Hashtag Recommendation Methods for Twitter and Sina Weibo: A Review
"> Figure 1
<p>Flowchart of the steps used in the literature search.</p> "> Figure 2
<p>Distribution of papers from 2010 to 2020.</p> "> Figure 3
<p>Distribution of the eligible papers on hashtag recommendation from 2010 to 2020 with respect to: (<b>a</b>) the three main categories of methods under our taxonomy; (<b>b</b>) the category of text-based methods; and (<b>c</b>) the category of hybrid user-based methods.</p> "> Figure 4
<p>Our proposed taxonomy of the hashtag recommendation methods.</p> ">
Abstract
:1. Introduction
- Section 2 presents the methodology that we adopted for our literature search;
- Section 4 provides a taxonomy of the selected research papers on hashtag recommendation for tweets based on the methodologies adopted in the papers;
- Section 7 outlines our research limitations;
- Section 8 summarizes the whole paper and highlights future research directions.
2. Methodology
- RQ1: Has the number of research papers regarding hashtag recommendation for Twitter and Sina Weibo been increasing in the last decade?
- RQ2: What are the hashtag recommendation methods used in Twitter and Sina Weibo?
- RQ3: What are the techniques used in the hashtag recommendation methods?
- RQ4: What are the characteristics of the dataset used in each paper related to the research topic?
- RQ5: What are the future directions for hashtag recommendation methods for Twitter and Sina Weibo?
2.1. Eligibility Criteria
- (i)
- Papers should be related to hashtag recommendation within the platforms of Twitter and Sina Weibo.
- (ii)
- Papers should include recommendation methods and techniques.
- (iii)
- Papers should include a dataset.
2.2. Information Sources and Search
2.3. Paper Selection
3. Results
3.1. Year of Publication
3.2. A Taxonomy of Hashtag Recommendation Methods
- text-based methods,
- hybrid user-based methods; and
- hybrid miscellaneous methods.
3.3. Dataset
4. Text-Based Methods
4.1. Tweet Similarity Based Methods
4.2. Probabilistic Methods
- The burst-score wise scheme [75], which aggregates tweets that contain trending terms;
- The temporal scheme [75], which aggregates tweets posted at a specific time;
- The term scheme [77], which aggregates tweets that share a word—it is applied to every word in the training set;
- The conversation scheme [74], which aggregates tweets based on conversations between users, e.g., replies to a tweet sent by other users (co-authors) or by the primary author.
4.3. Classification Based Methods
4.4. Graph Based Methods
4.5. Matrix-Factorization-Based Methods
5. Hybrid User-Based Methods
5.1. Behavioural Collaborative Filtering
5.2. Social Collaborative Filtering
6. Hybrid Miscellaneous Methods
7. Limitations
8. Conclusions and Future Research Directions
- Despite the advancement of the current methods, further improvements are required to propose more effective methods that are less expensive in terms of time and computation and provide a personalized recommendation that covers a broader range of pre-defined and novel hashtags with higher accuracy. Furthermore, most of the previous research was tested offline. Recommending personalized hashtags in real-time is more difficult where the recommended hashtags need to be accurate and given instantly.
- As an extension to work presented in Alsini et al.’s paper [23], the association of the four networks and their combined effect on the performance of hashtag recommendation can be examined. In addition, rather than considering the mutual tie relationships between users, weighted relationships can be used to construct the networks and detect communities.
- It is challenging to compare newly proposed methods with baseline methods due to the variance in the size of the datasets (i.e., number of tweets, users, and hashtags). It is recommended for future research papers to set a minimum size of the dataset for evaluation.
- Accuracy-based metrics were the primary measures of evaluation for a long time. In recent years, concepts of evaluation, which are metrics beyond accuracy, have been studied to evaluate the value of the traditional recommendations. For example, diversity is concerned with the variety of items recommended by the system, and novelty is concerned with how the recommended items are new to users [81,82]. However, concepts of the evaluation were rarely used to evaluate hashtag recommendation methods. The value of the recommendations also needs to be studied in terms of user satisfaction and expectation.
