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Abstract: As an important ecosystem, the wild fruit forest in the Tianshan Mountains is one of the
origins of many fruit trees in the world. The wild fruit forest in Emin County, Xinjiang, China, was
taken as the research area, the spatial and temporal distribution of the wild fruit forest was inverted
using random forest and PLUS models, and the 2027 distribution pattern of the wild fruit forest
was simulated and predicted. From 2007 to 2013, damage to the wild fruit forest from tourism and
overgrazing was very serious, and the area occupied by the wild fruit forest decreased rapidly from
9.59 km2 to 7.66 km2. From 2013 to 2020, suitable temperatures and reasonable tourism management
provided strong conditions for the rejuvenation of wild fruit forests. The distance of the center of
gravity of the wild fruit forest increased, and the density of distribution of the wild fruit forest in
the northwest direction of the study area also increased. It is predicted that the wild fruit forest
in the study area will show a steady and slowly increasing trend in places far away from tourist
areas and with more complex terrain. It is suggested that non-permanent fences be set up as buffer
zones between wild fruit forests, ensuring basic maintenance of wild fruit forests, limiting human
disturbance such as overgrazing, and reducing the risk of soil erosion.

Keywords: wild fruit forest; random forest algorithm; spatiotemporal distribution; overgrazing; tourism

1. Introduction

In recent years, global climate change, overgrazing, rapid development of tourism,
insect pests, plant diseases [1,2], and other factors have threatened the ecological envi-
ronment of wild fruit forests and the distribution of tree species [3]. This has resulted
in a sharp decline in wild fruit forest communities, with severe obstacles to population
regeneration. Many wild apples (Malus sieversii), wild apricots (Armeniaca vulgaris var. ansu
(Maxim.) Yü et Lu), and wild hawthorns (Crataegus songorica K. Koch.) are found only in the
mountainous regions of Central Asia, including southern Kazakhstan, eastern Uzbekistan,
Kyrgyzstan, Tajikistan, Turkmenistan, and the Xinjiang Uygur Autonomous Region of
China [4]. Among them, the Xinjiang wild apple (Malus sieversii) is included in China’s
list of priority protected species and is a nationally protected plant. It naturally inhabits
mountainous areas in western Xinjiang at altitudes ranging from 1000 to 1800 m and is
widely found in the Tianshan Mountains in the Ili Prefecture and the Tarbagatai and Barluk
Mountains in the Tacheng region of Xinjiang [5].

Due to the poor quality of the wild fruit forest, those fruits have a sour taste and low
aesthetic degree and yield, so they cannot be sold or consumed as a fruit. However, the wild
fruit forest in the Tianshan Mountains of Xinjiang has unique advantages in adaptability
and stress resistance. It is an important area of distribution of the natural gene pool in

Sustainability 2024, 16, 5925. https://doi.org/10.3390/su16145925 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16145925
https://doi.org/10.3390/su16145925
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su16145925
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16145925?type=check_update&version=2


Sustainability 2024, 16, 5925 2 of 18

China’s economic fruit tree resources, and also an important wild germplasm resource in
Xinjiang, China [6]. There are 58 species of wild fruit trees in Xinjiang; among them, the
wild apple is the most important constructive species, with 84 types. It is a rare natural
gene treasure trove of apples in the world and an important germplasm gene pool for
studying the genetic diversity and gene evolution of temperate fruit trees worldwide. The
Xinjiang wild apples in the wild fruit forest are of great significance for improving the
quality of modern economic fruit trees, screening excellent varieties, and molecular genetic
breeding [7]. Wild fruit forests are not only precious strategic biological resources but
also play an important role in maintaining ecological balance, protecting water sources,
wind-breaking, and sand-fixing. As a reserve gene pool, the Tianshan wild fruit forest once
gradually shrank; therefore, it is necessary to save and protect the wild fruit forest in the
Tianshan Mountains.

Remote sensing technology has been widely applied in forest resource surveys and
landscape pattern analyses of ecosystems. Multisource remote sensing satellite data has
substantial application value in aspects such as spatiotemporal distribution of forests [8,9],
dynamic changes in forests [10], and forest landscape patterns [11,12]. With the gradual
maturity of data mining and deep learning methods, many machine learning methods
have been closely integrated with land use/cover classification [13,14], enhancing precision
and demonstrating considerable advantages for information interpretation [15]. In setting
and optimizing parameters for land use/cover change models, a multitude of machine
learning algorithms, such as convolutional neural networks, spatiotemporal convolutional
networks, and the Random Forest (RF) algorithm, have been integrated and applied [16,17].
Among these, RF, a classic and mature machine learning algorithm, stands out for its
evident advantages in the supervised classification of remote sensing data [18,19]. To
predict changing trends in land use/cover, scholars have utilized models such as the patch-
generating land use simulation (PLUS) model to investigate the spatial distribution of
land cover and forecast future changes. Predictive models can simulate future ecological
land changes at a regional level. A comprehensive approach is necessary to advance the
development, utilization, protection, and management of land resources, and strengthening
ecological spatial control is essential for constructing a secure and harmonious ecological
environment protection pattern. Compared to other models, the PLUS model can achieve
higher precision and simulate various scenarios, demonstrating the advantages of large-
scale and multi-land-class comprehensive simulations. Moreover, the PLUS model has been
proven to have excellent applicability in arid and semi-arid regions, subtropical humid
and semi-humid area regions [20,21], and the simulation results have substantial reference
value [22].

