Discovery of Non-Peptide GLP-1 Positive Allosteric Modulators from Natural Products: Virtual Screening, Molecular Dynamics, ADMET Profiling, Repurposing, and Chemical Scaffolds Identification
<p>Filtration protocol for the Coconut natural products database.</p> "> Figure 2
<p>Chemical structure of GLP-1 co-crystallized ligands positive allosteric modulator used in the shape screening.</p> "> Figure 3
<p>Hit identification protocol.</p> "> Figure 4
<p>Surface representation of the overlay of the top 10 hits (magenta sticks) and the crystal ligand (red stick) in GLP-1 allosteric site (PDB ID: 6VCB). GLP-1 receptor is represented in gray surface and GLP-1 peptide in green surface.</p> "> Figure 5
<p>(<b>a</b>) Three-dimensional representation of the binding interactions between hit <b>1</b> and GLP-1 receptor allosteric site and GLP-1 peptide (PDB ID: 6VCB). Ligand atoms are shown as sticks (carbon atoms colored in magenta) and the key residues are shown as sticks (carbon atoms colored in green). Potential electrostatic interactions are represented as yellow dotted lines and are measured in Angstrom. (<b>b</b>) Two-dimensional ligand–protein binding interactions between hit <b>1</b> and GLP-1 receptor allosteric site and GLP-1 peptide (PDB ID: 6VCB). H bond is represented as a purple arrow and salt bridge as a blue line.</p> "> Figure 6
<p>(<b>a</b>) Three-dimensional representation of the binding interactions between hit <b>12</b> and GLP-1 receptor allosteric site and GLP-1 peptide (PDB ID: 6VCB). Ligand atoms are shown as sticks (carbon atoms colored in magenta) and the key residues are shown as sticks (carbon atoms colored in green). Potential electrostatic interactions are represented as yellow dotted lines and are measured in Angstrom. (<b>b</b>) Two-dimensional ligand–protein binding interactions between hit <b>12</b> and GLP-1 receptor allosteric site and GLP-1 peptide (PDB ID: 6VCB). H bond is represented as a purple arrow, salt bridge as a blue line, and π-π stacking as a green line.</p> "> Figure 7
<p>(<b>a</b>) Three-dimensional representation of the binding interactions between hit <b>44</b> (Ampicillin) and GLP-1 receptor allosteric site and GLP-1 peptide (PDB ID: 6VCB). Ligand atoms are shown as sticks (carbon atoms colored in magenta) and the key residues are shown as sticks (carbon atoms colored in green). Potential electrostatic interactions are represented as yellow dotted lines and are measured in Angstrom. (<b>b</b>) Two-dimensional ligand–protein binding interactions between hit <b>44</b> (Ampicillin) and GLP-1 receptor allosteric site and GLP-1 peptide (PDB ID: 6VCB). H bond is represented as a purple arrow, and salt bridge as a blue line.</p> "> Figure 8
<p>Root mean square deviation (RMSD) graphs for the hit compounds (<b>A</b>): compound <b>3</b> (CNP0086660.2), (<b>B</b>): compound <b>5</b> (CNP0039190.2), (<b>C</b>): compound <b>2</b> (CNP0549010.1). The green graph shows fluctuations in the protein backbone from the initial reference point while the red shows the ligand fluctuations. The RMSD profile of the ligand with respect to its initial fit to the protein binding pocket indicates that all ligands did not fluctuate beyond a 2–7 Å range.</p> "> Figure 9
<p>Interaction diagram of hit compound <b>3</b> (CNP0086660.2) with the GLP-1 allosteric binding pocket. (<b>A</b>) Interaction of compound <b>3</b> with residues in each trajectory frame. The depth of color indicating the higher the interaction with contact residues; (<b>B</b>) the protein–ligand contacts showing the bonding interactions fraction and the nature of the interactions; (<b>C</b>) graphical 2D illustration of compound <b>3</b> interacting with the protein residues during MD simulation.</p> "> Figure 10
<p>Interaction diagram of hit compound <b>5</b> (CNP0039190.2) with the GLP-1 allosteric binding pocket. (<b>A</b>) Interaction of compound <b>5</b> with residues in each trajectory frame. The depth of color indicating the higher the interaction with contact residues; (<b>B</b>) the protein–ligand contacts showing the bonding interactions fraction and the nature of the interactions; (<b>C</b>) graphical 2D illustration of compound <b>5</b> interacting with the protein residues during MD simulation.</p> "> Figure 11
<p>Interaction diagram of hit compound <b>2</b> (CNP0549010.1) with the GLP-1 allosteric binding pocket. (<b>A</b>) Interaction of compound <b>2</b> with residues in each trajectory frame. The depth of color indicating the higher the interaction with contact residues; (<b>B</b>) the protein–ligand contacts showing the bonding interactions fraction and the nature of the interactions; (<b>C</b>) graphical 2D illustration of compound <b>2</b> interacting with the protein residues during MD simulation.</p> "> Figure 12
<p>Chemical structures of identified novel scaffolds for GLP-1 positive allosteric modulation with their hit no (hits are arranged according to their XP/Docking score), Coconut ID, and XP/Docking score.</p> "> Figure 12 Cont.
