Identification of Aquatic Plant Species Suitable for Growing in Integrated Multi-Trophic Aquaculture Systems in Southwest Bangladesh
<p>GIS map of Bangladesh highlighting the study area in the Khulna division (Bagerhat S means Bagerhat Sadar).</p> "> Figure 2
<p>Illustration of quadrat sampling of aquatic plants in pond.</p> "> Figure 3
<p>Vertical and horizontal axes of the dendrogram reflect clusters and distances among the groups of plants growing in different water bodies. The red vertical line at threshold 5 shows the optimal number of clusters.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection
2.2. Sampling Strategy for Aquatic Plants
2.3. Determining Aquatic Plant Diversity
2.4. Data Analysis
3. Results
3.1. Distribution of Aquatic Plants
3.1.1. Distribution of Aquatic Plants by Zones and Water Bodies
3.1.2. Distribution of Aquatic Plants by Water Bodies and Form
3.1.3. Distribution of Aquatic Plants by Form and Species
3.2. Diversity of Aquatic Plants
3.3. Application of Aquatic Plants
4. Discussion
4.1. Suitable Aquatic Plants or Seaweeds for Use in IMTA
Freshwater | Coastal/Brackish Water | Marine Water | Region | References |
---|---|---|---|---|
Ipomoea aquatica Lemna perpusilla Lemna minor | Gracilaria verrucosa Ulva lactuca Ipomoea aquatica Caulerpa racemose Enteromorpha sp. Gelidiella tenuissima Gelidium pusillum Halymenia discoidea Hypnea pannosa Hydroclathrus clathratus Sargassum sp. Undaria pinnatifida Agarophyton tenuistipitatum | Gracilaria sp. Kappaphycus alvarezii Chaetomorpha linum Gracilaria chouae Laminaria saccharina Laminaria japonica Gracilaria lemaneiformis Gracilaria conferta Ulva lactuca Paracentrotus lividus Gracilaria heteroclada Porphyra spp. | Asia | [2,26,65,66,71,72,73,74,75,76,77,78,79] |
Ulva lactuca Ulva rigida Ulva rotunda Ulva sp. Asparagops armata Hydropunta cornea Palmaria palmate | Gracilaria bursapastoris Ulva lactuca Ulva rigida Alaria esculenta Saccharina latissimi Undaria pinnatifida Laminaria hyperborea | Europe | [80,81,82,83,84,85] | |
Lactuca sativa Agardhiella subulata Chondrus crispus | Saccharina latissima Alaria esculenta Laminaria saccharina Porphyra umbilicalis Eucheuma spp. Gracilaria tikvahiae Sargassum spp. Macrocystis pyrifera Alaria marginata Chondracanthus chamissoi | North America | [86,87,88,89,90,91,92] | |
Lessonia nigrescens Lessonia trabeculata Macrocystis pyrifera Chondracanthus chamissoi Callophyllis variegata | Gracilaria chilensis Ulva flexuosa Ulva fasciata Gracilaria birdiae | South America | [7,93,94,95,96,97,98,99] | |
Hypnea spp. Ulva spp. Gelidium pristoides Gelidium vittatum | Eucheuma denticulatum Kappaphycus alvarezii Eucheuma cottonii Eucheuma spp. Gelidium madagascariense Gracilaria corticata Laurencia complanata Ecklonia maxima Laminaria pallida | Africa | [97,98,99] | |
Undaria pinnatifida Pryopia spp. Durvillaea antarctica Pterocladia lucida Pterocladiella capillacea | Macrocystis pyrifera Lessonia corrugata Ecklonia radiata Sargassum fusiforme Durvillaea potatorum Durvillaea Antarctica Hennedya crispa Callophycus oppositifolius Spongites hyperellus Arthrocardia wardii Asparagopsis armata | Oceania | [100,101,102] |
4.2. Distribution of Aquatic Plants by Zone and Water Body
4.3. Distribution of Aquatic Plants by Water Body and Form
4.4. Distribution of Aquatic Plants by Form and Biology
4.5. Aquatic Plant Diversity
4.6. Use of Aquatic Plants by Local People
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wahab, M.A.; Al-Nahid, S.A.; Ahmed, N.; Haque, M.M.; Karim, M. Current status and prospects of farming the giant river prawn Macrobrachium rosenbergii (De Man) in Bangladesh. Aquac. Res. 2012, 43, 970–983. [Google Scholar] [CrossRef]
- Ahmed, N.; Glaser, M. Can “Integrated Multi-Trophic Aquaculture (IMTA)” adapt to climate change in coastal Bangladesh? Ocean Coast. Manag. 2016, 132, 120–131. [Google Scholar] [CrossRef]
- Hossain, A.; Senff, P.; Glaser, M. Lessons for Coastal Applications of IMTA as a Way towards Sustainable Development: A Review. Appl. Sci. 2022, 12, 11920. [Google Scholar] [CrossRef]
- Uddin, S.A.; Hussain, M.G.; Abdullah Al, M.; Failler, P.; Drakeford, B.M. On the potential and constraints of mariculture development in Bangladesh. Aquac. Int. 2021, 29, 575–593. [Google Scholar] [CrossRef]
- Chopin, T.; Buschmann, A.H.; Halling, C.; Troell, M.; Kautsky, N.; Neori, A.; Kraemer, G.P.; Zertuche-González, Z.A.; Yarish, C.; Neefus, C. Integrating seaweeds into marine aquaculture systems: A key towards sustainability. J. Phycol. 2001, 37, 975–986. [Google Scholar] [CrossRef]
- Chopin, T.; Robinson, S.M.C.; Troell, M.; Neori, A.; Buschmann, A.H.; Fang, J. Multi-trophic integration for sustainable marine aquaculture. In The Encyclopedia of Ecology; Jorgensen, S.E., Fath, B.D., Eds.; Elsevier: Oxford, UK, 2008; pp. 2463–2475. [Google Scholar] [CrossRef]
- Neori, A.; Chopin, T.; Troell, M.; Buschmann, A.H.; Kraemer, G.P.; Halling, C.; Shpigel, M.; Yarish, C. Integrated aquaculture: Rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 2004, 231, 361–391. [Google Scholar] [CrossRef]
- Troell, M.; Halling, C.; Neori, A.; Chopin, T.; Buschmann, A.H.; Kautsky, N.; Yarish, C. Integrated mariculture: Asking the right questions. Aquaculture 2003, 226, 69–90. [Google Scholar] [CrossRef]
- Paolacci, S.; Stejskal, V.; Toner, D.; Jansen, M.A.K. Wastewater Valorisation in an Integrated Multitrophic Aquaculture System; Assessing Nutrient Removal and Biomass Production by Duckweed Species. Environ. Pollut. 2022, 302, 119059. [Google Scholar] [CrossRef]
- Shen, M.; Yin, Z.; Xia, D.; Zhao, Q.; Kang, Y. Combination of heterotrophic nitrifying bacterium and duckweed (Lemna gibba L.) enhances ammonium nitrogen removal efficiency in aquaculture water via mutual growth promotion. J. Gen. Appl. Microbiol. 2019, 65, 151–160. [Google Scholar] [CrossRef]
- Huang, H.; Liu, J.; Liu, H.; Evrendilek, F.; Buyukada, M. Pyrolysis of water hyacinth biomass parts: Bioenergy, gas emissions, and by- products using TGFTIR and Py-GC/MS analyses. Energy Convers. Manag. 2020, 207, 112552. [Google Scholar] [CrossRef]
- Keddy, P.A. Wetland Ecology: Principles and Conservation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010; p. 497. [Google Scholar] [CrossRef]
- Khatun, M.M.; Miah, M.A.; Sarwar, A.K.M.G. Taxonomic diversity of broad-leaf weeds at Bangladesh Agricultural University campus and their ethno-botanical uses. J. Bangladesh Agril. Univ. 2019, 17, 526–538. [Google Scholar] [CrossRef]
- FAO. Interactions Between Fish and Aquatic Macrophytes in Inland Waters: A Review. FAO Fisheries Technical Paper. No. 396. Rome, 2000, p. 185. Available online: https://www.fao.org/4/X7580E/X7580E00.htm (accessed on 10 June 2022).