- With the dynamic nature of social media platforms, studies of hashtag recommendation should focus more on the automatic update of the data on the recommendation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, Z.; Zhang, Q.; Huang, X. Automatic Hashtag Recommendation for Microblogs using Topic-Specific Translation Model. In Proceedings of the COLING 2012: Posters, The COLING 2012 Organizing Committee, Mumbai, India, 8–15 December 2012; pp. 265–274. [Google Scholar]
- Ding, Z.; Qiu, X.; Zhang, Q.; Huang, X. Learning Topical Translation Model for Microblog Hashtag Suggestion. In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI ’13, Beijing, China, 3–9 August 2013; pp. 2078–2084. [Google Scholar]
- Gong, Y.; Zhang, Q.; Huang, X. Hashtag Recommendation Using Dirichlet Process Mixture Models Incorporating Types of Hashtags. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Lisbon, Portugal, 17–21 September 2015; pp. 401–410. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, Q.; Han, X.; Huang, X. Phrase-based hashtag recommendation for microblog posts. Sci. China Inform. Sci. 2016, 60, 012109. [Google Scholar] [CrossRef]
- Song, S.; Meng, Y.; Zheng, Z. Recommending Hashtags to Forthcoming Tweets in Microblogging. In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, Hong Kong, China, 9–12 October 2015; pp. 1998–2003. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, T. Combining long-term and short-term user interest for personalized hashtag recommendation. Front. Comput. Sci. 2015, 9, 608–622. [Google Scholar] [CrossRef]
- Zhang, Q.; Gong, Y.; Sun, X.; Huang, X. Time-aware Personalized Hashtag Recommendation on Social Media. In Proceedings of the COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, Dublin City University and Association for Computational Linguistics, Dublin, Ireland, 23–29 August 2014; pp. 203–212. [Google Scholar]
- Zangerle, E.; Gassler, W.; Specht, G. Recommending#-Tags in Twitter. In Proceedings of the Workshop on Semantic Adaptive Social Web (SASWeb 2011), CEUR Workshop Proceedings, Girona, Spain, 22–26 June 2011; pp. 67–78. [Google Scholar]
- Khabiri, E.; Caverlee, J.; Kamath, K.Y. Predicting Semantic Annotations on the Real-Time Web. In Proceedings of the 23rd ACM Conference on Hypertext and Social Media, HT ’12, Association for Computing Machinery, New York, NY, USA, 25–28 June 2012; pp. 219–228. [Google Scholar]
- Chen, C.; Yin, H.; Yao, J.; Cui, B. TeRec: A Temporal Recommender System over Tweet Stream. Proc. VLDB Endow. 2013, 6, 1254–1257. [Google Scholar] [CrossRef]
- Ma, Z.; Sun, A.; Yuan, Q.; Cong, G. Tagging Your Tweets: A Probabilistic Modeling of Hashtag Annotation in Twitter. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, Shanghai, China, 1 November 2014; pp. 999–1008. [Google Scholar]
- Jeon, M.; Jun, S.; Hwang, E. Hashtag Recommendation Based on User Tweet and Hashtag Classification on Twitter; Springer: Berlin/Heidelberg, Germany, 2014; pp. 325–336. [Google Scholar]
- Feng, W.; Wang, J. We can learn your #hashtags: Connecting tweets to explicit topics. In Proceedings of the 2014 IEEE 30th International Conference on Data Engineering, Chicago, IL, USA, 31 March–4 April 2014; pp. 856–867. [Google Scholar] [CrossRef]
- Al-Dhelaan, M.; Alhawasi, H. Graph Summarization for Hashtag Recommendation. In Proceedings of the 2015 3rd International Conference on Future Internet of Things and Cloud, Rome, Italy, 24–26 August 2015; pp. 698–702. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, J.; Huang, H.; Huang, X.; Gong, Y. Hashtag Recommendation for Multimodal Microblog Using Co-Attention Network. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, Melbourne, Australia, 19–25 August 2017; pp. 3420–3426. [Google Scholar] [CrossRef] [Green Version]
