrossRef]
- Gao, W.; Zong, C.; Wang, M.; Zhang, H.; Fang, Y. Intelligent identification of rice leaf disease based on YOLO V5-EFFICIENT. Crop Prot. 2024, 183, 106758. [Google Scholar] [CrossRef]
- Yuan, P.; Ouyang, L.; Zhai, Z.; Tian, Y. Lightweight identification of rice diseases based on improved ECA and MobileNetV3Small. Trans. Chin. Soc. Agric. Mach. 2024, 55, 253–262. [Google Scholar]
- Zhou, Y.; Fu, C.; Zhai, Y.; Li, J.; Jin, Z.; Xu, Y. Identification of rice leaf disease using improved ShuffleNet V2. Comput. Mater. Contin. 2023, 75, 4501–4517. [Google Scholar] [CrossRef]
- Chi, J.; Guo, S.; Zhang, H.; Shan, Y. L-GhostNet: Extract better quality features. IEEE Access 2023, 11, 2361–2374. [Google Scholar] [CrossRef]
- Padhi, J.; Korada, L.; Dash, A.; Sethy, P.K.; Behera, S.K.; Nanthaamornphong, A. Paddy leaf disease classification using EfficientNet B4 With compound scaling and swish activation: A deep learning approach. IEEE Access 2024, 12, 126426–126437. [Google Scholar] [CrossRef]
- Yang, L.; Guo, F.; Zhang, H.; Cao, Y.; Feng, S. Research on lightweight rice false smut disease identification method based on improved YOLOv8n model. Agronomy 2024, 14, 1934. [Google Scholar] [CrossRef]
- Bhuyan, P.; Singh, P.K.; Das, S.K.; Kalla, A. SE_SPnet: Rice leaf disease prediction using stacked parallel convolutional neural network with squeeze-and-excitation. Expert Syst. 2023, 40, e13304. [Google Scholar] [CrossRef]
- Ganaie, M.A.; Hu, M.; Malik, A.K.; Tanveer, M.; Suganthan, P.N. Ensemble deep learning: A review. Eng. Appl. Artif. Intell. 2022, 115, 105151. [Google Scholar] [CrossRef]
- Dong, X.; Yu, Z.; Cao, W.; Shi, Y.; Ma, Q. A survey on ensemble learning. Front. Comput. Sci. 2020, 14, 241–258. [Google Scholar] [CrossRef]
- Yang, Y.; Lv, H.; Chen, N. A Survey on ensemble learning under the era of deep learning. Artif. Intell. Rev. 2023, 56, 5545–5589. [Google Scholar] [CrossRef]
- Mohammed, A.; Kora, R. A comprehensive review on ensemble deep learning: Opportunities and challenges. J. King Saud Univ. Comput. Inf. Sci. 2023, 35, 757–774. [Google Scholar] [CrossRef]
- Shovon, M.S.H.; Mozumder, S.J.; Pal, O.K.; Mridha, M.F.; Asai, N.; Shin, J. PlantDet: A robust multi-model ensemble method based on deep learning for plant disease detection. IEEE Access 2023, 11, 34846–34859. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, C.J. Improving rice disease diagnosis using ensemble transfer learning techniques. Int. J. Artif. Intell. Tools 2022, 31, 2250040. [Google Scholar] [CrossRef]
- He, Y.; Zhang, G.; Gao, Q. A novel ensemble learning method for crop leaf disease recognition. Front. Plant Sci. 2024, 14, 1280671. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 10691–10700. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. Lect. Notes Comput. Sci. 2018, 11211, 3–19. [Google Scholar]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.J.; Xu, C. GhostNet: More features from cheap operations. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1577–1586. [Google Scholar]