- Ajithram, A.; Winowlin Jappes, J.T.; Siva, I.; Brintha, N.C. Utilizing the aquatic waste and investigation on water hyacinth (Eichhornia crassipes) natural plant in to the fibre composite: Waste recycling. Mater. Today Proceed. 2022, 58, 953–958. [Google Scholar] [CrossRef]
- Akowanou, A.V.O.; Deguenon, H.E.J.; Balogoun, K.C.; Daouda, M.M.A.; Aina, M.P. The combined effect of three floating macrophytes in domestic wastewater treatment. Sci. Afr. 2023, 20, e01630. [Google Scholar] [CrossRef]
- You, W.; Yu, D.; Xie, D.; Yu, L.; Xiong, W.; Han, C. Responses of the invasive aquatic plant water hyacinth to altered nutrient levels under experimental warming in China. Aquat. Bot. 2014, 119, 51–56. [Google Scholar] [CrossRef]
- Priya, E.S.; Selvan, S.E. Water hyacinth (Eichhornia crassipes)—An efficient and economic adsorbent for textile effluent treatment—A review. Arab. J. Chem. 2017, 10, S3548–S3558. [Google Scholar] [CrossRef]
- Costa, R.H.; Bavaresco, A.S.; Medri, W.; Philippi, L.S. Tertiary treatment of piggery wastes in water hyacinth ponds. Water Sci. Technol. 2000, 42, 211–214. [Google Scholar] [CrossRef]
- Rezania, S.; Din, M.; Taib, S.M.; Dahalan, F.A.; Songip, A.R.; Singh, L.; Kamyab, H. The efficient role of aquatic plant (Water hyacinth) in treating domestic wastewater in continuous system. Int. J. Phytoremediat. 2015, 18, 679–685. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in Action; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; p. 206. [Google Scholar] [CrossRef]
- Tanna, B.; Mishra, A. Nutraceutical potential of seaweed polysaccharides: Structure, bioactivity, safety, and toxicity. Compr. Rev. Food Sci. Food Saf. 2019, 18, 817–831. [Google Scholar] [CrossRef]
- You, S.H.; Zhang, X.H.; Liu, J.; Zhu, Y.N.; Gu, C. Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater. Environ. Technol. 2014, 35, 187–194. [Google Scholar] [CrossRef]
- Chand, N.; Rohatgi, P.K. Impact toughness of Ipomoea carnea particulate-polyester composite. J. Mater. Sci. Lett. 1987, 6, 695–697. [Google Scholar] [CrossRef]
- Yusuf, M.; Begum, J.; Hoque, M.N.; Chowdhury, J.U. Medicinal Plants of Bangladesh (Revised and Enlarged); Bangladesh Council of Scientific and Industrial Research Laboratories: Chittagong, Bangladesh, 2009; p. 794. [Google Scholar]
- Kibria, A.S.M.; Haque, M.M. Potentials of Integrate Multitrophic aquaculture (IMTA) in freshwater ponds in Bangladesh. Aquac. Rep. 2018, 11, 8–16. [Google Scholar] [CrossRef]
- Shaibur, M.R.; Parvin, S.; Ahmmed, I.; Rahaman, M.H.; Das, T.K.; Sarwar, S. Gradients of salinity in water Sources of Batiaghata, Dacope and Koyra Upazila of Coastal Khulna District, Bangladesh. Environ. Chall. 2021, 4, 100152. [Google Scholar] [CrossRef]
- Dar, N.A.; Pandit, A.K.; Ganai, B.A. Factors Affecting the Distribution Patterns of Aquatic Macrophytes. Limnol. Rev. 2014, 14, 75–81. [Google Scholar] [CrossRef]
- Ansari, A.A.; Saggu, S.; AL-Ghanim, S.M.; Abbas, Z.K.; Gill, S.S.; Khan, F.A.; Dar, M.I.; Khan, A.A. Aquatic plant biodiversity: A biological indicator for the monitoring and assessment of water quality. In Plant Biodiversity: Monitoring, Assessment and Conservation; CABI: Wallingford, UK, 2017; pp. 218–227. [Google Scholar] [CrossRef]
- Tootoonchi, M. Ecological Impacts of Salinity on Freshwater Aquatic and Westland Plants. Ph.D. Dissertation, University of Florida, Gainesville, FL, USA, 2021; p. 126. [Google Scholar]
- Hasan, N.A.; Haque, M.M.; Hinchliffe, S.J.; Guilder, J. A sequential assessment of WSD risk factors of shrimp farming in Bangladesh: Looking for a sustainable farming system. Aquaculture 2020, 526, 735348. [Google Scholar] [CrossRef]
- Mamun, A. Influence of salinity on aquaculture species richness in the mangrove-river connected zone of southwest Bangladesh. AACL Bioflux 2020, 13, 2180–2195. [Google Scholar]
- Mukherjee, N. Participatory Rural Appraisal: Methodology and Application; Concept Publishing Company: New Delhi, India, 1997; Volume 1, p. 160. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Labs Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Bhujel, R.C. Statistics for Aquaculture; Wiley-Blackwell: Hoboken, NJ, USA, 2008; p. 376. ISBN 978-0-8138-1587-9. [Google Scholar]
- Alamgir, M.S.; Furuya, J.; Kobayashi, S.; Rubaiya, M.B.; Salam, M.A. Farmers’ net income distribution and regional vulnerability to climate change: An empirical study of Bangladesh. Climate 2018, 6, 65. [Google Scholar] [CrossRef]
- Scher, J. Federal Noxious Weed Disseminules of the U.S. Center for Plant Health Science and Technology, Plant Protection and Quarantine, Animal and Plant Health Inspection Service; U.S. Department of Agriculture: Washington, DC, USA, 2004. [Google Scholar]
- Sarker, S.K.; Hossain, E.A. Pteridophytes of greater Mymensingh district of Bangladesh used as vegetables and medicines. Bangladesh J. Plant Taxon. 2009, 16, 47–56. [Google Scholar] [CrossRef]
- Hossain, G.M.; Khan, S.A.; Shetu, S.S.; Rahman, M.S.; Ahmed, F.A.; Ali, M.H. Floristic survey of vascular plants in coastal district Bagerhat of Bangladesh. Bangladesh J. Plant Taxon. 2022, 29, 43–78. [Google Scholar] [CrossRef]
- Shankar, L.H.; Mishra, P.K. Study of aquatic medicinal plants of Hazaribagh district of Jharkhand, India. Int. Res. J. Pharm. 2012, 30, 405–409. [Google Scholar]
- Rahman, A.H.M.; Gulshana, M.F.A. Taxonomy and medicinal uses on Amaranthaceae Family of Rajshahi, Bangladesh. Bangladesh J. Plant Taxon. 2014, 2, 54–59. [Google Scholar] [CrossRef]
- Jain, A.; Roshnibala, S.; Kanjilal, P.B.; Singh, R.S.; Singh, H.B. Aquatic/semi aquatic-plants used in herbal remedies in the wetlands of Manipur, Northeastern India. Indian J. Tradit. Knowl. 2007, 6, 346–351. [Google Scholar]
- Ali, M.R.; Billah, M.M.; Hassan, M.M.; Dewan, S.M.R.; Al-Emran, M. Enhydra fluctuans Lour: A Review. Res. J. Pharm. Technol. 2013, 6, 927–929. [Google Scholar]
- Reyad-ul-Ferdous, M.; Arman, M.S.I.; Tanvir, M.M.I.; Sumi, S.; Siddique, K.M.M.R.; Billah, M.M.; Islam, M.S. Biologically potential for pharmacologicals and phytochemicals of medicinal plants of Colocasia esculenta: A Comprehensive Review. Am. J. Clin. Exp. Med. 2015, 3, 7–11. [Google Scholar] [CrossRef]
- PFAF. Database. Plants for a Future. 2013. Available online: https://pfaf.org/user/plantsearch.aspx (accessed on 15 February 2023).