The emergence of high-resolution remote sensing images has brought unprecedented
opportunities to forestry remote sensing. However, high-resolution remote sensing images
still face difficulties in identifying tree species in the forestry field, resulting in low classifi-
cation accuracy. Therefore, the combination of high-resolution images with appropriate
machine learning methods and prediction models could provide the possibility for improv-
ing the accuracy of forestry information interpretation. To support the effective protection
and management of wild fruit tree resources in Xinjiang, we aimed to investigate the
spatiotemporal distribution trends of wild fruit forests in Emin County from 2007 to 2020
using satellite images and field measurements. Additionally, we performed a simulation
to predict the future spatial distribution of wild fruit forests in the study area. This study
quantitatively analyzed the current situation and changing trends of wild fruit forests,
providing reliable data and reasonable measures for the protection of wild fruit forests,
which can promote the protection and sustainable utilization of wild fruit forests effectively.

2. Materials and Methods
2.1. Study Area

Emin County is located northwest of the Xinjiang Uyghur Autonomous Region in
China and is surrounded by mountains on three sides. The county’s mountainous area
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surpasses its plains area, with agricultural land and grassland distributed vertically along
the mountains. The region has a temperate continental climate with distinct seasons: sub-
stantial temperature variations in spring, short and hot summers, rapid cooling in autumn,
and long cold winters with frequent cold air activity. The average annual temperature is
5.5 ◦C, with frost occurring throughout the year and 195 days without absolute frost. Abun-
dant sunlight, with a total annual sunshine duration of 2784.6 h, meets the needs of crop
growth. The average annual precipitation is 441.2 mm, which is unevenly distributed and
characterized by more precipitation in the northeast and less precipitation in the southwest,
with more precipitation in the mountains and less precipitation in the plains. The soil types
in the study area are brown calcic soil and meadow brown calcic soil, with high organic
matter content. The brown calcic soil area is dominated by soil with organic matter content
of about 10–20%, the humic acid is the main component of humus. The soil water under
the forest is the seasonal leaching type, with the loess parent material containing CaCO3.
The organic matter in the tidal soil has a stronger selenium-enriched ability than the brown
calcium soil [23].

Emin County is rich in natural vegetation and mountainous wild flora and fauna.
Wild fruit forests in Emin County are primarily located in the southeast (80◦47′–83◦58′ E,
43◦20′–46◦21′ N). They are dominated by wild apples (Malus sieversii) and also include wild
hawthorns (Crataegus songorica K. Koch.) and wild bird cherries (Prunus padus L.). Most
of the wild fruit forests in the study area grow on the shaded or semi-shaded slopes of
mountainous regions at an altitude from 900 m to 1930 m because their habitat is warm
and humid, with stripy, blocky, and discontinuous distribution, and appear in various
mountain systems with great discontinuity. The distributions of wild fruit forests show the
strict selectivity of microclimates and the characteristics of primitive residual communities.
In 2021, our team found that the average stand density of wild fruit forest in the study area
was 355 trees · hm−2, the average tree height was 7.6 m, the average basal diameter was
27.8 cm, and the total density of the soil seed bank was 10.20 grains · m−2.

The construction of a wild fruit forest scenic area within the research area, covering
50 km2, has been prompted by the rise in tourism. This scenic area is a comprehensive
tourist destination that emphasizes vacationing, leisure, and sightseeing, featuring activities
such as skiing, hiking, and fruit picking. Scientific research, hiking adventures, self-driving
tours, and cultural and sports tourism have also been conducted (Figure 1).
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2.2. Data Sources

We utilized QuickBird (QB), Gaofen (GF), and advanced land observing satellite
(ALOS) data. QuickBird remote sensing images were obtained from 12 September 2007,
with a geographical range of 83◦57′00′′–84◦0′00′′ E and 46◦21′00′′–46◦24′00′′ N and a spatial
resolution of 0.6 m (panchromatic band) and 2.4 m (multispectral band). High-resolution
satellite imagery was obtained from China’s Gaofen satellites from 17 September 2013 and
17 July 2020, with a spatial resolution of 2 m (panchromatic band) and 8 m (multispectral
band). Emin County administrative vector digital elevation model (DEM) data were ob-
tained from ALOS, with a spatial resolution of 12.5 m. Additional data were obtained from
the Xinjiang Statistical Yearbooks from 2006 to 2021. We also conducted field measurements,
including GPS location, wild fruit forest plot surveys, and tree species distribution. A total
of 68 regular plots and 102 irregularly shaped areas were surveyed. The regular quadrats
were 30 m × 30 m, covering wild apples (Malus sieversii), wild hawthorns (Crataegus songor-
ica K. Koch.), wild bird cherries (Prunus padus L.), and mixed forests of wild fruit trees and
other trees (such as poplar and birch). The crown width and quantity of wild fruit trees
and other trees were measured, forming a foundation for the interpretation and validation
of wild fruit forests.