<p>Chemical structures of identified novel scaffolds for GLP-1 positive allosteric modulation with their hit no (hits are arranged according to their XP/Docking score), Coconut ID, and XP/Docking score.</p> "> Figure 12 Cont.
<p>Chemical structures of identified novel scaffolds for GLP-1 positive allosteric modulation with their hit no (hits are arranged according to their XP/Docking score), Coconut ID, and XP/Docking score.</p> "> Figure 12 Cont.
<p>Chemical structures of identified novel scaffolds for GLP-1 positive allosteric modulation with their hit no (hits are arranged according to their XP/Docking score), Coconut ID, and XP/Docking score.</p> "> Figure 12 Cont.
<p>Chemical structures of identified novel scaffolds for GLP-1 positive allosteric modulation with their hit no (hits are arranged according to their XP/Docking score), Coconut ID, and XP/Docking score.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Software
2.2. Database Preparation
2.3. Shape Screening
2.4. Crystal Structures
2.5. Protein Preparation
2.6. Ligand Library Preparation
2.7. Validation of Molecular Docking
2.8. Virtual Screening
2.9. Docked Poses Filter
2.10. Molecular Dynamics
2.11. ADMET Profiling
3. Results and Discussion
3.1. Database Preparation for Virtual Screening
3.1.1. Physicochemical Parameters and Drug-Likeness
3.1.2. Shape Screening
3.2. Virtual Screening
3.3. Molecular Dynamics
3.4. Literature Analysis
- Sesquiterpenoids (Hit Numbers: 6, 9, 17, 63), particularly drimane-type sesquiterpenoids from Zygogynum pancheri (PMID: 32603660), have demonstrated significant antidiabetic and lipid-lowering effects, including α-amylase and lipase inhibition, while sesquiterpenoids from Hieracium and Pilosella species (PMID: 34358652) and Cichorium species (PMID: 38900250) exhibit broad pharmacological activities such as anti-inflammatory, antioxidant, anti-obesity, and hepatoprotective properties, emphasizing their potential as therapeutic agents in managing metabolic and chronic diseases.
- Steroidal hormones (Hit Numbers: 7, 24) like dehydroepiandrosterone (DHEA) (PMID: 31586606), phytochemicals from Broussonetia species (PMID: 36014582), Brassica oleracea var. capitata (white cabbage) (PMID: 33430729), Morus alba (PMID: 36877269), Cichorium species (PMID: 38900250), and endocrine therapies (PMID: 20210723) demonstrate significant antidiabetic, anti-obesity, antioxidant, and anti-inflammatory properties, with applications ranging from traditional medicine to modern pharmacological interventions, while highlighting safety considerations such as QTc prolongation in metabolic disease management.
- Coumarins (Hit Numbers: 11, 12, 35, 66) found in Sophora species (PMID: 34907492), Ponciri Fructus (PMID: 36615447), Hieracium and Pilosella species (PMID: 34358652), and Cichorium species (PMID: 38900250) exhibit significant pharmacological activities, including antidiabetic, anti-inflammatory, anti-obesity, antioxidant, hepatoprotective, and anticancer effects, highlighting their potential as bioactive agents in traditional medicine and modern therapeutic applications.
- Phenylpropanoids (Hit Numbers: 16, 35, 41, 50, 60) from the Broussonetia genus (PMID: 36014582), particularly isolated from Broussonetia papyrifera, Broussonetia kazinoki, and Broussonetia luzonica, exhibit diverse pharmacological activities, including antitumor, antioxidant, anti-inflammatory, antidiabetic, and anti-obesity effects, highlighting their significant therapeutic potential and the need for further research into their mechanisms of action and clinical applications.