- Alsini, A.; Datta, A.; Li, J.; Huynh, D. Empirical Analysis of Factors Influencing Twitter Hashtag Recommendation on Detected Communities. In Proceedings of the Advanced Data Mining and Applications—13th International Conference, ADMA 2017, Singapore, 5–6 November 2017; pp. 119–131. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, J.; Liu, T.; Qiu, M.; Sun, X. Personalized Microtopic Recommendation on Microblogs. ACM Trans. Intell. Syst. Technol. 2017, 8. [Google Scholar] [CrossRef]
- Kowald, D.; Pujari, S.C.; Lex, E. Temporal Effects on Hashtag Reuse in Twitter: A Cognitive-Inspired Hashtag Recommendation Approach. In Proceedings of the 26th International Conference on WWW, International World Wide Web Conferences Steering Committee, Geneva, Switzerland, 1 April 2017; pp. 1401–1410. [Google Scholar]
- Alsini, A.; Datta, A.; Huynh, D.Q.; Li, J. Community Aware Personalized Hashtag Recommendation in Social Networks. In Data Mining; Islam, R., Koh, Y.S., Zhao, Y., Warwick, G., Stirling, D., Li, C.T., Islam, Z., Eds.; Springer: Singapore, 2019; pp. 216–227. [Google Scholar]
- Ma, R.; Qiu, X.; Zhang, Q.; Hu, X.; Jiang, Y.G.; Huang, X. Co-attention Memory Network for Multimodal Microblog’s Hashtag Recommendation. IEEE Trans. Know. Data Eng. 2019. [Google Scholar] [CrossRef]
- Belhadi, A.; Djenouri, Y.; Lin, C.W.; Cano, A. A Data-Driven Approach for Twitter Hashtag Recommendation. IEEE Access 2020, 8, 79182–79191. [Google Scholar] [CrossRef]
- Javari, A.; He, Z.; Huang, Z.; Jeetu, R.; Chen-Chuan Chang, K. Weakly Supervised Attention for Hashtag Recommendation Using Graph Data. In Proceedings of the Web Conference 2020, WWW ’20, Taipei, Taiwan, 20–24 April 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1038–1048. [Google Scholar] [CrossRef]
- Alsini, A.; Datta, A.; Huynh, D.Q. On Utilizing Communities Detected From Social Networks in Hashtag Recommendation. IEEE Trans. Comput. Soc. Syst. 2020, 7, 971–982. [Google Scholar] [CrossRef]
- DeMasi, O.; Mason, D.; Ma, J. Understanding Communities via Hashtag Engagement: A Clustering Based Approach Authors. In Proceedings of the International AAAI Conference on Web and Social Media, Cologne, Germany, 17–20 May 2016. [Google Scholar]
- Laniado, D.; Mika, P. Making Sense of Twitter. In The Semantic Web—ISWC 2010; Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 470–485. [Google Scholar]
- Chowdhury, J.R.; Caragea, C.; Caragea, D. On identifying hashtags in disaster twitter data. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020. [Google Scholar] [CrossRef]
- Xiao, F.; Noro, T.; Tokuda, T. News-Topic Oriented Hashtag Recommendation in Twitter Based on Characteristic Co-occurrence Word Detection. In Web Engineering; Brambilla, M., Tokuda, T., Tolksdorf, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 16–30. [Google Scholar]
- Jungherr, A.; Schoen, H.; Jürgens, P. The Mediation of Politics through Twitter: An Analysis of Messages posted during the Campaign for the German Federal Election 2013. J. Comput. Med. Commun. 2015, 21, 50–68. [Google Scholar] [CrossRef] [Green Version]
- Ince, J.; Rojas, F.; Davis, C.A. The social media response to Black Lives Matter: How Twitter users interact with Black Lives Matter through hashtag use. Ethn. Rac. Stud. 2017, 40, 1814–1830. [Google Scholar] [CrossRef]
- Jain, K.; Jindal, R. A Survey on Hashtag Recommendations. In Proceeding of the 27th Conference of Fruct Association, Trento, Italy, 7–9 September 2020; Volume 27. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Wu, Y.; Zhang, Y. Twitter Hash Tag Prediction Algorithm. Available online: https://wayneyuwu.com/paper/icomp_hashtag.pdf (accessed on 10 May 2021).