2.3. Data Preprocessing

To ensure the accuracy of information identification and interpretation, radiometric
correction, geometric correction, image overlay, and cropping were conducted as pre-
processing steps using ENVI 5.3 software. The multispectral band has a strong spectral
resolution and rich spectral information, but the spatial resolution cannot fully express
the spatial details. The spectral resolution of the panchromatic band is weak, whereas the
spatial resolution is strong. Therefore, to obtain images with high spatial detail perfor-
mance and good spectral characteristics, the multispectral band and high spatial resolution
panchromatic band were superimposed and fused to improve image accuracy. In this study,
the principal component analysis (PCA) transform fusion method was used to enhance im-
ages from 2007, 2013, and 2020. The obtained images displayed the spectral characteristics
of the original images with greater detail and clarity [24].

2.4. Random Forest Algorithm

Machine learning and deep learning algorithms have found extensive applications in
the classification of satellite imagery [18,25], with RF being a classical model among many
machine learning approaches.

The RF algorithm is a tree-based model that incorporates numerous classification
and regression decision trees. This methodology delivers faster and more reliable clas-
sification results without greatly increasing computational demands. It has been widely
employed in various research domains, including image classification, and is considered to
exhibit excellent performance in the presence of numerous features, demonstrating robust
noise resistance and achieving high classification accuracy. The RF model combines the
outcomes of multiple decision trees trained on samples, and the final classification result
is determined by a majority vote from these trees. This approach mitigates overfitting
issues and effectively enhances the generalization capability of the classifier [26]. First,
using the bootstrap method with replacement, samples were randomly drawn for the
training set, with each extraction comprising approximately two-thirds of the total. The
remaining one-third was reserved for estimating the internal training error. Subsequently,
individual decision trees were generated for each bootstrap sample, and these trees were
amalgamated to form a classification forest. Finally, the collective results of all decision
trees were integrated using a voting strategy [27].

2.5. Precision Evaluation Principle

The results of remote sensing classification need to verify and evaluate the classification
accuracy using some indicators. In this study, under the premise of a suitable classification
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algorithm, the most important thing is that we collected a large number of information
sample data for wild fruit forests and non-wild fruit forests in the field; 70% of the samples
were used as the region of interest in the classification process, and 30% of the information
samples were used to verify the results after classification. Confusion matrix was used
to evaluate the accuracy of information extraction, including the calculation of producer
accuracy (PA), user accuracy (UA), overall accuracy (OA), and Kappa coefficient (KC) to
obtain accurate results of image classification.

2.6. Centroid Migration Model

The centroid migration model was used to capture spatial changes in the position
of wild fruit forests. Using standard deviation ellipses for directional distribution and
a planar centroid model, the position of the wild fruit forest centroid and directional
distribution of the centroid at different time periods were computed. Consequently, an
analysis was conducted of the centroid displacement and migration rate in a geographical
two-dimensional space across different time intervals, revealing the spatial transition
processes of the wild fruit forest [28,29]. The formula for the planar centroid calculation
model is as follows:

X =
∑n

i=1(Ai × Xi)

A
(1)

Yj =
∑n

i=1
(

Aji × Yji
)

Aj
(2)

Xj represents the X-coordinate value of the centroid of land use/cover type j, Yj represents
the Y-coordinate value of the centroid of land use/cover type j, Aji is the type i area within
land use/cover type j, Xji is the average X-coordinate value within the range corresponding
to type i in land use/cover type j, Yji is the average Y-coordinate value within the range
corresponding to type i in land use/cover type j, and Aj is the total area of land use/cover
type j.

2.7. Patch-Generating Land Use Simulation Model

The PLUS model is a land use/cover simulation prediction model that was developed
by the High-performance Spatial Computational Intelligence Lab at the China University
of Geosciences [30]. Compared with other land use/cover prediction models, the PLUS
model can better utilize the land expansion analysis strategy (LEAS) and explore changes
in different land cover types.

The PLUS model has a good reflection in transformation analysis and pattern anal-
ysis; therefore, the model has a strong ability to analyze the changes in each feature at a
certain period of time. The PLUS model includes random seed generation and threshold-
decreasing mechanisms. The calculated development probability can better simulate land
use/cover change. The simulation results can support planning policies to achieve sustain-
able development. This model integrates a LEAS and a cellular automata model based on
multitype random patch seeds. It adopts a multitype random patch-seeding mechanism
based on the descent threshold, which is realized by calculating the overall probability [31].