- Xanthones (Hit Number: 36) particularly from Garcinia mangostana and Garcinia cambogia (PMIDs: 28656594, 25732350), exhibit promising pharmacological activities, including anti-obesity, antidiabetic, anti-inflammatory, and antioxidant effects, while their isoprenylated derivatives target multiple signaling pathways involved in metabolic and degenerative diseases (α-mangostin, PMID: 35904170; Anthocleista species, PMID: 26432351), positioning them as valuable bioactive compounds for developing therapies against chronic conditions.
- Phenolic compounds (Hit Number: 50) from diverse natural sources, including Piper species (PMID: 39277979), Vaccinium myrtillus leaves (PMID: 30052516), Hippophae rhamnoides fruit and seeds (PMID: 38358042), Prunus armeniaca leaves (PMID: 34942972), persimmon leaves (PMID: 36840285), elderberries (Sambucus nigra) (PMID: 38998923), Platycodon grandiflorum (PMID: 39072195), fermented soy products (PMID: 36014024), peanut seeds (PMID: 38000103), potatoes (Solanum tuberosum) (PMID: 35453288), fenugreek seeds (PMID: 31286789), and Origanum species (PMID: 32789910), exhibit significant antidiabetic, anti-obesity, anti-inflammatory, antioxidant, hepatoprotective, and cardioprotective effects, supporting their potential as bioactive agents in metabolic and chronic disease management through mechanisms such as enzyme inhibition, oxidative damage prevention, and modulation of inflammatory pathways.
- Lignans (Hit Number: 60), particularly secoisolariciresinol diglucoside (SDG) from Linum usitatissimum (flaxseed) (PMID: 33535948), exhibit diverse pharmacological activities, including antioxidant, antidiabetic, anti-obesity, anti-inflammatory, anticancer, antimicrobial, hepatoprotective, and renoprotective effects, positioning them as potent therapeutic agents for managing chronic diseases, while further research is needed to fully understand their mechanisms of action and therapeutic potential.
- The results also identified compounds for potential repurposing with β-lactam antibiotics being the most prominent. Valclavam (hit 2), Cyclothiocurvularin B (hit 3), Azidocillin (hit 25), Ampicillin (hit 44), Metampicillin (hit 46), Timocillin (hit 67) were found to be, and according to this study, GLP-1 positive allosteric ligands. This finding would represent a base for future research on this class of antibiotics to prove their preclinical and clinical effectiveness in this context as well as identifying a molecular basis for their GIT-related side effects and loss of appetite.
3.5. Scaffolds Identification for GLP-1 Allosteric Modulation
3.6. ADMET and Drug-Likeness Profiling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37 (Suppl. S1), S81–S90. [Google Scholar] [CrossRef] [PubMed]
- Care, D. Care in Diabetes—2022. Diabetes Care 2022, 45, S17. [Google Scholar]
- Solis-Herrera, C.; Triplitt, C.; Reasner, C.; DeFronzo, R.A.; Cersosimo, E. Classification of Diabetes Mellitus; MDText.com, Inc.: South Dartmouth, MA, USA, 2015. [Google Scholar]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef]
- Sarzani, R.; Landolfo, M.; Di Pentima, C.; Ortensi, B.; Falcioni, P.; Sabbatini, L.; Massacesi, A.; Rampino, I.; Spannella, F.; Giulietti, F. Adipocentric origin of the common cardiometabolic complications of obesity in the young up to the very old: Pathophysiology and new therapeutic opportunities. Front. Med. 2024, 11, 1365183. [Google Scholar] [CrossRef]
- Song, X.; Qin, S.; Chen, S.; Zhang, C.; Lin, L.; Song, Z. Bibliometric analysis of vitamin D and obesity research over the period 2000 to 2023. Front. Pharmacol. 2024, 15, 1445061. [Google Scholar] [CrossRef]