- Zangerle, E.; Gassler, W.; Specht, G. On the Impact of Text Similarity Functions on Hashtag Recommendations in Microblogging Environments. Soc. Netw. Anal. Min. 2013, 3, 889–898. [Google Scholar] [CrossRef]
- Sedhai, S.; Sun, A. Hashtag Recommendation for Hyperlinked Tweets. In Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, Gold Coast, QLD, Australia, 6–11 July 2014. [Google Scholar]
- Li, Q.; Shah, S.; Nourbakhsh, A.; Liu, X.; Fang, R. Hashtag Recommendation Based on Topic Enhanced Embedding, Tweet Entity Data and Learning to Rank. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, Indianapolis, IN, USA, 24–28 October 2016. [Google Scholar]
- Otsuka, E.; Wallace, S.A.; Chiu, D. A hashtag recommendation system for twitter data streams. Comput. Soc. Netw. 2016, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Dey, K.; Shrivastava, R.; Kaushik, S.; Subramaniam, L.V. EmTaggeR: A Word Embedding Based Novel Method for Hashtag Recommendation on Twitter. In Proceedings of the 2017 IEEE International Conference on Data Mining Workshops, ICDM Workshops 2017, New Orleans, LA, USA, 18–21 November 2017; pp. 1025–1032. [Google Scholar] [CrossRef] [Green Version]
- Ben-Lhachemi, N.; Nfaoui, E.H. An extended spreading activation technique for hashtag recommendation in microblogging platforms. In Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics, WIMS 2017, Amantea, Italy, 19–22 June 2017; Akerkar, R., Cuzzocrea, A., Cao, J., Hacid, M., Eds.; ACM: New York, NY, USA, 2017; pp. 16:1–16:8. [Google Scholar] [CrossRef]
- Ben-Lhachemi, N.; Nfaoui, E.H. Using Tweets Embeddings For Hashtag Recommendation in Twitter. Proc. Comput. Sci. 2018, 127, 7–15. [Google Scholar] [CrossRef]
- Kaviani, M.; Rahmani, H. EmHash: Hashtag Recommendation using Neural Network based on BERT Embedding. In Proceedings of the 6th International Conference on Web Research (ICWR), Tehran, Iran, 22–23 April 2020; pp. 113–118. [Google Scholar] [CrossRef]
- Efron, M. Hashtag Retrieval in a Microblogging Environment. In Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Geneva, Switzerland, 19–23 July 2010; Association for Computing Machinery: New York, NY, USA, 2010; pp. 787–788. [Google Scholar] [CrossRef]
- Mazzia, A.; Juett, J. Suggesting Hashtags on Twitter. EECS 545 Project, Winter Term. 2011. Available online: http://www-personal.umich.edu/~amazzia/pubs/545-final.pdf (accessed on 10 May 2021).
- Li, J.; Xu, H. User-IBTM: An Online Framework for Hashtag Suggestion in Twitter. In Web-Age Information Management; Cui, B., Zhang, N., Xu, J., Lian, X., Liu, D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 279–290. [Google Scholar]
- Tariq, A.; Karim, A.; Gomez, F.; Foroosh, H. Exploiting Topical Perceptions over Multi-Lingual Text for Hashtag Suggestion on Twitter. In Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference, FLAIRS 2013, St. Pete Beach, FL, USA, 22–24 May 2013. [Google Scholar]
- Godin, F.; Slavkovikj, V.; De Neve, W.; Schrauwen, B.; Van de Walle, R. Using Topic Models for Twitter Hashtag Recommendation. In Proceedings of the 22nd International Conference on World Wide Web, Rio de Janeiro, Brazil, 13–17 May 2013. [Google Scholar]
- She, J.; Chen, L. TOMOHA: TOpic Model-based Hashtag Recommendation on Twitter. In Proceedings of the 23rd International Conference on WWW, Seoul, Korea, 7 April 2014. [Google Scholar]
- Xu, J.; Zhang, Q.; Huang, X. Personalized Hashtag Suggestion for Microblogs. In Social Media Processing; Zhang, X., Sun, M., Wang, Z., Huang, X., Eds.; Springer: Singapore, 2015; pp. 38–50. [Google Scholar]
- Lu, H.M.; Lee, C.H. A Twitter Hashtag Recommendation Model that Accommodates for Temporal Clustering Effects. IEEE Intell. Syst. 2015, 30, 18–25. [Google Scholar] [CrossRef]