The PLUS model is based on the evolution of various types of land-use patches.
By using the LEAS (Land Expansion Analysis Strategy) and CARS (Cellular Automata
model of multitype Random Forest) functions in the model, it can analyze the causes of
land use changes in the study area and simulate the changes of each type of patch level
land accurately [32]. Compared with other models, the results of the PLUS model have
important reference value because it can simulate more scenarios with higher accuracy. The
model is as follows:

Pd=1,t
i,k =

{
Pd=1

i,k × (r × uk)× Dt
k, Ωt

i,k = 0 and r < Pd=1
i,k

Pd=1
i,k × Ωt

i,k × Dt
k,→ all all other

}
(3)
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where r is a random value ranging from 0–1; Pd=1,t
i,k is the development probability from

pixel i to land type k; Pd=1
i,k represents the growth probability of land type k at the cell level

I; d = 0 indicates that the land type k is converted to other land types and d = 1 means that
other land types are converted to land type k; Uk is the threshold value for producing new
land-use patches for land use type k; Dt

k represents the adaptive inertia coefficient; and Ωt
i,k

is the neighborhood weight of k.
The characteristics of land use change can be well demonstrated by the Markov chain

analysis method in the PLUS model. In addition, the Markov chain analysis method is
also a common method for predicting the area change of various land use types. It can
intuitively describe the trend of land use change in the study area from one period to
another, and use this as a criterion to predict future change trends [21]. The equation is
as follows:

St+1 = P × St (4)

P =


P11 P12 · · · P1n
P21 P22 · · · P2n
· · · · · · · · · · · ·
Pn1 Pn2 · · · Pnn

 (5)

Pij ∈ [0, 1), ∑n
i=1 Pij = 1, i, j = 1, 2, · · · , n (6)

where P represents the transfer matrix of land use type; St and St+1 are the land use status
of the current and future period in the study area, respectively; and n is the land use type.

The specific parameters of the PLUS model are set as follows: the size of the neigh-
borhood window is defaulted to 3 in the CARS module and the size of the neighborhood
weight is determined by the expansion of each land type [33].

3. Results
3.1. Spatiotemporal Distribution of Wild Fruit Forests

In this paper, the principal component analysis (PCA) transform fusion method is
used to enhance the images from 2007, 2013, and 2020, and the obtained images can better
display the spectral characteristics of the original images. The red wave and near-red
wave information, which are most sensitive to vegetation information in the multi-spectral
band, are assigned to other bands and the high-resolution panchromatic band image is
stretched to replace the first principal component band to achieve inverse conversion and
complete image fusion. Fusion can reduce or suppress the problems of incompleteness
and interpretation errors that may occur when interpreting wild fruit forest information. It
can maximize the utilization of various information provided by the image, facilitating the
identification and extraction of information on wild fruit forests in the image. The gray-
level co-occurrence matrix extraction method of adding textural features can effectively
improve the separation degree of the region of interest [34] and lay a good foundation for
the information interpretation of wild fruit forests. When establishing the interpretation
mark, we selected a gray-level co-occurrence matrix that is widely used to extract texture
structures [35]. The gray-level co-occurrence matrix was used to count the number of
occurrences of the same pixel value in the image area or specified calculation window. The
texture feature effect was used to statistically analyze the classified images and extract
statistical parameters that could describe the relevant texture information. Based on the
principal component transform, the pixel offset distance was set to 1 pixel, the offset
direction was 45◦, and the texture feature image was obtained using a 3 × 3 window scale.

In computer interpretation, these important information samples become an impor-
tant basis for verifying accuracy. Based on the combination of field investigation and
remote sensing data, land use/cover types were divided into six categories: wild fruit
forest (including wild apples (Malus sieversii), wild hawthorns (Crataegus songorica K. Koch.)
and wild bird cherries (Prunus padus L.), other trees (non-wild fruit forest trees such as
birch (Betula L.), poplar (Tacamahaca), and willow (Salix)), shrubs, grassland, bare soil, and
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construction land (including roads, yurts, and buildings). Fieldwork and computer in-
terpretation are equally important. In the field, a large amount of sample information
was collected from wild fruit forests and other types of ground objects, and the region of
interest (ROI) was recorded. The RF algorithm was used to interpret the remote sensing
data for the study area from 2007, 2013, and 2020 to determine the spatial distribution
characteristics of wild fruit forests (Figure 2 and Table 1). Using data collected during
fieldwork, the information interpretation map of the wild fruit forests was verified and
its accuracy was evaluated. The Kappa coefficient was greater than 0.80, laying a good
foundation for subsequent research.
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Table 1. Statistical table of land use/cover change from 2007 to 2020.

