Spatiotemporal Dynamic Changes and Prediction of Wild Fruit Forests in Emin County, Xinjiang, China, Based on Random Forest and PLUS Model
<p>Schematic diagram of the study area. (<b>a</b>) Represents the geographical location of the study area in China. (<b>b</b>) Represents a satellite image of the study area and sample points. (<b>c</b>–<b>e</b>) Wild fruit forests mixed with other trees, wild apples, and wild hawthorn, respectively.</p> "> Figure 2
<p>Classified images of the study area.</p> "> Figure 3
<p>Transformation between wild fruit forests and other land features from 2007 to 2013 and from 2013 to 2020.</p> "> Figure 4
<p>Typical areas of spatial distribution changes in wild fruit forests.</p> "> Figure 5
<p>Changes in the main natural and human driving factors between 2007 and 2020.</p> "> Figure 6
<p>The centroid migration diagram of the wild fruit forest.</p> "> Figure 7
<p>3D topographic map of the study area.</p> "> Figure 8
<p>3D map of wild fruit forest prediction for 2027. (<b>a</b>) Represents the spatial distribution map of wild fruit forests in 2027. (<b>b</b>) Represents the 3D map of wild fruit forest in 2027.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Preprocessing
2.4. Random Forest Algorithm
2.5. Precision Evaluation Principle
2.6. Centroid Migration Model
2.7. Patch-Generating Land Use Simulation Model
3. Results
3.1. Spatiotemporal Distribution of Wild Fruit Forests
3.2. Spatial and Temporal Transfer of Wild Fruit Forests
3.3. Shift in the Center of Gravity of the Distribution of Wild Fruit Forests
3.4. Prediction of Future Spatial Distribution of Wild Fruit Forests
4. Discussion
4.1. Model Accuracy and Uncertainty
4.2. Distribution Prediction and Protection Suggestions for Wild Fruit Forests
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, Z.J.; Zhang, Y.L.; Zhang, X.; Luo, Z.H.; Zhang, P.; Golec, J.; Poland, T.M.; Zalucki, M.P.; Han, P.; Lu, Z.Z. Life History and Mortality Factors of Agrilus Mali Matsumura (Coleoptera: Buprestidae) in Wild Apples in Northwestern China. Agric. For. Entomol. 2019, 21, 309–317. [Google Scholar] [CrossRef]
- Jiang, N.L.; Shi, D.; Guo, C.C.; Wu, M.J.; Zheng, F.; Ling, X.B.; Liu, X.B.; Liu, L.Q. Evaluation of grazing distrubance intehsity in wild fruit forests based on herbaceous community and grazing path characteristics. Acta Ecol. Sin. 2024, 44, 3060–3071. (In Chinese) [Google Scholar] [CrossRef]
- Han, G.; Cheong, E.; Park, W.; Kim, S. Impact of the Disturbances for Forest Grazing on Flora Composition in a Natural Forest. Forests 2021, 12, 872. [Google Scholar] [CrossRef]
- Volk, G.M.; Henk, A.D.; Richards, C.M.; Forsline, P.L.; Chao, T.; Sieversii, C.M. A Diverse Central Asian Apple Species in the USDA-ARS National Plant Germplasm System. HortScience 2013, 48, 1440–1444. [Google Scholar] [CrossRef]
- Liu, H.L.; Zhang, L.W.; Zhang, H.X.; Abudureheman, B.; Zhang, D.Y.; Guan, K.Y. Distribution Pattern of Species Richness for Wild Fruit Trees in Xinjiang Based on Species Distribution Modeling. Sci. Ailcae Sin. 2015, 51, 1–8. (In Chinese) [Google Scholar] [CrossRef]
- Sheng, F.; Chen, S.Y.; Tian, J.; Li, P.; Qin, X.; Wang, L.; Luo, S.P.; Li, J. Morphological and ISSR Molecular Markers Reveal Genetic Diversity of Wild Hawthorns (Crataegus songorica K. Koch.) in Xinjiang, China. J. Integr. Agric. 2017, 16, 2482–2495. [Google Scholar] [CrossRef]
- Chen, X.; Feng, T.; Zhang, Y.; He, T.; Feng, J.; Zhang, C. Genetic Diversity of Volatile Components in Xinjiang Wild Apple (Malus sieversii). J. Genet. Genom. 2007, 34, 171–179. [Google Scholar] [CrossRef]