- Stuart, J. Insect effectors and gene-for-gene interactions with host plants. Curr. Opin. Insect Sci. 2015, 9, 56–61. [Google Scholar] [CrossRef]
- Das, G.; Farhan, N.; Sinha, S.; Bora, H.K.; Sing, W.R.; Meeran, S.M. Mikania micrantha extract enhances cutaneous wound healing activity through the activation of FAK/Akt/mTOR cell signaling pathway. Injury 2023, 54, 110856. [Google Scholar] [CrossRef]
- Uddin, M.B.; Mukul, S.A.; Khan, M.A.S.A.; Chowdhury, M.S.H.; Uddin, M.S.; Fujikawa, S. Indigenous management practices of hogla (Typha elephantina Roxb.) in local plantations of floodplain areas of Bangladesh. J. Subtrop. Agric. Res. Dev. 2006, 4, 114–119. [Google Scholar]
- Manna, S.; Mondal, C.; Roy, A. Economic contribution of Cattail (Typha Domingensis): A Source of alternative livelihood option in flood prone Bengal plains, India. Res. J. Pharm. Biol. Chem. Sci. 2019, 10, 1199–1207. [Google Scholar]
- Pandey, R.; Jose, S.; Sinha, M.K. Fiber extraction and characterization from Typha Domingensis. J. Nat. Fibers 2020, 19, 2648–2659. [Google Scholar] [CrossRef]
- Sezik, E.; Yeşİlada, E.; Tabata, M.; Honda, G.; Takaishi, Y.; Fujita, T.; Tanaka, T.; Takeda, Y. Traditional medicine in Turkey Viii. Folk medicine in East Anatolia; Erzurum, Erzíncan, Ağri, Kars, Iğdir provinces. Econ. Bot. 1997, 51, 195–211. [Google Scholar] [CrossRef]
- Lopes, A.; Rodrigues, M.J.; Pereira, C.; Oliveira, M.; Barreira, L.; Varela, J.; Trampetti, F.; Custódio, L. Natural products from extreme marine environments: Searching for potential industrial uses within extremophile plants. Ind. Crop. Prod. 2016, 94, 299–307. [Google Scholar] [CrossRef]
- Naseem, S.; Bhat, S.U.; Gani, A.; Bhat, F.A. Perspectives on utilization of macrophytes as a feed ingredient for fish in future aquaculture. Rev. Aquacul. 2020, 13, 282–300. [Google Scholar] [CrossRef]
- Appenroth, K.J.; Sree, K.S.; Böhm, V.; Hammann, S.; Vetter, W.; Leiterer, M.; Jahreis, G. Nutritional value of duckweeds (Lemnaceae) as human food. Food Chem. 2017, 217, 266–273. [Google Scholar] [CrossRef]
- Sharma, J.; Clark, W.D.; Shrivastav, A.K.; Goswami, R.K.; Tocher, D.R.; Chakrabarti, R. Production potential of greater duckweed Spirodela polyrhiza (L. Schleiden) and its biochemical composition evaluation. Aquaculture 2019, 513, 734419. [Google Scholar] [CrossRef]
- Yahaya, N.; Hamdan, N.H.; Zabidi, A.R.; Mohamad, A.M.; Suhaimi, M.L.H.; Johari, M.A.A.M.; Yahya, H.N.; Yahya, H. Duckweed as a future food: Evidence from metabolite profile, nutritional and microbial analyses. Future Foods 2022, 5, 100128. [Google Scholar] [CrossRef]
- Uddin, M.N.; Rahman, M.S.; Shahjahan, M. Effects of duckweed (Lemna minor) as supplementary feed on monoculture of gift strain of tilapia (Oreochromis niloticus). Progress. Agric. 2007, 18, 183–188. [Google Scholar] [CrossRef]
- Chahal, R.; Nanda, A.; Akkol, E.K.; Sobarzo-Sánchez, E.; Arya, A.; Kaushik, D.; Dutt, R.; Bhardwaj, R.; Rahman, M.H.; Mittal, V. Ageratum conyzoides L. and its secondary metabolites in the management of different fungal pathogens. Molecules 2021, 26, 2933. [Google Scholar] [CrossRef]
- Chopin, T.; Sawhney, M. Seaweeds and their mariculture. In The Encyclopedia of Ocean Sciences, Chapter: Seaweeds and Their Mariculture; Steele, J.H., Thorpe, S.A., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2009; pp. 4477–4487. [Google Scholar] [CrossRef]
- Granada, L.; Lopes, S.; Novais, S.C.; Lemos, M.F.L. Modelling integrated multi-trophic aquaculture: Optimizing a three trophic level system. Aquaculture 2018, 495, 90–97. [Google Scholar] [CrossRef]
- Troell, M. Integrated marine and brackishwater aquaculture in tropical regions. In Integrated Mariculture—A Global Review; FAO Fisheries and Aquaculture Technical; Soto, D., Ed.; Paper No. 529; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009; pp. 47–132. [Google Scholar]
- Zheng, W.; Shi, H.; Chen, S.; Zhu, M. Benefit and cost analysis of mariculture based on ecosystem services. Ecol. Econ. 2009, 68, 1626–1632. [Google Scholar] [CrossRef]
- Samocha, T.M.; Fricker, J.; Ali, A.M.; Shpigel, M.; Neori, A. Growth and nutrient uptake of the macroalga Gracilaria tikvahiae cultured with the shrimp Litopenaeus vannamei in an Integrated Multi-Trophic Aquaculture (IMTA) system. Aquaculture 2015, 446, 263–271. [Google Scholar] [CrossRef]
- Silva, D.M.; Valente, L.M.P.; Sousa-Pinto, I.; Pereira, R.; Pires, M.A.; Seixas, F.; Rema, P. Evaluation of IMTA-produced seaweeds (Gracilaria, Porphyra, and Ulva) as dietary ingredients in Nile tilapia, Oreochromis niloticus L., juveniles. Effects on growth performance and gut histology. J. Appl. Phycol. 2015, 27, 1671–1680. [Google Scholar] [CrossRef]
- Shpigel, M.; Shauli, L.; Odintsov, V.; Ben-Ezra, D.; Neori, A.; Guttman, L. The sea urchin, Paracentrotus lividus, in an Integrated Multi-Trophic Aquaculture (IMTA) system with fish (Sparus aurata) and seaweed (Ulva lactuca): Nitrogen partitioning and proportional configurations. Aquaculture 2018, 490, 260–269. [Google Scholar] [CrossRef]
- Buck, B.H.; Nevejan, N.; Wille, M.; Chambers, M.D.; Chopin, T. Offshore and multi-use aquaculture with extractive species: Seaweeds and bivalves. In Aquaculture Perspective of Multi-Use Sites in the Open Ocean; Buck, B., Langan, R., Eds.; Springer: Cham, Switzerland, 2017; p. 404. [Google Scholar] [CrossRef]
- Abreu, M.H.; Pereira, R.; Yarish, C.; Buschmann, A.H.; Sousa-Pinto, I. IMTA with Gracilaria vermiculophylla: Productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 2011, 312, 77–87. [Google Scholar] [CrossRef]
- Tang, Y.Z.; Gobler, C.J. The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae 2011, 10, 480–488. [Google Scholar] [CrossRef]