- Althumiri, N.A.; Basyouni, M.H.; AlMousa, N.; AlJuwaysim, M.F.; Almubark, R.A.; BinDhim, N.F.; Alkhamaali, Z.; Alqahtani, S.A. Obesity in Saudi Arabia in 2020: Prevalence, distribution, and its current association with various health conditions. Healthcare 2021, 9, 311. [Google Scholar] [CrossRef]
- Abusalah, M.A.H.; Albaker, W.; Al-Bsheish, M.; Alsyouf, A.; Al-Mugheed, K.; Issa, M.R.; Alumran, A. Prevalence of type 2 diabetes mellitus in the general population of Saudi Arabia, 2000–2020: A systematic review and meta-analysis of observational studies. Saudi J. Med. Med. Sci. 2023, 11, 1–10. [Google Scholar]
- Salem, V.; AlHusseini, N.; Abdul Razack, H.I.; Naoum, A.; Sims, O.T.; Alqahtani, S.A. Prevalence, risk factors, and interventions for obesity in Saudi Arabia: A systematic review. Obes. Rev. 2022, 23, e13448. [Google Scholar] [CrossRef] [PubMed]
- Roglic, G. WHO Global report on diabetes: A summary. Int. J. Noncommun. Dis. 2016, 1, 3–8. [Google Scholar] [CrossRef]
- Robert, A.A.; Al Dawish, M.A. The worrying trend of diabetes mellitus in Saudi Arabia: An urgent call to action. Curr. Diabetes Rev. 2020, 16, 204–210. [Google Scholar] [CrossRef]
- Philippe, J.; Raccah, D. Treating type 2 diabetes: How safe are current therapeutic agents? Int. J. Clin. Pract. 2009, 63, 321–332. [Google Scholar] [CrossRef]
- Singh, R.; Bhat, G.A.; Sharma, P. GLP-1 secretagogues potential of medicinal plants in management of diabetes. J. Pharmacogn. Phytochem. 2015, 4, 197–202. [Google Scholar]
- Smith, N.K.; Hackett, T.A.; Galli, A.; Flynn, C.R. GLP-1: Molecular mechanisms and outcomes of a complex signaling system. Neurochem. Int. 2019, 128, 94–105. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes, A. 9. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44 (Suppl. S1), S111–S124. [Google Scholar]
- Bell, G.I. Patent is extended or adjusted under 35 29. 23. Sites. Pancreas 1992, 267, 7402–7405. [Google Scholar]
- Lau, J.; Bloch, P.; Schaffer, L.; Pettersson, I.; Spetzler, J.; Kofoed, J.; Madsen, K.; Knudsen, L.B.; McGuire, J.; Steensgaard, D.B. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J. Med. Chem. 2015, 58, 7370–7380. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Solem, E.; Rasmussen, M.H.; Christensen, M.; Knop, F.K. Dulaglutide, a long-acting GLP-1 analog fused with an Fc antibody fragment for the potential treatment of type 2 diabetes. Curr. Opin. Mol. Ther. 2010, 12, 790–797. [Google Scholar]
- Knudsen, L.B.; Agerso, H.; Bjenning, C.; Bregenholt, S.; Carr, R.D.; Godtfredsen, C.; Holst, J.J.; Huusfeldt, P.O.; Larsen, M.O.; Larsen, P.J. GLP-1 derivatives as novel compounds for the treatment of type 2 diabetes: Selection of NN2211 for clinical development. Drugs Future 2001, 26, 0677. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef]
- Xie, Z.; Yang, S.; Deng, W.; Li, J.; Chen, J. Efficacy and safety of liraglutide and semaglutide on weight loss in people with obesity or overweight: A systematic review. Clin. Epidemiol. 2022, 14, 1463–1476. [Google Scholar] [CrossRef] [PubMed]
- Pi-Sunyer, X.; Astrup, A.; Fujioka, K.; Greenway, F.; Halpern, A.; Krempf, M.; Lau, D.C.W.; Le Roux, C.W.; Violante Ortiz, R.; Jensen, C.B. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med. 2015, 373, 11–22. [Google Scholar] [CrossRef]
- Gogineni, P.; Melson, E.; Papamargaritis, D.; Davies, M. Oral glucagon-like peptide-1 receptor agonists and combinations of entero-pancreatic hormones as treatments for adults with type 2 diabetes: Where are we now? Expert Opin. Pharmacother. 2024; accepted. [Google Scholar] [CrossRef] [PubMed]