- Tomar, A.; Godin, F.; Vandersmissen, B.; De Neve, W.; Van de Walle, R. Towards Twitter Hashtag Recommendation Using Distributed Word Representations and a Deep Feed Forward Neural Network. In Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE, Bangalore, India, 19–22 September 2014; pp. 362–368. [Google Scholar]
- Chen, J.; Kao, H. LDA based semi-supervised learning from streaming short text. In Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2015, Paris, France, 19–21 October 2015. [Google Scholar]
- Ghaly, R.S.; Elabd, E.; Mostafa, M.A. Tweets classification, hashtags suggestion and tweets linking in social semantic web. In Proceedings of the 2016 SAI Computing Conference (SAI), London, UK, 13–15 July 2016; pp. 1140–1146. [Google Scholar]
- Li, J.; Xu, H.; He, X.; Deng, J.; Sun, X. Tweet modelling with LSTM recurrent neural networks for hashtag recommendation. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN) IEEE, Vancouver, BC, Canada, 24–29 July 2016; pp. 1570–1577. [Google Scholar]
- Li, Y.; Liu, T.; Jiang, J.; Zhang, L. Hashtag Recommendation with Topical Attention-Based LSTM. In Coling; Calzolari, N., Matsumoto, Y., Prasad, R., Eds.; ACL: Stroudsburg, PA, USA, 2016; pp. 3019–3029. [Google Scholar]
- Ma, J.; Feng, C.; Shi, G.; Shi, X.; Huang, H. Temporal enhanced sentence-level attention model for hashtag recommendation. CAAI Trans. Intell. Technol. 2018, 3, 95–100. [Google Scholar] [CrossRef]
- Li, Y.; Liu, T.; Hu, J.; Jiang, J. Topical Co-Attention Networks for hashtag recommendation on microblogs. Neurocomputing 2019, 331, 356–365. [Google Scholar] [CrossRef] [Green Version]
- Peng, M.; Lin, Y.; Zeng, L.; Gui, T.; Zhang, Q. Modeling the Long-Term Post History for Personalized Hashtag Recommendation. In Chinese Computational Linguistics; Sun, M., Huang, X., Ji, H., Liu, Z., Liu, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 495–507. [Google Scholar]
- Ferragina, P.; Piccinno, F.; Santoro, R. On Analyzing Hashtags in Twitter. In Proceedings of the International AAAI Conference on Web and Social Media Ninth International AAAI Conference on Web and Social Media, Oxford, UK, 26–29 May 2015; pp. 110–119. [Google Scholar]
- Li, L.; Su, C.; Sun, Y.; Xiong, S.; Xu, G. Hashtag Biased Ranking for Keyword Extraction from Microblog Posts. In Knowledge Science, Engineering and Management; Zhang, S., Wirsing, M., Zhang, Z., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 348–359. [Google Scholar]
- Badami, M.; Nasraoui, O. Cross-Domain Hashtag Recommendation and Story Revelation in Social Media. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 4294–4303. [Google Scholar]
- Diaz-Aviles, E.; Drumond, L.; Schmidt-Thieme, L.; Nejdl, W. Real-Time Top-n Recommendation in Social Streams. In Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys ’12, Dublin, Ireland, 9–13 September 2012. [Google Scholar]
- Kywe, S.M.; Hoang, T.; Lim, E.; Zhu, F. On Recommending Hashtags in Twitter Networks. In SocInfo; Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J., Guéret, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7710, pp. 337–350. [Google Scholar]
- Xing, X.; Zhang, W.; Zhang, X.; Xu, N. SOCITEMREC: A Framework for Item Recommendation in Social Networks. Available online: http://www.jatit.org/volumes/Vol48No3/25Vol48No3.pdf (accessed on 10 May 2021).
- Wang, Y.; Qu, J.; Liu, J.; Chen, J.; Huang, Y. What to Tag Your Microblog: Hashtag Recommendation Based on Topic Analysis and Collaborative Filtering. In Web Technologies and Applications; Chen, L., Jia, Y., Sellis, T., Liu, G., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 610–618. [Google Scholar]
- Zhao, F.; Zhu, Y.; Jin, H.; Yang, L.T. A Personalized Hashtag Recommendation Approach using LDA-based Topic Model in Microblog Environment. Fut. Generat. Comput. Syst. 2016, 65, 196–206. [Google Scholar] [CrossRef]