- Yeh, S.L.; Dahms, H.U.; Chiu, Y.J.; Chang, S.J.; Wang, Y.K. Increased production and water remediation by land-based farm- scale sequentially Integrated Multi-Trophic Aquaculture Systems—An example from southern Taiwan. Sustainability 2017, 9, 2173. [Google Scholar] [CrossRef]
- Ajie, G.S.; Prihatiningtyas, E. Nutrients Removal from Integrated Multi-Trophic Aquaculture (IMTA) Water Using Waste Stabilization Ponds (WSP). IOP Conf. Ser. Earth Environ. Sci. 2022, 976, 012029. [Google Scholar] [CrossRef]
- Nunes, J.P.; Ferreira, J.G.; Gazeau, F.; Lencart-Silva, J.; Zhang, X.L.; Zhu, M.Y.; Fang, J.G. A model for sustainable management of shellfish polyculture in coastal bays. Aquaculture 2003, 219, 257–277. [Google Scholar] [CrossRef]
- Wu, H.; Huo, Y.; Han, F.; Liu, Y.; He, P. Bioremediation using Gracilaria chouae co-cultured with Sparus macrocephalus to manage the nitrogen and phosphorous balance in an IMTA system in Xiangshan Bay, China. Mar. Pollut. Bull. 2015, 91, 272–279. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, J.; Xiao, T.; Huang, D.; Liu, S. Integrated multi-trophic aquaculture (IMTA) in Sanggou Bay, China. Aquac. Environ. Interact. 2016, 8, 201–205. [Google Scholar] [CrossRef]
- Largo, D.B.; Diola, A.G.; Marababol, M.S. 2016. Development of an integrated multi-trophic aquaculture (IMTA) system for tropical marine species in southern Cebu, Central Philippines. Aquac. Rep. 2016, 3, 67–76. [Google Scholar] [CrossRef]
- Alam, M.M.; Jørgensen, N.O.; Bass, D.; Santi, M.; Nielsen, M.; Rahman, M.A.; Hasan, N.A.; Bablee, A.L.; Bashar, A.; Hossain, M.I.; et al. Potential of integrated multitrophic aquaculture to make prawn farming sustainable in Bangladesh. Front. Sustain. Food Syst. 2024, 8, 1412919. [Google Scholar] [CrossRef]
- Said, D.S.S.; Chrismadha, T.; Mayasari, N.; Badjoeri, M. Integrated multitrophic aquaculture in Maninjau Lake: Converting eutrophic water into fish meal. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 535, p. 012006. [Google Scholar] [CrossRef]
- Biswas, G.; Kumar, P.; Ghoshal, T.K.; Kailasam, M.; De, D.; Bera, A.; Mandal, B.; Sukumaran, K.; Vijayan, K.K. Integrated multi- trophic aquaculture (IMTA) outperforms conventional polyculture with respect to environmental remediation, productivity and economic return in brackishwater ponds. Aquaculture 2020, 516, 734626. [Google Scholar] [CrossRef]
- Rosa, J.; Lemos, M.F.L.; Crespo, D.; Nunes, M.; Freitas, A.; Ramos, F.; Pardal, M.Â.; Leston, S. Integrated multitrophic aquaculture systems—Potential risks for food safety. Trends Food Sci. Technol. 2020, 96, 79–90. [Google Scholar] [CrossRef]
- Sarkar, S.; Rekha, P.N.; Biswas, G.; Raja, R.N.; Sunny, A.; Panigrahi, A.; Balasubramanian, C.P.; Vijayan, K.K. Integrated Multi- Trophic Aquaculture (IMTA): A Potential farming system to enhance production of the red seaweed Agarophyton tenuistipitatum (Chang and Xia) in Brackishwater. In Transforming Coastal Zone for Sustainable Food and Income Security; Lama, T., Burman, D., Mandal, U.K., Sarangi, S.K., Sen, H., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Choi, J.S.; Lee, B.B.; An, S.J.; Sohn, J.H.; Cho, K.K.; Choi, I.S. Simple freezing and thawing protocol for long-term storage of harvested fresh Undaria pinnatifida. Fish. Sci. 2012, 78, 1117–1123. [Google Scholar] [CrossRef]
- Kleitou, P.; Kletou, D.; David, J. Is Europe ready for integrated multi-trophic aquaculture? A survey on the perspectives of European farmers and scientists with IMTA experience. Aquaculture 2018, 490, 136–148. [Google Scholar] [CrossRef]
- Rosa, J.; Leston, S.; Freitas, A.; Pouca, A.S.V.; Jorge Barbosa, J.; Lemos, M.F.L.; Pardal, M.A.; Ramos, F. Oxytetracycline accumulation in the macroalgae Ulva: Potential risks for IMTA systems. Chemosphere 2019, 226, 60–66. [Google Scholar] [CrossRef]
- Rosa, J.; Leston, S.; Crespo, D.; Freitas, A.; Pouca, A.S.V.; Barbosa, J.; Lemos, M.F.L.; Pardal, M.Â.; Ramos, F. Uptake of enrofloxacin from seawater to the macroalgae Ulva and its use in IMTA systems. Aquaculture 2019, 516, 734609. [Google Scholar] [CrossRef]
- Correia, M.; Azevedo, I.C.; Peres, H.; Magalhães, R.; Oliva-Teles, A.; Almeida, C.M.R.; Guimarães, L. Integrated Multi-Trophic Aquaculture: A laboratory and hands-on experimental activity to promote environmental sustainability awareness and value of aquaculture products. Front. Mar. Sci. 2020, 7, 156. [Google Scholar] [CrossRef]
- Giangrande, A.; Pierri, C.; Arduini, D.; Borghese, J.; Licciano, M.; Trani, R.; Corriero, G.; Basile, G.; Cecere, E.; Petrocelli, A.; et al. An innovative IMTA system: Polychaetes, sponges and macroalgae co-cultured in a Southern Italian in-shore mariculture plant (Ionian Sea). J. Mar. Sci. Eng. 2020, 8, 733. [Google Scholar] [CrossRef]
- Ridler, N.; Wowchuk, M.; Robinson, B.; Barrington, K.; Chopin, T.; Robinson, S.; Page, F.; Reid, G.; Szemerda, M.; Sewuster, J. Integrated Multi-Trophic Aquaculture (IMTA): A Potential Strategic Choice for Farmers. Aquac. Econ. Manag. 2007, 11, 99–110. [Google Scholar] [CrossRef]
- Chopin, T.; Cooper, J.A.; Reid, G.; Cross, S.; Moore, C. Open-water integrated multi-trophic aquaculture: Environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Rev. Aquac. 2012, 4, 209–220. [Google Scholar] [CrossRef]
- Bakhsh, H.K.; Chopin, T. A variation on the IMTA theme: A land-based, closed-containment freshwater IMTA system for tilapia and lettuce. Aquac. Can. 2012, 22, 57–60. [Google Scholar]
- Rebours, C.; Marinho-Soriano, E.M.; Zertuche-González, J.A.; Hayashi, L.; Vásquez, J.A.; Kradolfer, P.; Soriano, G.; Ugarte, R.; Abreu, M.H.; Bay-Larsen, I.; et al. Seaweeds: An opportunity for wealth and sustainable livelihood for coastal communities. J. Appl. Phycol. 2014, 26, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Lohroff, T.J.; Gillette, P.R.; Close, H.G.; Benetti, D.D.; Stieglitz, J.D. Evaluating the potential bioextractive capacity of South Florida native macroalgae Agardhiella subulata for use in integrated multi-trophic aquaculture (IMTA). Aquaculture 2021, 544, 737091. [Google Scholar] [CrossRef]