Year Wild Fruit Forest Other Trees Grassland Bare Soil Shrub Construction Land

Area/km2
2007 9.59 0.37 8.33 6.39 1.68 0.007
2013 7.66 0.06 11.79 5.37 1.25 0.25
2020 10.73 0.08 6.59 7.03 1.84 0.11

Proportion/%
2007 36.36 1.14 31.8 24.3 6.37 0.022
2013 29.04 0.23 44.7 20.35 4.74 0.94
2020 40.67 0.30 24.98 26.65 6.97 0.42

Total change
area/km2

2007–2013 −1.93 −0.24 −0.43 3.41 −1.04 0.222
2013–2020 3.07 0.02 5.34 −4.76 −3.53 −0.14

K/%
2007–2013 −2.88 −11.43 −3.66 5.81 −2.32 113.26
2013–2020 5.73 4.76 61.03 −5.77 −9.39 −8

From 2007 to 2020, the wild fruit forest area first decreased and then increased. In the
context of serious damage to the ecological environment of wild fruit forests in Xinjiang,
the distribution of wild fruit forests in different regions has suffered from different degrees
of decline [3,36]. Wild fruit forests in Emin County were affected, resulting in a substantial
decrease in the area occupied by wild fruit forests between 2007 and 2013. The construction
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land area initially increased sharply and then decreased slowly. Although this area ac-
counted for a small proportion of the total land area, it exhibited a high degree of dynamic
change, and the area occupied by construction land increased by 113.3% from 2007 to 2013.
During this time, the social economy developed rapidly and the ecotourism industry ex-
panded. To explore the economic value of wild fruit forest tourism, Emin County increased
the development and utilization of wild fruit forests and built scenic tourism spots with
wild fruit forests as a theme. Tourist attractions such as ski resorts, Mongolian yurts with
Xinjiang characteristics, and field camps prompted the local government to increase its
investment by continuously increasing the layout of artificial landscapes in wild fruit forest
scenic spots and constructing public facilities such as roads and parking lots. Frequent
human activities and alterations in the fragile ecological landscape imposed pressure on
the survival of wild fruit forests, seriously hindering their renewal.

The disorderly development of tourism, overgrazing, invasion of alien species, and
the spread of pests and diseases will lead to a reduction in the area occupied by wild fruit
forests. For example, The Buprestid Beetle was introduced to Xinjiang with apple seedlings
in 1993. Due to a lack of natural enemies, it quickly propagated and destroyed a large
number of wild fruit forests. The area occupied by other trees (such as poplar, birch, and
willow) continued to decrease, from 0.37 km2 in 2007 to 0.08 km2 in 2020. This was related
to the slow natural regeneration of trees. Between 2007 and 2013, the harvesting of poplar
and other trees increased during the process of expanding grazing land, which contributed
to the sharp decrease in the area occupied by other trees.

However, between 2013 and 2020, the development of tourism gradually became ra-
tionalized, and the local government’s construction of a forest culture constantly improved.
After 2018, Emin County improved the protection of wild fruit forest resources, erected
fences to maintain the area of distribution of wild fruit forests, effectively prevented grazing
by cattle and sheep in wild fruit forests, reduced damage from anthropogenic activities,
controlled the occurrence of pests and diseases, and adopted artificial renewal measures.
These measures achieved positive results in the protection of wild fruit forests. The area
occupied by wild fruit forests increased by 3.07 km2 between 2013 and 2020.

The comprehensive dynamic attitude increased from 1.42% to 2.37%, and the stability
of the pattern change of land use/cover in the study area decreased. The slow increase
in the area occupied by wild fruit forests is mainly due to the achievements of human
protection. The reasonable development of the tourism industry, artificial cultivation,
biological control, and other measures effectively protected and restored wild fruit forests.
There were reports that the conversion from construction land, grassland, and bare soil
to wild fruit forests, especially from grassland to wild fruit forests, was also one of the
reasons for the increase in the area occupied by wild fruit forests. Although the protection
of wild fruit forests increased, dynamic changes in grassland and bare soil became more
intense, resulting in a slight increase in the comprehensive dynamic degree of change in the
study area.

3.2. Spatial and Temporal Transfer of Wild Fruit Forests

Using the results of the wild fruit forests, spatial transfer changes in wild fruit forests
were calculated. The combination of the Sankey diagram and spatial distribution map
(Figures 3 and 4) shows the intensity of mutual transformation between wild fruit forests
and other land use/cover types and clarifies the spatial distribution of wild fruit forest
transformation. Figure 5 shows the changes in social and natural factors affecting wild fruit
forests in the study area.
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Between 2007 and 2020, the changes in the spatial and temporal distribution patterns
of wild fruit forests in the study area were attributed to the comprehensive influence of
social and natural factors. To date, tourism still has negative effects on wild fruit forests in
this area.

As shown in Figures 3–5, region A and region B were selected as typical regions
with relatively severe dynamic changes in wild fruit forests during the study period,
and the mutual transformation between wild fruit forests and various land use/cover
types in typical change areas was further analyzed. From 2007 to 2013, the wild fruit
forest area decreased and was mainly converted into grassland and bare soil. Within
region A, the distribution of wild fruit forests was reduced considerably. This region is
close to the tourist areas, and the continuous expansion of ski resorts has attracted many
tourists. Consequently, human interference has intensified, resulting in the destruction
of nearby wild fruit forests. Simultaneously, the region is close to rural Hoggilt, where
the gradual increase in animal husbandry output value and demand for water and forage
resources has likely contributed to the reduction in the area occupied by wild fruit forests.
Grassland was the main land use/cover type from 2007 to 2013. Precipitation in 2007 and
2013 was 249.1 mm and 337.4 mm, respectively. Higher precipitation promotes grassland
growth. Simultaneously, a large wild fruit forest area was transformed into grassland,
which was an important reason for the relative increase in the grassland area in 2013.
Mutual transformation between bare soil and grassland occurred, and the wild fruit forest
area converted into bare soil was as high as 1.34 km2. Although the area occupied by
construction land was very small, its increase was very high, and its impact on grassland,
bare soil, and wild fruit forests was relatively large. The wild fruit forest area converted
into construction land was 0.08 km2, accounting for 30.4% of the construction land area in
2013, which shows that the damage to wild fruit forests caused by construction was serious.