- Wang, C.; Sun, Z.; Zhao, Y.; Chi, C.H.; van den Heuvel, W.J.; Lam, K.Y.; Stantic, B. Top-N Hashtag Prediction via Coupling Social Influence and Homophily. In Advanced Data Mining and Applications; Li, J., Wang, S., Qin, S., Li, X., Wang, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 343–358. [Google Scholar]
- Kou, F.; Du, J.; Yang, C.; Shi, Y.; Cui, W.; Liang, M.; Geng, Y. Hashtag Recommendation Based on Multi-Features of Microblogs. J. Comput. Sci. Technol. 2018, 33, 711–726. [Google Scholar] [CrossRef]
- Harvey, M.; Crestani, F. Long Time, No Tweets! Time-aware Personalised Hashtag Suggestion. In Proceedings of the Advances in Information Retrieval: 37th European Conference on IR Research, ECIR 2015, Vienna, Austria, 29 March–2 April 2015; Springer International Publishing: Cham, Switzerland, 2015; pp. 581–592. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Zhang, Y. Social-Correlation Based Mutual Reinforcement for Short Text Classification and User Interest Tagging. In Advanced Data Mining and Applications; Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 444–455. [Google Scholar]
- Kumar, N.; Baskaran, E.; Konjengbam, A.; Singh, M. Hashtag recommendation for short social media texts using word-embeddings and external knowledge. Know. Inform. Syst. 2020. [Google Scholar] [CrossRef]
- Arora, S.; Liang, Y.; Ma, T. A Simple but Tough-to-Beat Baseline for Sentence Embeddings. In Proceedings of the ICLR, Toulon, France, 24–26 April 2017. [Google Scholar]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Yan, X.; Guo, J.; Lan, Y.; Cheng, X. A Biterm Topic Model for Short Texts. In Proceedings of the 22nd International Conference on World Wide Web, Rio de Janeiro, Brazil, 13–17 May 2013. [Google Scholar]
- Yin, J.; Wang, J. A Dirichlet Multinomial Mixture Model-based Approach for Short Text Clustering. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014. [Google Scholar]
- Alvarez-Melis, D.; Saveski, M. Topic Modeling in Twitter: Aggregating Tweets by Conversations; AAAI Press: Cambridge, MA, USA, 2016; pp. 519–522. [Google Scholar]
- Mehrotra, R.; Sanner, S.; Buntine, W.L.; Xie, L. Improving LDA Topic Models for Microblogs via Tweet Pooling and Automatic Labeling. In Proceedings of the SIGIR, Dublin, Ireland, 28 July–1 August 2013; pp. 889–892. [Google Scholar]
- Weng, J.; Lim, E.P.; Jiang, J.; He, Q. TwitterRank: Finding Topic-sensitive Influential Twitterers. In Proceedings of the Third ACM International Conference on Web Search and Data Mining, Houston, TX, USA, 4–6 February 2010; ACM: New York, NY, USA, 2010; pp. 261–270. [Google Scholar] [CrossRef]
- Hong, L.; Davison, B.D. Empirical Study of Topic Modeling in Twitter. In Proceedings of the First Workshop on Social Media Analytics, Washington, DC, USA, 25 July 2010; Association for Computing Machinery: New York, NY, USA, 2010; pp. 80–88. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.X.; Jiang, J.; Weng, J.; He, J.; Lim, E.P.; Yan, H.; Li, X. Comparing Twitter and Traditional Media Using Topic Models. In Advances in Information Retrieval; Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 338–349. [Google Scholar]
- Liu, Z.; Chen, X.; Sun, M. A Simple Word Trigger Method for Social Tag Suggestion. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Edinburgh, UK, 27–31 July 2011; pp. 1577–1588. [Google Scholar]
- Weston, J.; Chopra, S.; Adams, K. #TagSpace: Semantic Embeddings from Hashtags; EMNLP; Moschitti, A., Pang, B., Daelemans, W., Eds.; ACL: Stroudsburg, PA, USA, 2014; pp. 1822–1827. [Google Scholar]