- Deacon, C.F.; Nauck, M.A.; Meier, J.; Hucking, K.; Holst, J.J. Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J. Clin. Endocrinol. Metab. 2000, 85, 3575–3581. [Google Scholar] [PubMed]
- Davies, M.; Pieber, T.R.; Hartoft-Nielsen, M.-L.; Hansen, O.K.H.; Jabbour, S.; Rosenstock, J. Effect of oral semaglutide compared with placebo and subcutaneous semaglutide on glycemic control in patients with type 2 diabetes: A randomized clinical trial. Jama 2017, 318, 1460–1470. [Google Scholar] [CrossRef]
- Thethi, T.K.; Pratley, R.; Meier, J.J. Efficacy, safety and cardiovascular outcomes of once-daily oral semaglutide in patients with type 2 diabetes: The PIONEER programme. Diabetes Obes. Metab. 2020, 22, 1263–1277. [Google Scholar] [CrossRef] [PubMed]
- Husain, M.; Birkenfeld, A.L.; Donsmark, M.; Dungan, K.; Eliaschewitz, F.G.; Franco, D.R.; Jeppesen, O.K.; Lingvay, I.; Mosenzon, O.; Pedersen, S.D. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2019, 381, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Cowart, K. Oral semaglutide: First-in-class oral GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus. Ann. Pharmacother. 2020, 54, 478–485. [Google Scholar] [CrossRef]
- Kawai, T.; Sun, B.; Yoshino, H.; Feng, D.; Suzuki, Y.; Fukazawa, M.; Nagao, S.; Wainscott, D.B.; Showalter, A.D.; Droz, B.A. Structural basis for GLP-1 receptor activation by LY3502970, an orally active nonpeptide agonist. Proc. Natl. Acad. Sci. USA 2020, 117, 29959–29967. [Google Scholar] [CrossRef] [PubMed]
- Pratley, R.; Amod, A.; Hoff, S.T.; Kadowaki, T.; Lingvay, I.; Nauck, M.; Pedersen, K.B.; Saugstrup, T.; Meier, J.J. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): A randomised, double-blind, phase 3a trial. Lancet 2019, 394, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Wootten, D.; Savage, E.E.; Willard, F.S.; Bueno, A.B.; Sloop, K.W.; Christopoulos, A.; Sexton, P.M. Differential activation and modulation of the glucagon-like peptide-1 receptor by small molecule ligands. Mol. Pharmacol. 2013, 83, 822–834. [Google Scholar] [CrossRef]
- Martinez, T.F.; Vaughan, J.; Saghatelian, A. Insights into GLP-1 Receptor Activation with a Nonpeptide Agonist. Biochemistry 2020, 59, 1549–1550. [Google Scholar] [CrossRef] [PubMed]
- Choe, H.J.; Cho, Y.M. Peptidyl and non-peptidyl oral glucagon-like peptide-1 receptor agonists. Endocrinol. Metab. 2021, 36, 22–29. [Google Scholar] [CrossRef]
- Chen, D.; Liao, J.; Li, N.; Zhou, C.; Liu, Q.; Wang, G.; Zhang, R.; Zhang, S.; Lin, L.; Chen, K. A nonpeptidic agonist of glucagon-like peptide 1 receptors with efficacy in diabetic db/db mice. Proc. Natl. Acad. Sci. USA 2007, 104, 943–948. [Google Scholar] [CrossRef]
- Liu, Q.; Li, N.; Yuan, Y.; Lu, H.; Wu, X.; Zhou, C.; He, M.; Su, H.; Zhang, M.; Wang, J. Cyclobutane derivatives as novel nonpeptidic small molecule agonists of glucagon-like peptide-1 receptor. J. Med. Chem. 2012, 55, 250–267. [Google Scholar] [CrossRef] [PubMed]
- Griffith, D.A.; Edmonds, D.J.; Fortin, J.-P.; Kalgutkar, A.S.; Kuzmiski, J.B.; Loria, P.M.; Saxena, A.R.; Bagley, S.W.; Buckeridge, C.; Curto, J.M. A small-molecule oral agonist of the human glucagon-like peptide-1 receptor. J. Med. Chem. 2022, 65, 8208–8226. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Liang, Y.-L.; Belousoff, M.J.; Deganutti, G.; Fletcher, M.M.; Willard, F.S.; Bell, M.G.; Christe, M.E.; Sloop, K.W.; Inoue, A. Activation of the GLP-1 receptor by a non-peptidic agonist. Nature 2020, 577, 432–436. [Google Scholar] [CrossRef]