- Augyte, S.; Kim, J.K.; Yarish, C. Seaweed aquaculture—From historic trends to current innovation. J. World. Aquac. Soc. 2021, 52, 1004–1008. [Google Scholar] [CrossRef]
- Racine, P.; Marley, A.C.; Froehlich, H.E.; Gaines, S.D.; Ladner, I.; MacAdam-Somer, I.; Bradley, D. A case for seaweed aquaculture inclusion in U.S. nutrient pollution management. Mar. Policy 2021, 129, 104506. [Google Scholar] [CrossRef]
- Vega, J.M.A.; Broitman, B.; Vásquez, J.A. Monitoring the sustainability of Lessonia nigrescens complex (Laminariales, Phaeophyta) in northern Chile under strong harvest pressure. J. Appl. Phycol. 2014, 26, 791–801. [Google Scholar] [CrossRef]
- Buschmann, A.H.; Prescott, S.; Potin, P.; Faugeron, S.; Vásquez, J.A.; Camus, C.; Infante, J.; Hernández-González, M.C.; Gutíerrez, A.; Varela, D.A. The status of kelp exploitation and marine agronomy, with emphasis on Macrocystis pyrifera, in Chile. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2014; Volume 71, pp. 161–188. [Google Scholar] [CrossRef]
- Knowler, D.; Chopin, T.; Martinez-Espineira, R.; Neori, A.; Nobre, A.; Noce, A.; Reid, G. The economics of Integrated Multi- Trophic Aquaculture: Where are we now and where do we need to go? Rev. Aquac. 2020, 12, 1579–1594. [Google Scholar] [CrossRef]
- Bezerra, A.F.; Marinho-Soriano, E. Cultivation of the red seaweed Gracilaria birdiae (Gracilariales, Rhodophyta) in tropical waters of northeast Brazil. Biomass Bioenergy 2010, 34, 1813–1817. [Google Scholar] [CrossRef]
- Ndawala, M.A.; Msuya, F.E.; Cabarubias, J.P.; Buriyo, A.; Cottier-Cook, E.J. Seaweed biosecurity in Tanzania: Lessons to be learned from other major plant crops. Environ. Chall. 2021, 5, 100319. [Google Scholar] [CrossRef]
- Matoju, I.; Le Masson, V.; Montalescot, V.; Ndawala, M.A.; Msuya, F.E. A resilience lens to explore seaweed farmers’ responses to the impacts of climate change in Tanzania. J. Appl. Phycol. 2022, 3, 132–148. [Google Scholar] [CrossRef]
- Msuya, E.; Bolton, J.; Pascal, F.; Narrain, K.; Nyonje, B.; Cottier-Cook, E.J. Seaweed farming in Africa: Current status and future potential Flower. J. Appl. Phycol. 2022, 34, 985–1005. [Google Scholar] [CrossRef]
- White, L.N.; White, W.L. Seaweed utilisation in New Zealand. Bot. Mar. 2020, 63, 303–313. [Google Scholar] [CrossRef]
- Nepper-Davidsen, J.; Magnusson, M.; Glasson, C.R.K.; Ross, P.M.; Lawton, R.J. Implications of genetic structure for aquaculture and cultivar translocation of the Kelp Ecklonia radiata in Northern New Zealand. Front. Mar. Sci. 2021, 8, 749154. [Google Scholar] [CrossRef]
- Biancacci, C.; Sanderson, J.C.; Evans, B.; Callahan, D.L.; Francis, D.S.; Skrzypczyk, V.M.; Cumming, E.E.; Bellgrove, A. Nutritional composition and heavy metal profiling of Australian kelps cultured in proximity to salmon and mussel farms. Algal. Res. 2022, 64, 102672. [Google Scholar] [CrossRef]
- Klosowski, S.; Jablonska, E. Aquatic and swamp plant communities as indicators of habitat properties of astatic water bodies in North-Eastern Poland. Limnologica 2009, 39, 115–127. [Google Scholar] [CrossRef]
- Rosset, V.; Angélibert, S.; Arthaud, F.; Bornette, G.; Robin, J.; Wezel, A.; Vallod, D.; Oertli, B. Is eutrophication really a major impairment for small waterbody biodiversity? J. Appl. Ecol. 2014, 51, 415–425. [Google Scholar] [CrossRef]
- Kaur, M.; Kumar, M.; Sachdeva, S.; Puri, S.K. Aquatic Weeds as the Next Generation Feedstock for Sustainable Bioenergy Production. Bioresour. Technol. 2018, 251, 390–402. [Google Scholar] [CrossRef]
- Zimdahl, R.L. Weed-management systems. In Fundamentals of Weed Science; Academic Press: Cambridge, MA, USA, 2018; pp. 609–649. [Google Scholar]
- Washim, M.R.; Siddiky, M.N.S.M.; Islam, M.S.; Ahmmed, S. Improved extensive shrimp farming uplifted yield of coastal Ghers in southwest Bangladesh. Int. J. Basic Appl. Sci. 2020, 52, 78–87. [Google Scholar]
- Datta, D.K.; Roy, K.; Hassan, N. Shrimp Culture: Trend, consequences and sustainability in the south-western coastal region of Bangladesh. In Management and Sustainable Development of Coastal Zone Environments; Springer: Dordrecht, The Netherlands, 2010; pp. 227–244. [Google Scholar] [CrossRef]
- Alam, M.M.; Tikadar, K.K.; Hasan, N.A.; Akter, R.; Bashar, A.; Ahammad, A.K.S.; Rahman, M.M.; Alam, M.R.; Haque, M.M. Economic viability and seasonal impacts of integrated rice-prawn-vegetable farming on agricultural households in southwest Bangladesh. Water 2022, 14, 2756. [Google Scholar] [CrossRef]
- Aloo, P.; Ojwang, W.; Omondi, R.; Njiru, J.M.; Oyugi, D. A review of the impacts of invasive aquatic weeds on the biodiversity of some tropical water bodies with special reference to Lake Victoria (Kenya). Biodivers. J. 2013, 4, 471–482. [Google Scholar]
- Wilzbach, M.A.; Cummins, K.W. Rivers and Streams: Physical Setting and Adapted Biota. In Encyclopedia of Ecology, 2nd ed.; Elsevier: Oxford, UK, 2008; pp. 3095–3106. [Google Scholar] [CrossRef]
- Moreira, M.H.; They, N.H.; Rodrigues, L.R.; Alvarenga-Lucius, L.; Pita-Barbosa, A. Salty freshwater macrophytes: The effects of salinization in freshwaters upon non-halophyte aquatic plants. Sci. Total Environ. 2023, 857, 159608. [Google Scholar] [CrossRef] [PubMed]
- Marwat, S.K.; Khan, M.A.; Rehman, F.U.; Ahmad, M.; Zafar, M. Biodiversity and importance of floating weeds of Dara Ismail, Khan District of KPK, Pakistan. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Boyd, C.E. The nutritive value of three species of water weeds. Econ. Bot. 1969, 23, 123–127. [Google Scholar] [CrossRef]