- Yang, L.; Yu, X.; Zhang, S.; Zhang, H.; Xu, S.; Long, H.; Zhu, Y. Stacking-based and improved convolutional neural network: A new approach in rice leaf disease identification. Front. Plant Sci. 2023, 14, 1165940. [Google Scholar] [CrossRef]
- Kraft, D. A Software Package for Sequential Quadratic Programming; Technical Report DFVLR-FB 88-28; Institut fuer Dynamik der Flugsysteme: Oberpfaffenhofen, Germany, 1988. [Google Scholar]
Stage | Operator | Resolution | # Channels | # Layers |
---|---|---|---|---|
1 | Conv 3 × 3 | 224 × 224 | 32 | 1 |
2 | MBConv1, k3 × 3 | 112 × 112 | 16 | 1 |
3 | MBConv6, k3 × 3 | 112 × 112 | 24 | 2 |
4 | MBConv6, k5 × 5 | 56 × 56 | 40 | 2 |
5 | MBConv6, k3 × 3 | 28 × 28 | 80 | 3 |
6 | MBConv6, k5 × 5 | 14 × 14 | 112 | 3 |
7 | MBConv6, k5 × 5 | 14 × 14 | 192 | 4 |
8 | MBConv6, k3 × 3 | 7 × 7 | 320 | 1 |
9 | Conv 1 × 1 & Pooling & FC | 7 × 7 | 1280 | 1 |
Single Classifier | Optimizer | Learning Rate | Batch Size |
---|---|---|---|
CG-EfficientNet1 | Adam | 0.001 | 32 |
CG-EfficientNet2 | Adamax | 0.002 | 16 |
CG-EfficientNet3 | SGD | 0.001 | 64 |
CG-EfficientNet4 | RMSProp | 0.002 | 32 |
CG-EfficientNet5 | AdaGrad | 0.001 | 16 |
CG-EfficientNet6 | Nadam | 0.002 | 64 |
CG-EfficientNet7 | Adadelta | 0.001 | 32 |
Model | Accuracy/% | Precision/% | F1_Score/% | Recall/% |
---|---|---|---|---|
CG-EfficientNet1 | 90.73 | 91.10 | 90.43 | 90.28 |
CG-EfficientNet2 | 91.96 | 88.92 | 88.73 | 89.31 |
CG-EfficientNet3 | 91.78 | 91.65 | 91.73 | 91.92 |
CG-EfficientNet4 | 87.06 | 87.98 | 86.15 | 86.38 |
CG-EfficientNet5 | 89.69 | 88.96 | 88.81 | 88.97 |
CG-EfficientNet6 | 88.64 | 89.05 | 88.52 | 88.75 |
CG-EfficientNet7 | 90.56 | 90.45 | 90.46 | 90.62 |
Proposed method | 96.10 | 95.68 | 95.74 | 95.81 |
Methods | Accuracy/% | Parameters |
---|---|---|
VGG16 | 87.24 | 48, 533, 829 |
Inception-V3 | 90.91 | 23, 906, 085 |
ResNet-101 | 91.96 | 44, 761, 477 |
DenseNet201 | 94.58 | 20, 294, 213 |
Proposed method | 96.10 | 4, 392, 549 |
Methods | Accuracy/% |
---|---|
Snapshot | 93.40 |
Voting | 94.23 |
Average | 94.41 |
Stacking | 93.89 |
Proposed method | 96.10 |
Model | Accuracy |
---|---|
AlexNet | 98.29 |
VGG16 | 97.48 |
Inception-V3 | 98.91 |
MobileNetV1 | 98.74 |
ResNet101 | 98.96 |
DenseNet201 | 99.06 |
Proposed method | 99.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wei, Y.; Mu, C.; Zhang, Y.; Qiao, X. Rice Disease Classification Using a Stacked Ensemble of Deep Convolutional Neural Networks. Sustainability 2025, 17, 124. https://doi.org/10.3390/su17010124
Wang Z, Wei Y, Mu C, Zhang Y, Qiao X. Rice Disease Classification Using a Stacked Ensemble of Deep Convolutional Neural Networks. Sustainability. 2025; 17(1):124. https://doi.org/10.3390/su17010124
Chicago/Turabian StyleWang, Zhibin, Yana Wei, Cuixia Mu, Yunhe Zhang, and Xiaojun Qiao. 2025. "Rice Disease Classification Using a Stacked Ensemble of Deep Convolutional Neural Networks" Sustainability 17, no. 1: 124. https://doi.org/10.3390/su17010124
APA StyleWang, Z., Wei, Y., Mu, C., Zhang, Y., & Qiao, X. (2025). Rice Disease Classification Using a Stacked Ensemble of Deep Convolutional Neural Networks. Sustainability, 17(1), 124. https://doi.org/10.3390/su17010124