- Wharton, S.; Blevins, T.; Connery, L.; Rosenstock, J.; Raha, S.; Liu, R.; Ma, X.; Mather, K.J.; Haupt, A.; Robins, D. Daily oral GLP-1 receptor agonist orforglipron for adults with obesity. N. Engl. J. Med. 2023, 389, 877–888. [Google Scholar] [CrossRef]
- Pratt, E.; Ma, X.; Liu, R.; Robins, D.; Coskun, T.; Sloop, K.W.; Haupt, A.; Benson, C. Orforglipron (LY3502970), a novel, oral non-peptide glucagon-like peptide-1 receptor agonist: A Phase 1b, multicentre, blinded, placebo-controlled, randomized, multiple-ascending-dose study in people with type 2 diabetes. Diabetes Obes. Metab. 2023, 25, 2642–2649. [Google Scholar] [CrossRef]
- Malik, F.; Li, Z. Non-peptide agonists and positive allosteric modulators of glucagon-like peptide-1 receptors: Alternative approaches for treatment of type 2 diabetes. Br. J. Pharmacol. 2022, 179, 511–525. [Google Scholar] [CrossRef]
- Liu, J.; Nussinov, R. Allostery: An overview of its history, concepts, methods, and applications. PLoS Comput. Biol. 2016, 12, e1004966. [Google Scholar] [CrossRef]
- Wootten, D.; Savage, E.E.; Valant, C.; May, L.T.; Sloop, K.W.; Ficorilli, J.; Showalter, A.D.; Willard, F.S.; Christopoulos, A.; Sexton, P.M. Allosteric modulation of endogenous metabolites as an avenue for drug discovery. Mol. Pharmacol. 2012, 82, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Lazareno, S.; Doležal, V.; Popham, A.; Birdsall, N.J.M. Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: Receptor subtype selectivity via cooperativity rather than affinity. Mol. Pharmacol. 2004, 65, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Bueno, A.B.; Sun, B.; Willard, F.S.; Feng, D.; Ho, J.D.; Wainscott, D.B.; Showalter, A.D.; Vieth, M.; Chen, Q.; Stutsman, C. Structural insights into probe-dependent positive allosterism of the GLP-1 receptor. Nat. Chem. Biol. 2020, 16, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Grover, J.K.; Yadav, S.; Vats, V. Medicinal plants of India with anti-diabetic potential. J. Ethnopharmacol. 2002, 81, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Akawa, A.B.; Oyinloye, B.E.; Ajiboye, B.O. Computer-aided Identification of Bioactive Compounds from Brachystegia eurycoma with Therapeutic Potential against Drug Targets of Type 2 Diabetes mellitus. Biointerface Res. Appl. Chem 2022, 13, 454. [Google Scholar]
- Ajiboye, B.O.; Iwaloye, O.; Owolabi, O.V.; Ejeje, J.N.; Okerewa, A.; Johnson, O.O.; Udebor, A.E.; Oyinloye, B.E. Screening of potential antidiabetic phytochemicals from Gongronema latifolium leaf against therapeutic targets of type 2 diabetes mellitus: Multi-targets drug design. SN Appl. Sci. 2022, 4, 14. [Google Scholar] [CrossRef]
- Hussein, G.M.E.; Matsuda, H.; Nakamura, S.; Hamao, M.; Akiyama, T.; Tamura, K.; Yoshikawa, M. Mate tea (Ilex paraguariensis) promotes satiety and body weight lowering in mice: Involvement of glucagon-like peptide-1. Biol. Pharm. Bull. 2011, 34, 1849–1855. [Google Scholar] [CrossRef]
- Xue, H.; Xing, H.-J.; Wang, B.; Fu, C.; Zhang, Y.-S.; Qiao, X.; Guo, C.; Zhang, X.-L.; Hu, B.; Zhao, X. Cinchonine, a potential oral small-molecule glucagon-like peptide-1 receptor agonist, lowers blood glucose and ameliorates non-alcoholic steatohepatitis. Drug Des. Dev. Ther. 2023, 17, 1417–1432. [Google Scholar] [CrossRef]