- Pyšek, P.; Pergl, J.; Essl, F.; Lenzner, B.; Dawson, W.; Kreft, H.; Weigelt, P.; Winter, M.; Kartesz, J.; Nishino, M.; et al. Naturalized alien flora of the world: Species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 2017, 89, 203–274. [Google Scholar] [CrossRef]
- Groom, Q.J.; Van Der Straeten, J.; Hoste, I. The origin of Oxalis corniculata L. PeerJ 2019, 7, e6384. [Google Scholar] [CrossRef]
- Stohlgren, T.J.; Pyek, P.; Kartesz, J.; Misako, N.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D.M.; Wilson, J.; Murray, B.R.; et al. Encyclopedia of Biodiversity, 2nd ed.; Academic Press: Waltham, MA, USA, 2013; pp. 700–706. [Google Scholar]
- Peng, X.; Yang, Y.; Yan, X.; Li, H. The effects of water control on the survival and growth of Alternanthera philoxeroides in the vegetative reproduction and seedling stages. Sci. Rep. 2021, 11, 13556. [Google Scholar] [CrossRef]
- Chatterjee, A.; Dewanji, A. Effect of varying Alternanthera philoxeroides (alligator weed) cover on the macrophyte species diversity of pond ecosystems: A quadrat–based study. Aquat. Invasions 2014, 9, 343–355. [Google Scholar] [CrossRef]
- Li, W.; and Li, Z. In situ nutrient removal from aquaculture wastewater by aquatic vegetable Ipomoea aquatica on floating beds. Water Sci. Technol. 2009, 59, 1937–1943. [Google Scholar] [CrossRef]
- Li, W.; Ding, H.; Zhang, F.; Zhang, T.; Liu, J.; Li, Z. Effects of water spinach Ipomoea aquatica cultivation on water quality and performance of Chinese soft-shelled turtle Pelodiscus sinensis pond culture. Aquac. Environ. Interact. 2016, 8, 567–574. [Google Scholar] [CrossRef]
- Satter, M.M.A.; Khan, M.M.R.L.; Jabin, S.A.; Abedin, N.; Islam, M.A.; Shaha, B. Nutritional quality and safety aspects of wild vegetables consume in Bangladesh. Asian Pac. J. Trop. Biomed. 2016, 6, 125–131. [Google Scholar] [CrossRef]
- Corli, A.; Gerdol, R.; Orsenigo, S.; Rossi, G.; Abeli, T.; Brancaleoni, L. A mesocosm experiment testing the competition between the invasive species Heteranthera reniformis Ruiz & Pav. and the endangered fern Marsilea quadrifolia L. Aquat. Bot. 2022, 183, 103576. [Google Scholar]
- Abdel-Razek, N.; Awad, S.M.; Abdel-Tawwab, M. Effect of dietary purslane (Portulaca oleracea L.) leaves powder on growth, immunostimulation, and protection of Nile tilapia, Oreochromis niloticus against Aeromonas hydrophila infection. Fish Physiol. Biochem. 2019, 45, 1907–1917. [Google Scholar] [CrossRef]
- Paolacci, S.; Stejskal, V.; Jansen, M.A.K. Estimation of the potential of Lemna minor for effluent remediation in integrated multi-trophic aquaculture using newly developed synthetic aquaculture wastewater. Aquac. Int. 2021, 29, 2101–2118. [Google Scholar] [CrossRef]
- Parimala, M.; Debjani, M.; Vasanthi, H.R.; Shoba, F.G. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization. J. Adv. Pharm. Technol. Res. 2015, 6, 183–189. [Google Scholar] [CrossRef]
- Cherryl, D.M.; Prasad, R.M.V.; Rao, J.S.; Jayalaxmi, P.; Kumar, D.S. A study on the nutritive value of Azolla pinnata. Int. J. Livest. Res. 2014, 2, 13–15. [Google Scholar]
- Basak, B.; Pramanik, M.A.H.; Rahman, M.S.; Tarafdar, S.U.; Roy, B.C. Azolla (Azolla pinnata) as a feed ingredient in broiler ration. Int. J. Poult. Sci. 2002, 1, 29–34. [Google Scholar] [CrossRef]
- Rahmah, S.; Nasrah, U.; Lim, L.S.; Ishak, S.D.; Rozaini, M.Z.H.; Liew, H.J. Aquaculture wastewater-raised Azolla as partial alternative dietary protein for Pangasius catfish. Environ. Res. 2022, 208, 112718. [Google Scholar] [CrossRef]
- Rabaey, J.; Cotner, J. Pond greenhouse gas emissions controlled by duckweed coverage. Front. Environ. Sci. 2022, 10, 889289. [Google Scholar] [CrossRef]
- Roijackers, R.; Szabó, S.; Scheffer, M. Experimental analysis of the competition between algae and duckweed. Archiv. Fur. Hydrobiol. 2004, 160, 401–412. [Google Scholar] [CrossRef]
- Herawati, V.; Pinandoyo; Darmanto, Y.S.; Rismaningsih, N.; Windarto, S.; Radjasa, O.K. The effect of fermented duckweed (Lemna minor) in feed on growth and nutritional quality of tilapia (Oreochromis niloticus). Biodiversitas J. Biol. Divers. 2020, 21, 3350–3358. [Google Scholar] [CrossRef]
- Opiyo, M.A.; Muendo, P.; Mbogo, K.; Ngugi, C.C.; Charo-Karisa, H.; Orina, P.; Leschen, W.; Glencross, B.D.; Tocher, D.R. Inclusion of duckweed (Lemna minor) in the diet improves flesh omega-3 long-chain polyunsaturated fatty acid profiles but not the growth of farmed Nile tilapia (Oreochromis niloticus). Anim. Feed Sci. Technol. 2022, 292, 115442. [Google Scholar] [CrossRef]
- Shrivastava, M.; Srivastava, S. Application and research progress of Hydrilla verticillata in ecological restoration of water contaminated with metals and metalloids. Environ. Chall. 2021, 4, 100177. [Google Scholar] [CrossRef]
- Bunluesin, S.; Kruatrachue, M.; Pokethitiyook, P.; Lanza, G.R.; Upatham, E.S.; Soonthornsarathool, V. Plant Screening and Comparison of Ceratophyllum demersum and Hydrilla verticillata for Cadmium Accumulation. Bull. Environ. Contam. Toxicol. 2004, 73, 591–598. [Google Scholar] [CrossRef]
- Shabana, Y.M.; Cuda, J.P.; Charudattan, R. Evaluation of pathogens as potential biocontrol agents of Hydrilla. J. Phytopathol. 2003, 151, 607–613. [Google Scholar] [CrossRef]
- Sousa, W.T.Z. Hydrilla verticillata (Hydrocharitaceae), a recent invader threatening Brazil’s freshwater environments: A review of the extent of the problem. Hydrobiologia 2011, 669, 1–20. [Google Scholar] [CrossRef]
- Moreno, C.E.; Castillo-Campos, G.; Verdú, J.R. 2009. Taxonomic diversity as complementary information to assess plant species diversity in secondary vegetation and primary tropical deciduous forest. J. Veg. Sci. 2009, 20, 935–943. [Google Scholar] [CrossRef]
- Miller, J.T.; Jolley-Rogers, G.; Mishler, B.D.; Thornhill, A.H. Phylogenetic diversity is a better measure of biodiversity than taxon counting. J. Syst. Evol. 2018, 56, 663–667. [Google Scholar] [CrossRef]