Sustainability 2024, 16, 5925 11 of 18

The sharp decline in wild fruit forests is mainly due to the combined results of human
activities and natural factors. The sharp decline in wild fruit forests is mainly due to the
combined results of human activities and natural factors. In order to protect wild fruit
forests, effective measures need to be taken, including strengthening the construction of
nature reserves, controlling pests and diseases, and limiting overgrazing and development.
Climate change and other crises have led to a sharp loss of genetic diversity in wild
fruit trees.

Between 2013 and 2020, the spatial distribution of wild fruit forests was relatively
stable and land use changes were weak. The conversion of grassland and bare soil to
wild fruit forests led to an increase in the total area of wild fruit forests, and the bare soil
area converted into wild fruit forests was 0.33 km2 more than that of wild fruit forests
converted into bare soil, accounting for 4.3% of the total area of wild fruit forests in 2013. The
transformation between shrubs and grasslands was also relatively frequent, the distribution
of other trees was relatively stable, and the transformation into various types of land cover
was very weak. From 2013 to 2020, the impact of the tourism industry was addressed by
dismantling resort facilities in scenic spots, repairing original roads, and planning grazing
areas to reduce construction land. For example, region B showed a considerable increase
in the distribution of wild fruit forests. Precipitation in Emin County fluctuated, but the
overall trend showed a slight increase. Precipitation, soil surface moisture content, and
altitude are important factors influencing the distribution of different types of wild fruit
forests [37]. Appropriate temperatures provided strong conditions for the rejuvenation of
wild fruit forests. Most importantly, region B is far from grazing and tourist areas. The
terrain is complex and changeable, with occasional wild animals, such as boars. Almost
no human or agricultural interference was observed. In addition, in recent years, local
protection and artificial cultivation of wild fruit forests have provided favorable conditions
for the renewal and rejuvenation of wild fruit forests. The increasing awareness of the
importance of wild fruit forests has played a positive role in promoting the implementation
of environmental protection and ecological restoration. The government’s conservation
and health regulation project for the degraded ecosystem of wild fruit forests has effectively
curbed the ecological degradation of wild fruit forests, resulting in a slow increase in the
area occupied by wild fruit forests [38].

3.3. Shift in the Center of Gravity of the Distribution of Wild Fruit Forests

The shift in the direction and distance of the center of gravity of the wild fruit forests
quantitatively expresses the direction of their spatial and temporal distribution and the
degree of centripetal force. The characteristics of the spatial distribution and law of change
over time were explored by studying the transfer distance and angle of the wild fruit forest
area (details are shown in Table 2 and Figure 6).

Table 2. Statistical table of centroid migration distance and angle of wild fruit forests from 2007 to 2020.

Year Centroid Point Coordinates (x, y) Transfer Distance/km Transfer Angle
and Direction/◦

Center of Gravity
Migration Speed/km/year

2007 (83◦58′54.97′′ E, 46◦22′31.41′′ N) / / /
2013 (83◦58′34.34′′ E, 46◦22′26.35′′ N) / / /
2020 (83◦58′19.18′′ E, 46◦22′28.58′′ N) / / /

2007–2013 / 0.17 W by S 11◦ 0.03
2013–2020 / 0.33 W by N 7◦ 0.04
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The standard deviation ellipse of the distribution of wild fruit forests quantitatively
expresses the dynamic evolution of the spatial distribution of wild fruit forests through
the long and short axes, shape index, and other indicators. During the study period, the
deviation of the center of gravity in wild fruit forests was small, the distribution was
relatively stable, and the spatial difference fluctuation was weak. The standard deviation
elliptic shape indexes of wild fruit forests in 2007, 2013, and 2020 were 0.95, 0.82, and 0.92,
respectively, showing a trend of first decreasing and then increasing. From 2007 to 2013, the
distribution of wild fruit forests tended to be along the long axis, and the center of gravity
of wild fruit forests migrated to the southwest, with a cumulative deviation of 0.17 km
annually. Indicating that the spatial distribution of wild fruit forests tended to exhibit a
longitudinal distribution from north to south. The center of gravity migration speed was
0.03 km/yr, which was relatively slow. The long axis of the standard deviation ellipse
of the wild fruit forest increased and the short axis decreased, indicating that the spatial
distribution of wild fruit forests showed a trend of contraction in the east–west direction
and expansion in the north–south direction. From 2013 to 2020, the distribution of wild fruit
forests tended to be along the short axis, and the spatial distribution tended to be circular.
The spatial distribution characteristics changed little, and the spatial pattern of wild fruit
forests developed toward the direction of uniformity. During this period, the center of
gravity of wild fruit forests shifted by 0.33 km. Compared to that in the previous seven
years, the distance of the center of gravity of the wild fruit forests increased and the degree
of non-equilibrium of the spatial distribution increased, indicating that the high-density
area of the spatial distribution of the wild fruit forests pointed in the northwest direction.
The migration rate of the center of gravity was 0.04 km/yr and remained very slow. The
distribution of wild fruit forests showed a contracting trend in the north–south direction.
The short half-axis of the standard deviation ellipse increased and the distribution range of
the wild fruit forests in the east–west direction showed an expanding trend.
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3.4. Prediction of Future Spatial Distribution of Wild Fruit Forests