- Silveira, T.; Zhang, M.; Lin, X.; Liu, Y.; Ma, S. How good your recommender system is? A survey on evaluations in recommendation. Int. J. Mach. Learn. Cybernet. 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, C.N.; McNee, S.M.; Konstan, J.A.; Lausen, G. Improving Recommendation Lists through Topic Diversification. In Proceedings of the 14th International Conference on World Wide Web, Chiba, Japan, 10–14 May 2010; Association for Computing Machinery: New York, NY, USA, 2005; pp. 22–32. [Google Scholar] [CrossRef] [Green Version]
Category | Method | Ref. | Year | Name | Recommendation | Hashtag Type | Features | # Tweets | # Users | # Unique Hashtags | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
General | Personalized | Novel | Pre-Defined | Textual | URL | Social | Temporal | Media | Other | Sina Weibo | Sina Weibo | Sina Weibo | ||||||||
Text-based | Tweets similarity | Zangerle et al. [8] | 2011 | - | * | * | * | 3,209,281 | - | - | - | 510,170 | - | |||||||
Li et al. [32] | 2012 | - | * | * | * | 665 | - | - | - | - | - | |||||||||
Zangerle et al. [33] | 2013 | - | * | * | * | 50,000,000 | - | - | - | 7,777,194 | - | |||||||||
Sedhai and Sun [34] | 2014 | - | * | * | * | * | 1,370,000 | - | - | - | 1,000,000 | - | ||||||||
Li et al. [35] | 2016 | - | * | * | * | * | * | 16,000 | - | - | - | 2,450,000 | - | |||||||
Otsuka et al. [36] | 2016 | - | * | * | * | 8,300,000 | - | - | - | - | - | |||||||||
Dey et al. [37] | 2017 | - | * | * | * | 175,000 | - | - | - | 251,649 | - | |||||||||
Ben-Lhachemi and Nfaoui [38] | 2017 | - | * | * | * | 295,767 | - | - | - | 390,807 | - | |||||||||
Ben-Lhachemi and Nfaoui [39] | 2018 | - | * | * | * | 1,212,300 | - | - | - | - | - | |||||||||
Kaviani and Rahmani [40] | 2020 | - | * | * | * | 100,000 | - | - | - | - | - | |||||||||
Probabilistic | Efron [41] | 2010 | - | * | * | * | 3,414,330 | - | 874,892 | - | 50,097 | - | ||||||||
Mazzia and Juett [42] | 2011 | - | * | * | * | 1,318,323 | - | 5000 | - | 56 | - | |||||||||
Ding et al. [1] | 2012 | TSTM | * | * | * | - | 551,479 | - | - | - | 116,958 | |||||||||
Li and Xu [43] | 2016 | User-IBTM | * | * | * | 1,385,425 | 2,094 | |||||||||||||
Tariq et al. [44] | 2013 | - | * | * | * | 141,881 | - | - | - | 143 | - | |||||||||
Godin et al. [45] | 2013 | - | * | * | * | 1,800,000 | - | - | - | - | - | |||||||||
Ding et al. [2] | 2013 | TTM | * | * | * | - | 110,000 | - | - | - | 37,224 | |||||||||
She and Chen [46] | 2014 | TOMOHA | * | * | * | 48,651 | - | 183 | - | 637 | - | |||||||||
Ma et al. [11] | 2014 | HPM | * | * | * | * | 1,217,928 | - | 13,711 | - | 14,055 | - | ||||||||
Zhang et al. [7] | 2014 | TUK-TTM | * | * | * | - | 166,864 | - | - | - | 17,516 | |||||||||
Xu et al. [47] | 2015 | - | * | * | * | - | 124,707 | - | 6,661 | - | 33,777 | |||||||||
Gong et al. [3] | 2015 | CNHR | * | * | * | - | 1,118,792 | - | - | - | 305,227 | |||||||||
Lu and Lee [48] | 2015 | TOT-MMM | * | * | * | * | 741,317 | - | - | - | 16,839 | - | ||||||||
Gong et al. [4] | 2016 | PTTM | * | * | * | type of hashtag | - | 50,000 | - | - | - | 3,174 | ||||||||
Classification-based | Tomar et al. [49] | 2014 | - | * | * | * | 226,981 | - | - | - | - | - | ||||||||
Chen and Kao [50] | 2015 | TMSHR | * | * | * | 627,084 | - | - | - | 7,961 | - | |||||||||
Ghaly et al. [51] | 2016 | - | * | * | * | 1,000 | - | - | - | - | - | |||||||||
Li et al. [52] | 2016 | LSTM-tweet | * | * | * | 42,000 | - | 5,015 | - | 20 | - | |||||||||
Li et al. [53] | 2016 | TAB-LSTM | * | * | * | 600,000 | - | - | - | - | - | |||||||||
Ma et al. [54] | 2018 | tSAM-LSTM | * | * | * | - | 1,692,507 | - | - | - | 2,000 | |||||||||
Li et al. [55] | 2019 | TCAN | * | * | * | 600,000 | - | - | - | 27,720 | - | |||||||||
Peng et al. [56] | 2019 | AMEN | * | * | * | 127,846 | - | 2000 | - | 3,104 | - | |||||||||
Graph-based | Khabiri et al. [9] | 2012 | - | * | * | * | * | 36,558,421 | - | - | - | 134,522 | - | |||||||