- Chen, B.; Huang, B.; Xu, B. Multi-Source Remotely Sensed Data Fusion for Improving Land Cover Classification. ISPRS J. Photogramm. Remote Sens. 2017, 124, 27–39. [Google Scholar] [CrossRef]
- Skole, D.; Tucker, C. Tropical Deforestation and Habitat Fragmentation in the Amazon: Satellite Data from 1978 to 1988. Science 1993, 260, 1905–1910. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.G.; Pearson, S.M.; Bolstad, P.; Wear, D.N. Effects of Land-Cover Change on Spatial Pattern of Forest Communities in the Southern Appalachian Mountains (USA). Landsc. Ecol. 2003, 18, 449–464. [Google Scholar] [CrossRef]
- Ma, L.; Bo, J.; Li, X.; Fang, F.; Cheng, W. Identifying Key Landscape Pattern Indices Influencing the Ecological Security of Inland River Basin: The Middle and Lower Reaches of Shule River Basin as an Example. Sci. Total Environ. 2019, 674, 424–438. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Sun, J.; Baidurela, A.; Li, L.; Hu, X.; Song, T. Ecological Landscape Pattern Changes and Security from 1990 to 2021 in Ebinur Lake Wetland Reserve, China. Ecol. Indic. 2022, 145, 109648. [Google Scholar] [CrossRef]
- Funada, S.; Tsutsumida, N. Mapping cherry blossoms from geotagged street-level photos. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 5645–5647. [Google Scholar] [CrossRef]
- Dou, P.; Huang, C.; Han, W.; Hou, J.; Zhang, Y.; Gu, J. Remote Sensing Image Classification Using an Ensemble Framework without Multiple Classifiers. ISPRS J. Photogramm. Remote Sens. 2024, 208, 190–209. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep Learning in Remote Sensing Applications: A Meta-Analysis and Review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Talukdar, S.; Eibek, K.U.; Akhter, S.; Ziaul, S.; Towfiqul Islam, A.R.M.; Mallick, J. Modeling Fragmentation Probability of Land-Use and Land-Cover Using the Bagging, Random Forest and Random Subspace in the Teesta River Basin, Bangladesh. Ecol. Indic. 2021, 126, 107612. [Google Scholar] [CrossRef]
- Wang, Y.H.; Song, C.Q.; Gao, Y.F.; Xie, Y.R.; Ye, S.J.; Gao, P.C. Trends of land use change model development since the 1990s and future challenges. Prog. Geogr. 2023, 42, 1192–1203. (In Chinese) [Google Scholar] [CrossRef]
- Chowdhury, M.S. Comparison of Accuracy and Reliability of Random Forest, Support Vector Machine, Artificial Neural Network and Maximum Likelihood Method in Land Use/Cover Classification of Urban Setting. Environ. Chall. 2024, 14, 100800. [Google Scholar] [CrossRef]
- Martinez-Sanchez, L.; See, L.; Yordanov, M.; Verhegghen, A.; Elvekjaer, N.; Muraro, D.; d’Andrimont, R.; van der Velde, M. Automatic Classification of Land Cover from LUCAS In-Situ Landscape Photos Using Semantic Segmentation and a Random Forest Model. Environ. Model. Softw. 2024, 172, 105931. [Google Scholar] [CrossRef]
- Liu, J.; Liu, B.; Wu, L.; Miao, H.; Liu, J.; Jiang, K.; Ding, H.; Gao, W.; Liu, T. Prediction of Land Use for the next 30 Years Using the PLUS Model’s Multi-Scenario Simulation in Guizhou Province, China. Sci. Rep. 2024, 14, 13143. [Google Scholar] [CrossRef]
- Thottolil, R.; Kumar, U.; Mundayatt, A. Predicting Urban Expansion Using A Patch-Generating Land Use Simulation (PLUS) Model: A Case Study of Bangalore City, India. In Proceedings of the 2023 IEEE India Geoscience Remote Sensing Symposium InGARSS 2023, Bangalore, India, 10–13 December 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Wen, D.; Wang, X.; Liu, J.; Xu, N.; Zhou, W.; Hong, M. Maintaining Key Ecosystem Services under Multiple Development Scenarios: A Case Study in Guangdong–Hong Kong–Macao Greater Bay Area, China. Ecol. Indic. 2023, 154, 110691. [Google Scholar] [CrossRef]