The PLUS model was used to predict the area of distribution of wild fruit forests. In
order to verify the reliability of the model, firstly, based on the probability of land use/cover
transfer between 2007 and 2013, the land use/cover demand of wild fruit forests in the
study area in 2020 was predicted using the land use/cover data for 2007 and 2013 as the
base period. The range of neighborhood weight parameters is 0–1; the closer the value is
to 1, the higher the stability of the land use/cover type and the weaker the transfer ability.
The appropriate neighborhood weight parameters were selected according to the changes
in the proportions of areas occupied by various ground objects; the land use/cover data
and development probability atlas for 2003 and 2013 were input in the module and the
simulation prediction map for the spatial and temporal distribution of wild fruit forests in
2020 was obtained. Then, the spatial distribution data for wild fruit forests predicted by
the PLUS model and interpreted by the Gaofen satellite in 2020 were tested and compared.
The prediction results of the PLUS model have a good degree of fit with the classification
results interpreted using the Gaofen data in 2020 and meet the needs of further prediction.
This proves that the PLUS model has good applicability for the prediction of the spatial
and temporal distribution of wild fruit forests.

Based on the spatial distribution data for wild fruit forests from 2007, 2013, and 2020
in the study area, combined with DEM, slope, and slope direction data, the suitability
probability of different land use/cover types was calculated and the neighborhood weights
of each land type were set to simulate and predict the distribution of wild fruit forests
in 2027. Using ArcScene 10.6 software supplemented by an ALOS DEM with a spatial
resolution of 12.5 m, the elevation, slope, slope direction, node elevation, and contour
lines of the study area were extracted (Figure 7). Multiple layers were integrated to realize
the drawing of the three-dimensional spatial distribution map of wild fruit forests in
2027 (Figure 8).
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The PLUS model uses different scenarios to simulate and predict land use/cover,
which can assist decision-makers in identifying a sustainable land use model for future
development [39]. Moreover, the simulation accuracy of the PLUS model is higher than that
of other models that have commonly been used in previous research, and the simulation
results can better support sustainable development planning. Using this method, we
predicted that the area occupied by wild fruit forests will increase between 2020 and 2027.
In 2027, the area occupied by wild fruit forests is predicted to be 11.9 km2, accounting for
44.9% of the total land area, followed by bare soil with an area of 7.39 km2, accounting
for 28.0%. The areas occupied by other trees, shrubs, and grasslands showed a decreasing
trend, while the area occupied by construction land showed little change.

4. Discussion
4.1. Model Accuracy and Uncertainty

From a spatial perspective, compared with other traditional models such as CLUE-S,
ANN-CA, and Logistic-CA, the FLUS (Future Land Use Simulation) model has significant
accuracy advantages at regional, continental, and even global scales [33]. From a time
series perspective, PLUS is more advantageous than FLUS in simulating historical land use
changes [30]. The PLUS model was used to simulate and predict the spatial distribution
and area of wild fruit forests in the study area in 2027. To test the accuracy of the model, the
spatial distribution of wild fruit forests in 2020 was predicted using the distribution data
for wild fruit forests from 2007 to 2013. The results showed that the prediction results for
the distribution of wild fruit forests in 2020 fitted well with the classification results based
on high-resolution data. This demonstrated that the model has good applicability in the
study area and is suitable for predicting the spatial distribution of wild fruit forests in 2027.
However, certain factors led to some uncertainties in the results of the PLUS prediction
model. These factors include the use of nonlinear land use/cover and environmental
meteorological factor data to drive the PLUS model, the differences in spectral parameters
between the QuickBird and Gaofen satellite data, and the nonlinear changes in the center
of gravity of the wild fruit forests and transfer of land use/cover during the study period.
Additionally, the trend of the increase in the area occupied by wild fruit forests from
2013 to 2020 likely influenced the prediction of the distribution of wild fruit forests in
2027. These sources of uncertainty should be addressed in future studies. If hyperspectral
technology is used as auxiliary data in future research, greater progress will be made in
interpretation accuracy and universality, and the verification algorithm will be optimized
via comprehensive error conduction and convergence cross-mapping so as to ensure the
accuracy of wild fruit forest interpretation on a large scale.