- Abiola, J.O.; Oluyemi, A.A.; Idowu, O.T.; Oyinloye, O.M.; Ubah, C.S.; Owolabi, O.V.; Somade, O.T.; Onikanni, S.A.; Ajiboye, B.O.; Osunsanmi, F.O. Potential Role of Phytochemicals as Glucagon-like Peptide 1 Receptor (GLP-1R) Agonists in the Treatment of Diabetes Mellitus. Pharmaceuticals 2024, 17, 736. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Ertl, P.; Roggo, S.; Schuffenhauer, A. Natural product-likeness score and its application for prioritization of compound libraries. J. Chem. Inf. Model. 2008, 48, 68–74. [Google Scholar] [CrossRef]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein−Ligand Complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Zhang, K.Y.J. Advances in the development of shape similarity methods and their application in drug discovery. Front. Chem. 2018, 6, 315. [Google Scholar] [CrossRef] [PubMed]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021, 49, D437–D451. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.K.; Russell, E.; Von Bargen, C.D. OPLS4: Improving force field accuracy on challenging regimes of chemical space. J. Chem. Theory Comput. 2021, 17, 4291–4300. [Google Scholar] [CrossRef] [PubMed]
- Aldholmi, M.; Ahmad, R.; Shaikh, M.H.; Salem, A.M.; Alqurashi, M.; Alturki, M. Anti-Infective Activity of Momordica charantia Extract with Molecular Docking of Its Triterpenoid Glycosides. Antibiotics 2024, 13, 544. [Google Scholar] [CrossRef]
- Kwofie, S.K.; Dankwa, B.; Odame, E.A.; Agamah, F.E.; Doe, L.P.A.; Teye, J.; Agyapong, O.; Miller Iii, W.A.; Mosi, L.; Wilson, M.D. In silico screening of isocitrate lyase for novel anti-buruli ulcer natural products originating from Africa. Molecules 2018, 23, 1550. [Google Scholar] [CrossRef]
- Jaundoo, R.; Bohmann, J.; Gutierrez, G.E.; Klimas, N.; Broderick, G.; Craddock, T.J.A. Using a consensus docking approach to predict adverse drug reactions in combination drug therapies for gulf war illness. Int. J. Mol. Sci. 2018, 19, 3355. [Google Scholar] [CrossRef]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Lagorce, D.; Sperandio, O.; Galons, H.; Miteva, M.A.; Villoutreix, B.O. FAF-Drugs2: Free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinform. 2008, 9, 396. [Google Scholar] [CrossRef] [PubMed]
- Nainala, V.C.; Rajan, K.; Kanakam, S.R.S.; Sharma, N.; Weißenborn, V.; Schaub, J.; Steinbeck, C. COCONUT 2.0: A Comprehensive Overhaul and Curation of the Collection of Open Natural Products Database. ChemRxiv 2024. [Google Scholar] [CrossRef]
- Sorokina, M.; Merseburger, P.; Rajan, K.; Yirik, M.A.; Steinbeck, C. COCONUT online: Collection of open natural products database. J. Cheminform. 2021, 13, 2. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, Z.; Liu, Z.; Tao, Y.; Sha, C.; He, M.; Li, X. DrugMetric: Quantitative drug-likeness scoring based on chemical space distance. Brief. Bioinform. 2024, 25, bbae321. [Google Scholar] [CrossRef] [PubMed]
- Rose, P.W.; Prlić, A.; Altunkaya, A.; Bi, C.; Bradley, A.R.; Christie, C.H.; Costanzo, L.D.; Duarte, J.M.; Dutta, S.; Feng, Z. The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 2016, 45, D271–D281. [Google Scholar]
- Alves, M.J.; Froufe, H.J.C.; Costa, A.F.T.; Santos, A.F.; Oliveira, L.G.; Osório, S.R.M.; Abreu, R.M.V.; Pintado, M.; Ferreira, I.C.F.R. Docking studies in target proteins involved in antibacterial action mechanisms: Extending the knowledge on standard antibiotics to antimicrobial mushroom compounds. Molecules 2014, 19, 1672–1684. [Google Scholar] [CrossRef]
Hit No. * | Structure | NP Class | Coconut Id | XP Score | MM-BBSA DG Bind ** |
---|---|---|---|---|---|
1 | Alkaloid | CNP0091415.1 | −9.628 | −40.12 | |
2 | β-lactams | CNP0549010.1 | −9.525 | −38.18 | |
3 | Macrolides | CNP0086660.2 | −9.194 | −39.22 | |
4 | Polyketides | CNP0314849.0 | −8.384 | −40.01 | |
5 | NA | CNP0039190.2 | −8.23 | −48.15 | |
6 | Sesquiterpenoids | CNP0261672.2 | −8.121 | −46.68 | |
7 | Steroids | CNP0336856.1 | −7.958 | −32.37 | |
8 | Alkaloids | CNP0380974.1 | −7.921 | −50.75 | |