- Liu, L.; Pai, Z.; Xu, H. The formation characteristics and taxonomic classification of the soil under the wild-fruit forests in Yili valley, Xinjiang. Arid. Land Geogr. 1997, 20, 34–40. [Google Scholar] [CrossRef]
- Oleson, J.J.; Hope, D.; Gries, C.; Kaye, J. Estimating Soil Properties in Heterogeneous Land-Use Patches: A Bayesian Approach. Environmetrics 2006, 17, 517–525. [Google Scholar] [CrossRef]
- Ouma, Y.; Nkwae, B.; Moalafhi, D.; Odirile, P.; Parida, B.; Anderson, G.; Qi, J. Comparison of Machine Learning Classifiers for Multitemporal and Multisensor Mapping of Urban Lulc Features. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2022, 43, 681–689. [Google Scholar] [CrossRef]
- Ge, G.; Shi, Z.; Zhu, Y.; Yang, X.; Hao, Y. Land Use/Cover Classification in an Arid Desert-Oasis Mosaic Landscape of China Using Remote Sensed Imagery: Performance Assessment of Four Machine Learning Algorithms. Glob. Ecol. Conserv. 2020, 22, e00971. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hua, D.; Ruren, L.; Yumei, L. Information Extraction and Dynamic Monitoring of Autumn Grain Crops in Heishan Area Based on Landsat8 Remote Sensing Image. E3S Web Conf. 2018, 53, 10–13. [Google Scholar] [CrossRef]
- Li, X.; He, Z.; Jiang, L.; Ye, Y. Research on Remote Sensing Dynamic Monitoring of Ecological Resource Environment Based on GIS. Wirel. Pers. Commun. 2018, 102, 2941–2953. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, B.; Jiang, W.; Qiu, H. Spatial and Temporal Variation and Prediction of Ecological Carrying Capacity Based on Machine Learning and PLUS Model. Ecol. Indic. 2023, 154, 110611. [Google Scholar] [CrossRef]
- Shi, M.; Wu, H.; Fan, X.; Jia, H.; Dong, T.; He, P.; Baqa, M.F.; Jiang, P. Trade-Offs and Synergies of Multiple Ecosystem Services for Different Land Use Scenarios in the Yili River Valley, China. Sustainability 2021, 13, 1577. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A Future Land Use Simulation Model (FLUS) for Simulating Multiple Land Use Scenarios by Coupling Human and Natural Effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Das, R.; Kumari, K.; De, S.; Manjhi, P.K.; Thepade, S. Hybrid Descriptor Definition for Content Based Image Classification Using Fusion of Handcrafted Features to Convolutional Neural Network Features. Int. J. Inf. Technol. 2021, 13, 1365–1374. [Google Scholar] [CrossRef]
- Huang, X.; Liu, X.; Zhang, L. A Multichannel Gray Level Co-Occurrence Matrix for Multi/Hyperspectral Image Texture Representation. Remote Sens. 2014, 6, 8424–8445. [Google Scholar] [CrossRef]
- Fan, H.J.; Lai, F.B.; Cao, J.R.; Chen, S.J.; Xu, C.Z. Spatio-temporal Evolution and Ecological Risk Prediction of Landslide Landscape in the Tianshan Wild Fruit Forest Area. Mt. Res. 2020, 38, 231–240. (In Chinese) [Google Scholar]
- Zhuang, L.; Tian, Z.; Chen, Y.; Li, W.; Li, J.; Lu, S. Community Characteristics of Wild Fruit Forests along Elevation Gradients and the Relationships between the Wild Fruit Forests and Environments in the Keguqin Mountain Region of Iii. J. Mt. Sci. 2012, 9, 115–126. [Google Scholar] [CrossRef]
- Turdieva, M.; Ayad, W.G. Conservation of Fruit Tree Diversity in Central Asia: Policy Options and Challenges; Bioversity International: Rome, Italy, 2014; ISBN 9789290439202. [Google Scholar]
- He, Z.; Deng, M.; Cai, J.; Xie, Z.; Guan, Q.; Yang, C. Mining Spatiotemporal Association Patterns from Complex Geographic Phenomena. Int. J. Geogr. Inf. Sci. 2020, 34, 1162–1187. [Google Scholar] [CrossRef]
- Da, Q.A.; Cui, D.; Zhang, Y.L. Ecostoichiometric characteristics of soil carbon, nitrogen and phosphorus in wild apple trees of different ages in Yili, Xinjiang. Ecol. Sci. 2022, 41, 98–104. (In Chinese) [Google Scholar]