- Morris, E.K.; Caruso, T.; Buscot, F.; Fischer, M.; Hancock, C.; Maier, T.S.; Meiners, T.; Müller, C.; Obermaier, E.; Prati, D.; et al. Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 2014, 4, 3514–3524. [Google Scholar] [CrossRef]
- Gotelli, N.J.; Chao, A. Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. In Encyclopedia of Biodiversity, 2nd ed.; Levin, S.A., Ed.; Elsevier: Philadelphia, PA, USA, 2013; Volume 5, pp. 195–211. [Google Scholar] [CrossRef]
- Kaijsera, W.; Kostena, S.; Hering, D. Salinity tolerance of aquatic plants indicated by monitoring data from the Netherlands. Aquat. Bot. 2019, 158, 103129. [Google Scholar] [CrossRef]
- Yadav, A.N.; Sing, J.; Rastegari, A.A.; Yadav, N. Plant Microbiomes for Sustainable Agriculture: Current Research and Future Challenges; Springer: Cham, Switzerland, 2020; Volume 25, pp. 475–482. [Google Scholar] [CrossRef]
- Jain, S.; Choudhary, D.K.; Varma, A. Ecological Perspectives of Halophilic Fungi and their Role in Bioremediation, 1st ed.; Parray, J.A., Mahmoud, A.H.A.E., Sayyed, R., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Balasubramaniam, T.; Shen, G.; Esmaeili, N.; Zhang, H. Plants’ response mechanisms to salinity stress. Plants 2023, 12, 2253. [Google Scholar] [CrossRef] [PubMed]
- Shields, E.C.; Moore, K.A. Effects of sediment and salinity on the growth and competitive abilities of three submersed macrophytes. Aquat. Bot. 2016, 132, 24–29. [Google Scholar] [CrossRef]
- Barko, J.W.; Gunnison, D.; Carpenter, S.R. Sediment interactions with submersed macrophyte growth and community dynamics. Aquat. Bot. 1991, 41, 41–65. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.L.; Liu, L.N.; Xie, Q.; Sui, N. Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet sorghum. Front. Plant Sci. 2020, 10, 1722. [Google Scholar] [CrossRef] [PubMed]
- Sudhir, P.; Murth, S.D.S. Effects of salt stress on basic processes of photosynthesis. Photosynthetica 2004, 42, 481–486. [Google Scholar] [CrossRef]
- French, G.T.; Moore, K.A. Interactive effects of light and salinity stress on the growth, reproduction, and photosynthetic capabilities of Vallisneria americana (wild celery). Estuaries 2003, 26, 1255–1268. [Google Scholar] [CrossRef]
- Zefferman, E.; Stevens, J.T.; Charles, G.K.; Dunbar-Irwin, M.; Emam, T.; Fick, S.; Morales, L.V.; Wolf, K.M.; Young, D.J.; Young, T.P. Plant communities in harsh sites are less invaded: A summary of observations and proposed explanations. Ann. Bot. 2015, 7, plv056. [Google Scholar] [CrossRef]
- Bajer, P.G.; Sullivan, G.; Sorensen, P.W. Effects of a rapidly increasing population of common carp on vegetative cover and waterfowl in a recently restored Midwestern shallow lake. Hydrobiologia 2009, 632, 235–245. [Google Scholar] [CrossRef]
- Geurts, J.M.M.; Sarneel, J.M.; Willers, B.J.C.; Roelofs, J.G.M.; Verhoeven, J.T.A.; Lamers, L.P.M. Interacting effects of sulphate pollution, sulphide toxicity and eutrophication on vegetation development in fens: A mesocosm experiment. Environ. Pollut. 2009, 157, 2072–2081. [Google Scholar] [CrossRef]
- Lamers, L.P.M.; Govers, L.L.; Janssen, I.C.J.M.; Geurts, J.J.M.; van der Welle, M.E.W.; van Katwijk, M.M.; van der Heide, T.; Roelofs, J.G.M.; Smolders, A.J.P. Sulfide as a soil phytotoxin—A review. Front. Plant Sci. 2013, 4, 268. [Google Scholar] [CrossRef]
- Aasim, M.; Khawar, K.M.; Ahmed, S.I.; Karataş, M. Multiple Uses of Some Important Aquatic and Semiaquatic Medicinal Plants. In Plant and Human Health; Ozturk, M., Hakeem, K., Eds.; Springer: Cham, Switzerland, 2019; Volume 2. [Google Scholar] [CrossRef]
- Datta, S. Aquatic Weeds and Their Management for Fisheries; CIFE Centre: Salt Lake City, India, 2009; p. 22. [Google Scholar]
- Ismail, A.; Marjan, Z.M.; Foong, C.W. Total antioxidant activity and phenolic content in selected vegetables. Food Chem. 2004, 87, 581–586. [Google Scholar] [CrossRef]
- Malakar, C.; Choudhury, P.P.N. Pharmacological potentiality and medicinal uses of Ipomoea aquatica Forsk: A review. Asian J. Pharm. Clin. Res. 2015, 8, 60–63. [Google Scholar]
- Dissanayaka, D.M.N.S.; Udumann, S.S.; Dissanayake, D.K.R.P.L.; Nuwarapaksha, T.D.; Atapattu, A.J. Review on aquatic weeds as potential source for compost production to meet sustainable plant nutrient management needs. Waste 2023, 1, 264–280. [Google Scholar] [CrossRef]
- Brunel, S. Pathway analysis: Aquatic plants imported in 10 EPPO countries. EPPO Bull. 2009, 39, 201–213. [Google Scholar] [CrossRef]
- Rehman, A.; Rehman, A.; Ahmad, I. Antibacterial, antifungal, and insecticidal potentials of Oxalis corniculata and its isolated compounds. Int. J. Anal. Chem. 2014, 2015, 842468. [Google Scholar] [CrossRef]
- Sarkar, T.; Ghosh, P.; Poddar, S.; Choudhury, S.; Sarkar, A.; Chatterjee, S. Oxalis corniculata Linn. (Oxalidaceae): A brief review. J. Pharmacogn. Phytochem. 2020, 9, 651–655. [Google Scholar] [CrossRef]
- Uddin, M.Z.; Pal, J.C. Preliminary taxonomic survey of aquatic plants of Feni district, Bangladesh. Bangladesh J. Plant Taxon. 2020, 27, 103–111. [Google Scholar] [CrossRef]
Zone | Water Body | Mean/m2 | (±) Standard Error |
---|---|---|---|
Low salinity | Gher | 11.58 | 4.16 |
Aquaculture pond | 6.08 | 1.92 | |
Non-aquaculture water body | 14.74 | 3.68 | |
Intermediate salinity | Gher | 17.09 | 4.22 |
Aquaculture pond | 5.58 | 1.78 | |
Non-aquaculture water body | 15.69 | 1.48 | |
High salinity | Gher | 11.27 | 2.03 |
Aquaculture pond | 4.51 | 1.91 | |
Non-aquaculture water body | 13.07 | 1.32 |
Water Body | Form | Mean/m2 | (±) Standard Error |
---|---|---|---|
Gher | Emergent | 6.67 | 2.18 |
Floating anchored | 2.07 | 0.89 | |
Free floating | 56.81 | 3.87 | |
Submerged | 14.19 | 1.06 | |
Aquaculture pond | Emergent | 4.38 | 1.22 |
Floating anchored | 1.00 | 0.23 | |
Free floating | 10.84 | 4.08 | |
Submerged | 1.67 | 0.01 | |