4.2. Distribution Prediction and Protection Suggestions for Wild Fruit Forests

Due to the relic species from the Tertiary period, the Xinjiang wild apple (Malus
sieversii) has characteristics with important scientific research and protection value. It was
on the verge of extinction in 2000 [40]. Wild fruit forests exhibited a weak growth trend
from 2013 to 2020. It is predicted that although wild fruit forests will show an increasing
trend from 2020 to 2027, the increase will be relatively small, at only 0.7 km2, with an
average annual increase of only 0.1 km2. The slow growth of the wild fruit forest area
indicates that protection must be further strengthened. Awareness of the protection of
wild fruit forests should be further promoted among local residents and tourists. The local
government should also actively invest in the establishment of artificial fences, delineate
pastoral and non-pastoral areas, and delineate core areas for the renewal and revitalization
of wild fruit forests to prevent damage from cattle, sheep, and other pests to the core areas
occupied by wild fruit forests. Reasonable grazing can effectively prevent livestock from
damaging the regeneration of wild fruit forests, thereby changing the spatial distribution
and quantity of wild fruit forests and effectively reducing the adverse effects of tourism
development on wild fruit forests. Through the combined effects of rational grazing and
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artificial maintenance, we can promote a win–win situation between the development of
animal husbandry and the ecological protection of wild fruit forests.

The stability of the spatial distribution pattern of wild fruit forests in the research
area depends not only on the harmonious development of land use/cover and sustainable
resource utilization but also on the comprehensive effects of the ecological environment,
climate change, and human activities. With the continuous development of the social
economy, the degree of land use/cover change is increasing, and human development
and the unreasonable use of land resources may exacerbate the irrationality of resource
distribution. Therefore, increasing the protection of wild fruit forests is necessary to
stabilize and optimize the area and spatial structure of wild fruit forests in the research
area so that future land use/cover changes are in an optimized state with a more stable
development trend. There is an urgent need to strengthen investment in the concepts
of forest culture, forest tourism, and ecological civilization and to promote harmonious
development between humans and nature.

At present, the protection measures for wild fruit forests still need to be improved,
and the establishment of special protection zones for wild fruit forests is also very rare [41].
Although local governments have vigorously developed tourism, its development and
construction are based on protecting the regional ecological environment. It is suggested
that sightseeing areas should be delineated in wild fruit forest scenic spots, and a fence
should be set up as a barrier between the wild fruit forest and the tourist area to realize the
basic maintenance of the wild fruit forest and limit human interference. A fence is the most
commonly used effective measure for restoring forests and grasslands and has achieved
good ecological and environmental benefits in the world, such as in the Tibetan Plateau [42],
Inner Mongolia [43], and Australia [44], and also undoubtedly provides an effective idea
for the protection of wild fruit forests. However, a fence has dual characteristics, and a
long-term or permanent fence will have a negative effect on ecological restoration [45].
Therefore, we suggest that the local governments adopt transitional and non-permanent
fence measures to enclose wild fruit forests surrounding grasslands for a short period of
time and create favorable conditions for their natural recovery.

5. Conclusions

From 2007 to 2020, the area occupied by wild fruit forests in Emin County first
decreased and then increased. Between 2007 and 2020, strong interference from human
activities had a negative impact on the renewal of wild fruit forests and the area decreased
considerably. Wild fruit forests were converted into construction land, accounting for 30.4%
of the total construction land in 2013. The center of gravity of wild fruit forests shifted
slightly, and the spatial distribution of wild fruit forests showed an expansion trend in the
north–south direction and a contraction trend in the east–west direction.

Between 2013 and 2020, the spatial distribution of wild fruit forests was relatively
stable, and suitable temperatures and reasonable tourism management provided favorable
conditions for the revitalization of wild fruit forests. The shift in the distance of the center
of gravity of the wild fruit forests increased, and the high-density area of the spatial
distribution of the wild fruit forests pointed northwest.

A variety of environmental meteorological factors have nonlinear characteristics that
drive the PLUS prediction model; additionally, there are differences in spectral parameters
between different satellite data and these factors lead to errors and uncertainties in the
prediction model. The spatial distribution results of wild fruit forests in 2020 obtained
using the random forest algorithm and the PLUS prediction model are highly correlated,
which fully proves the reliability and applicability of the PLUS model to wild fruit forest
information interpretation.

It is predicted that between 2020 and 2027, wild fruit forests will show a stable and
slowly increasing trend. Wild fruit forests are expected to reach a coverage area of 11.6 km2

by 2027. It is suggested to install non-permanent fences as buffer zones between wild
fruit forests and tourist areas while developing characteristic tourism, limiting human
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disturbance such as overgrazing in order to maintain the sustainable development of wild
fruit forests.

Combining multi-band technology with hyperspectral technology, especially UAV
hyperspectral technology, is expected to greatly improve the accuracy of wild fruit forest
information classification. Additionally, we will focus on the quantitative verification of the
prediction model in the future. Algorithms such as causal reasoning and cross-convergence
mapping provide verification ideas for the accuracy of the prediction model, which will
also make an effective reference for the classification and prediction of wild fruit forest
information on regional and even global scales.
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