Ferragina et al. [57] | 2015 | HE-graph | * | * | * | 5,245 | - | - | - | 5,245 | - | |||||||||
Al-Dhelaan and Alhawasi [14] | 2015 | - | * | * | * | 27,199 | - | 15,586 | - | 10,891 | - | |||||||||
Li et al. [58] | 2015 | - | * | * | * | - | 74,662 | - | - | - | - | |||||||||
Matrix Factorisation | Badami and Nasraoui [59] | 2018 | - | * | * | * | * | 208,160 | - | - | - | 68,187 | - | |||||||
Hybrid user-based | Behavioural Collaborative Filtering | Diaz-Aviles et al. [60] | 2012 | RMFX | * | * | * | * | 35,350,508 | - | 413,987 | - | 37,297 | - | ||||||
Chen et al. [10] | 2013 | TeRec | * | * | * | - | 20,000,000 | - | 87,287 | - | 29,334 | |||||||||
Kywe et al. [61] | 2012 | - | * | * | * | 3,534,869 | - | 65,410 | - | 449,206 | - | |||||||||
Xing et al. [62] | 2013 | - | * | * | * | social actions | - | - | - | 12,156 | - | - | ||||||||
Wang et al. [63] | 2014 | - | * | * | * | - | 21,992 | - | 2,179 | - | 3,762 | |||||||||
Zhao et al. [64] | 2016 | - | * | * | * | 1,674,789 | - | 14,630 | - | 28,526 | - | |||||||||
Li et al. [17] | 2017 | - | * | * | * | user attributes | 15,947 | 13,188 | 20,625 | 11,347 | - | - | ||||||||
Wang et al. [65] | 2019 | - | * | * | * | social influence, homophily | 37,533 | - | 22,849 | - | - | - | ||||||||
Kou et al. [66] | 2018 | - | * | * | * | - | 67,835 | - | 4,373 | - | 4061 | |||||||||
Social Collaborative Filtering | Harvey and Crestani [67] | 2015 | - | * | * | * | * | 333,784 | - | 23,476 | - | 51,899 | - | |||||||
Kowald et al. [18] | 2017 | BLL | * | * | * | * | * | 8,157,702 | - | 127,112 | - | 1,507,773 | - | |||||||
Alsini et al. [16] | 2017 | - | * | * | * | * | 174,965 | - | 100 | - | 2,655 | - | ||||||||
Alsini et al. [19] | 2019 | - | * | * | * | * | - | - | 745,262 | - | - | - | ||||||||
Javari et al. [22] | 2020 | PHAN | * | * | * | * | 217,965 | 10,521 | 23,169 | 7,023 | 2,873 | 2017 | ||||||||
Alsini et al. [23] | 2020 | CBHR | * | * | * | * | 262,178 | - | 125,708 | - | - | - | ||||||||
Hybrid | Miscellaneous | Li and Zhang [68] | 2013 | - | * | * | * | user interest | 5,236 | |||||||||||
Feng and Wang [13] | 2014 | Hybrid+ | * | * | * | * | * | * | location, hashtag length | 8,100,000 | - | 120,000 | - | - | - | |||||
Jeon et al. [12] | 2014 | - | * | * | * | 240,000 | - | 80 | - | 404 | - | |||||||||
Song et al. [5] | 2015 | SenSim+Ac+Te | * | * | * | * | development tendency, user acceptance | - | 50 | - | - | - | - | |||||||
Yu and Zhu [6] | 2015 | Linear | * | * | * | * | user interaction | 4,357,329 | 2,899,438 | 1,934,381 | 108,956 | - | - | |||||||
Zhang et al. [15] | 2017 | - | * | * | * | * | 402,782 | - | - | - | 3,292 | - | ||||||||
Ma et al. [20] | 2019 | CoA-MN | * | * | * | * | 334,019 | - | - | - | 3,280 | - | ||||||||
Belhadi et al. [21] | 2020 | PM-HRec | * | * | * | pattern mining | 4,000,000 | - | - | - | - | - | ||||||||
Kumar et al. [69] | 2020 | * | * | * | user influence | 329,369 | - | - | - | 85,216 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsini, A.; Huynh, D.Q.; Datta, A. Hashtag Recommendation Methods for Twitter and Sina Weibo: A Review. Future Internet 2021, 13, 129. https://doi.org/10.3390/fi13050129
Alsini A, Huynh DQ, Datta A. Hashtag Recommendation Methods for Twitter and Sina Weibo: A Review. Future Internet. 2021; 13(5):129. https://doi.org/10.3390/fi13050129
Chicago/Turabian StyleAlsini, Areej, Du Q. Huynh, and Amitava Datta. 2021. "Hashtag Recommendation Methods for Twitter and Sina Weibo: A Review" Future Internet 13, no. 5: 129. https://doi.org/10.3390/fi13050129
APA StyleAlsini, A., Huynh, D. Q., & Datta, A. (2021). Hashtag Recommendation Methods for Twitter and Sina Weibo: A Review. Future Internet, 13(5), 129. https://doi.org/10.3390/fi13050129