Non-aquaculture water body | Emergent | 7.48 | 1.57 |
Floating anchored | 0.39 | 0.17 | |
Free floating | 43.42 | 4.38 |
Aquatic Plant Form | Species | Mean | (±) Standard Error |
---|---|---|---|
Emergent | Oxalis corniculata | 27.78 | 0.01 |
Alternanthera philoxeroides | 22.19 | 1.48 | |
Leersia hexandra | 21.25 | 2.12 | |
Marsilea quadrifolia | 11.59 | 3.95 | |
Commelina appendiculata | 9.06 | 1.82 | |
Ipomoea aquatica | 8.24 | 1.68 | |
Portulaca oleracea | 8.06 | 3.17 | |
Commelina benghalensis | 4.14 | 0.74 | |
Hygroryza aristata | 3.76 | 1.69 | |
Ludwigia adscendens | 3.02 | 1.19 | |
Eleocharis tuberculosa | 2.22 | 0.01 | |
Hygrophila auriculata | 1.85 | 0.28 | |
Scirpus mucronatus | 1.56 | 0.95 | |
Centella asiatica | 1.44 | 0.78 | |
Enhydra fluctuans | 1.26 | 0.41 | |
Alternanthera sessilis | 0.89 | 0.56 | |
Ceratopteris thalictroides | 0.83 | 0.06 | |
Mikania micrantha | 0.72 | 0.25 | |
Typha domingensis | 0.71 | 0.21 | |
Colocasia esculenta | 0.53 | 0.19 | |
Monochoria hastata | 0.33 | 0.11 | |
Ammannia alternifolia | 0.33 | 0.01 | |
Ipomea carnea | 0.28 | 0.09 | |
Polygonum glabrum | 0.22 | 0.05 | |
Chrysopogon aciculatus | 0.22 | 0.01 | |
Cyperus rotundus | 0.17 | 0.06 | |
Ageratum conyzoides | 0.17 | 0.06 | |
Phyllanthus reticulatus | 0.112 | 0.01 | |
Ludwigia erecta | 0.112 | 0.01 | |
Floating anchored | Nymphoides cristata | 1.52 | 0.62 |
Nymphaea nouchali | 1.09 | 0.55 | |
Free floating | Azolla pinnata/Azolla filiculoides | 85.31 | 2.19 |
Spirodela polyrhiza | 57.09 | 3.28 | |
Lemna minor | 37.94 | 2.39 | |
Pistia stratiotes | 8.44 | 3.14 | |
Eichhornia crassipes | 4.57 | 1.93 | |
Submerged | Hydrilla verticillata | 14.52 | 2.87 |
Aponogeton sp. | 0.67 | 0.01 |
Zone | Water Body | ||
---|---|---|---|
Gher | Aquaculture Pond | Non-Aquaculture Water Body | |
Low salinity | 1.96 | 2.16 | 1.93 |
Intermediate salinity | 1.21 | 1.74 | 1.92 |
High salinity | 0.38 | 1.72 | 1.96 |
Local Name | English Name | Scientific Name | Uses and Applications Based on KIIs | Supporting References |
---|---|---|---|---|
Shaluk/Neel Poddo | Blue water lily | Nymphaea nouchali | Vegetables | [37,38,39] |
Shushni | Four leaf clover | Marsilea quadrifolia | ||
Ghirmi | Little hog weed/Purslane | Portulaca oleracea | ||
Kolmi | Water spinach | Ipomoea aquatica | Vegetables, fodder | [37,38,40,41,42] |
Malancha | Alligator weed | Alternanthera philoxeroides | ||
Shachi | Sessile joyweed | Alternanthera sessilis | ||
Kanaidoga | Asiatic dayflower | Commelina appendiculata | ||
Kanaibashi | Dayflower | Commelina benghalensis | ||
Kochu | Taro | Colocasia esculenta | Vegetables, medicine | [25,39,42,43,44,45] |
Helencha | Water spinach/water cress | Enhydra fluctuans | ||
Amrol shak | Indian sorrel | Oxalis corniculata | ||
Thankuni | Asiatic pennywort | Centella asiatica | ||
Arail | Southern cut grass | Leersia hexandra | Fodder | [39,46] |
Dol | Asian waterweed | Hygroryza aristata | ||
Gokanta | Marsh barbell | Hygrophila auriculata | ||
Dol Kolmi | Pink morning glory | Ipomea carnea | ||
Shokto chechra | Bog bulrush | Scirpus mucronatus | ||
Shachi | Sessile joyweed | Alternanthera sessilis | ||
Jolbahar | Water sprite | Ceratopteris thalictroides | Fodder, fertilizer | [39] |
Keshordam | Water primrose | Ludwigia adscendens | ||
Mutha/Chancha | Greater club rush/coco grass | Cyperus rotundus | ||
German lota | Bitter vine/Climbing hempvine | Mikania micrantha | Fodder, medicine | [47] |
Hogla | Southern cattail | Typha domingensis | Fodder, medicine, cooking fuel, floormate, fencing, and rooftops | [48,49,50,51,52] |
Jhanjhi/Kanjal | Water thyme/Hydrilla | Hydrilla verticillata | Fertilizer | [39] |
Ghechu | Cape pond weed | Aponogeton sp. | ||
Topapana | Water lettuce | Pistia stratiotes | ||
Kochuripana | Water hyacinth | Eichhornia crassipes | ||
Kutipana | Azolla pinnata/Azolla filiculoides | |||
Sonapana | Giant duckweed | Spirodela polyrhiza | Fish feed, fertilizer | [39,53,54,55,56,57] |
Khudipana | Common duckweed | Lemna minor | ||
Gondhobadali | Billygoat-weed/goatweed | Ageratum conyzoides | Medicine | [58] |
Chandramala | Crested floating-heart | Nymphoides cristata | Unknown | |
Sitki | Black honey shrub | Phyllanthus reticulatus | ||
Boronoukha | Arrowhead | Monochoria hastata | ||
Bishkatali | Polygonum | Polygonum glabrum | ||
Bonmorich | Redstems | Ammannia alternifolia | ||
Chorakata/premkata | Golden Beardgrass | Chrysopogon aciculatus | ||
Panikola | Primrose | Ludwigia erecta |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bablee, A.L.; Bashar, A.; Alam, M.M.; Hasan, N.A.; Haque, M.M.; Hansen, L.H.; Jørgensen, N.O.G. Identification of Aquatic Plant Species Suitable for Growing in Integrated Multi-Trophic Aquaculture Systems in Southwest Bangladesh. Sustainability 2024, 16, 11113. https://doi.org/10.3390/su162411113
Bablee AL, Bashar A, Alam MM, Hasan NA, Haque MM, Hansen LH, Jørgensen NOG. Identification of Aquatic Plant Species Suitable for Growing in Integrated Multi-Trophic Aquaculture Systems in Southwest Bangladesh. Sustainability. 2024; 16(24):11113. https://doi.org/10.3390/su162411113
Chicago/Turabian StyleBablee, Alif Layla, Abul Bashar, Md. Mehedi Alam, Neaz A. Hasan, Mohammad Mahfujul Haque, Lars Hestbjerg Hansen, and Niels O. G. Jørgensen. 2024. "Identification of Aquatic Plant Species Suitable for Growing in Integrated Multi-Trophic Aquaculture Systems in Southwest Bangladesh" Sustainability 16, no. 24: 11113. https://doi.org/10.3390/su162411113
APA StyleBablee, A. L., Bashar, A., Alam, M. M., Hasan, N. A., Haque, M. M., Hansen, L. H., & Jørgensen, N. O. G. (2024). Identification of Aquatic Plant Species Suitable for Growing in Integrated Multi-Trophic Aquaculture Systems in Southwest Bangladesh. Sustainability, 16(24), 11113. https://doi.org/10.3390/su162411113