- Tian, Z.; Song, H.; Wang, Y.; Li, J.; Maimaiti, M.; Liu, Z.; Zhang, H.; Zhang, J. Wild Apples Are Not That Wild: Conservation Status and Potential Threats of Malus sieversii in the Mountains of Central Asia Biodiversity Hotspot. Diversity 2022, 14, 489. [Google Scholar] [CrossRef]
- Sun, J.; Liu, M.; Fu, B.; Kemp, D.; Zhao, W.; Liu, G.; Han, G.; Wilkes, A.; Lu, X.; Chen, Y.; et al. Reconsidering the Efficiency of Grazing Exclusion Using Fences on the Tibetan Plateau. Sci. Bull. 2020, 65, 1405–1414. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Zhang, Q.; Liu, J.; Yi, B.; Li, Y.; Wang, J.; Di, H. Grazing and Enclosure Alter the Vertical Distribution of Organic Nitrogen Pools and Bacterial Communities in Semiarid Grassland Soils. Plant Soil 2019, 439, 525–539. [Google Scholar] [CrossRef]
- Nakahama, N.; Uchida, K.; Koyama, A.; Iwasaki, T.; Ozeki, M.; Suka, T. Construction of Deer Fences Restores the Diversity of Butterflies and Bumblebees as Well as Flowering Plants in Semi-Natural Grassland. Biodivers. Conserv. 2020, 29, 2201–2215. [Google Scholar] [CrossRef]
- Sun, J.; Fu, B.; Zhao, W.; Liu, S.; Liu, G.; Zhou, H.; Shao, X.; Chen, Y.; Zhang, Y.; Deng, Y. Optimizing Grazing Exclusion Practices to Achieve Goal 15 of the Sustainable Development Goals in the Tibetan Plateau. Sci. Bull. 2021, 66, 1493–1496. [Google Scholar] [CrossRef] [PubMed]
Year | Wild Fruit Forest | Other Trees | Grassland | Bare Soil | Shrub | Construction Land | |
---|---|---|---|---|---|---|---|
Area/km2 | 2007 | 9.59 | 0.37 | 8.33 | 6.39 | 1.68 | 0.007 |
2013 | 7.66 | 0.06 | 11.79 | 5.37 | 1.25 | 0.25 | |
2020 | 10.73 | 0.08 | 6.59 | 7.03 | 1.84 | 0.11 | |
Proportion/% | 2007 | 36.36 | 1.14 | 31.8 | 24.3 | 6.37 | 0.022 |
2013 | 29.04 | 0.23 | 44.7 | 20.35 | 4.74 | 0.94 | |
2020 | 40.67 | 0.30 | 24.98 | 26.65 | 6.97 | 0.42 | |
Total change area/km2 | 2007–2013 | −1.93 | −0.24 | −0.43 | 3.41 | −1.04 | 0.222 |
2013–2020 | 3.07 | 0.02 | 5.34 | −4.76 | −3.53 | −0.14 | |
K/% | 2007–2013 | −2.88 | −11.43 | −3.66 | 5.81 | −2.32 | 113.26 |
2013–2020 | 5.73 | 4.76 | 61.03 | −5.77 | −9.39 | −8 |
Year | Centroid Point Coordinates (x, y) | Transfer Distance/km | Transfer Angle and Direction/° | Center of Gravity Migration Speed/km/year |
---|---|---|---|---|
2007 | (83°58′54.97″ E, 46°22′31.41″ N) | / | / | / |
2013 | (83°58′34.34″ E, 46°22′26.35″ N) | / | / | / |
2020 | (83°58′19.18″ E, 46°22′28.58″ N) | / | / | / |
2007–2013 | / | 0.17 | W by S 11° | 0.03 |
2013–2020 | / | 0.33 | W by N 7° | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Guo, L.; Gao, G.; Hu, X.; Song, T.; Huang, J. Spatiotemporal Dynamic Changes and Prediction of Wild Fruit Forests in Emin County, Xinjiang, China, Based on Random Forest and PLUS Model. Sustainability 2024, 16, 5925. https://doi.org/10.3390/su16145925
Sun Q, Guo L, Gao G, Hu X, Song T, Huang J. Spatiotemporal Dynamic Changes and Prediction of Wild Fruit Forests in Emin County, Xinjiang, China, Based on Random Forest and PLUS Model. Sustainability. 2024; 16(14):5925. https://doi.org/10.3390/su16145925
Chicago/Turabian StyleSun, Qian, Liang Guo, Guizhen Gao, Xinyue Hu, Tingwei Song, and Jinyi Huang. 2024. "Spatiotemporal Dynamic Changes and Prediction of Wild Fruit Forests in Emin County, Xinjiang, China, Based on Random Forest and PLUS Model" Sustainability 16, no. 14: 5925. https://doi.org/10.3390/su16145925
APA StyleSun, Q., Guo, L., Gao, G., Hu, X., Song, T., & Huang, J. (2024). Spatiotemporal Dynamic Changes and Prediction of Wild Fruit Forests in Emin County, Xinjiang, China, Based on Random Forest and PLUS Model. Sustainability, 16(14), 5925. https://doi.org/10.3390/su16145925