9 | Sesquiterpenoids | CNP0565205.1 | −7.698 | −46.76 | |
10 | Alkaloids | CNP0306101.2 | −7.57 | −46.42 |
Hit No. * | Key Binding Residues and Binding Interactions with GLP-1 Receptor ** | Key Binding Residues and Binding Interactions with GLP-1 Peptide ** | Additional Binding Residues and Binding Interactions with GLP-1 Receptor ** | ||||||
---|---|---|---|---|---|---|---|---|---|
Leu 142 | Tyr 145 | Lys 202 | Phe 12 | Val 16 | Leu 20 | Ser 206 | Glu 138 | Asp 198 | |
1 | V | V | S | V | V | V | H | S | V |
2 | V | V | S | V | V | V | H | S | V |
3 | V | H | H | V | V | V | V | V | H |
4 | V | H | S | V | V | V | V | V | H |
5 | V | V | S | V | V | V | H | V | V |
6 | V | V | V | V | V | V | V | V | H |
7 | V | V | S | V | V | V | V | V | V |
8 | V | C | V | V | V | V | V | - | H |
9 | V | V | V | V | V | V | V | H | V |
10 | V | H | S | V | V | V | V | V | V |
Hit No. * | Coconut ID | Key Binding Residues and Binding Interactions with GLP-1 Receptor ** | Key Binding Residues and Binding Interactions with GLP-1 Peptide ** | Binding Calculations | |||||
---|---|---|---|---|---|---|---|---|---|
Leu 142 | Tyr 145 | Lys 202 | Phe 12 | Val 16 | Leu 20 | XP Score | MM-GBSA DG Bind *** | ||
11 | CNP0106755.1 | V | H | H | V | V | V | −7.361 | −37.91 |
12 | CNP0374155.0 | V | P | S | V | V | V | −7.314 | −42.18 |
13 | CNP0589516.7 | V | H | H | V | V | V | −7.285 | −39.36 |
14 | CNP0397387.1 | V | V | H | V | V | V | −7.224 | −52.77 |
15 | CNP0459806.1 | V | V | H | V | V | V | −7.177 | −40.16 |
16 | CNP0189210.0 | V | H | H, S | V | V | V | −7.128 | −33.88 |
17 | CNP0128412.1 | V | V | H, S | V | V | V | −7.01 | −36.1 |
18 | CNP0322671.0 | V | P | H, S | V | V | V | −6.974 | −39.96 |
19 | CNP0568544.1 | V | H | H | V | V | V | −6.928 | −30.82 |
20 | CNP0601342.1 | V | V | H, S | V | V | V | −6.896 | −36.72 |
21 | CNP0550130.1 | V | P | H | V | V | V | −6.745 | −50 |
22 | CNP0373056.1 | V | P | H | V | V | V | −6.673 | −38.72 |
23 | CNP0199757.0 | V | V | H, S | V | V | V | −6.661 | −43.63 |
24 | CNP0147599.0 | V | P | H, S | V | V | V | −6.582 | −38.88 |
25 | CNP0500018.1 | V | H | H, S | V | V | V | −6.548 | −37.05 |
26 | CNP0398016.0 | V | P | V | V | V | V | −6.444 | −40.23 |
27 | CNP0406443.1 | V | C | S | V | V | V | −6.417 | −35.03 |
28 | CNP0479169.0 | V | C | H, S | V | V | V | −6.387 | −48.67 |
29 | CNP0397485.1 | V | V | H | V | V | V | −6.383 | −28.54 |
30 | CNP0503600.0 | V | C | S | V | V | V | −6.353 | −46.59 |
31 | CNP0509516.1 | V | P | H | V | V | V | −6.294 | −43.08 |
32 | CNP0396587.1 | V | V | S | V | V | V | −6.29 | −33.45 |
33 | CNP0356955.1 | V | V | H, S | V | V | V | −6.288 | −30.24 |
34 | CNP0267548.6 | V | P | H, S | V | V | V | −6.279 | −42.9 |
35 | CNP0333128.1 | V | H | H | V | V | V | −6.21 | −40.1 |
36 | CNP0291690.0 | V | V | V | V | V | V | −6.2 | −35.25 |
37 | CNP0215663.1 | V | V | S | V | V | V | −6.111 | −30.42 |
38 | CNP0356563.1 | V | P | S | V | V | V | −6.09 | −43.02 |
39 | CNP0497470.1 | V | V | H, S | V | V | V | −6.09 | −33.34 |
40 | CNP0222232.2 | V | V | S | V | V | V | −6.075 | −37.67 |
41 | CNP0010878.1 | V | P | S | V | V | V | −6.069 | −44.52 |
42 | CNP0576443.0 | V | P | S | V | V | V | −5.952 | −29.69 |
43 | CNP0228837.0 | V | V | S | V | V | V | −5.911 | −34.97 |
44 | CNP0336583.6 | V | H | S | V | V | V | −5.839 | −31.27 |
45 | CNP0545924.1 | V | V | C | V | V | V | −5.815 | −38.99 |
46 | CNP0534848.0 | V | P | H, S | V | V | V | −5.804 | −45.32 |
47 | CNP0322292.3 | V | V | H, S | V | V | V | −5.742 | −44.64 |
48 | CNP0429573.0 | V | V | S | V | V | V | −5.644 | −13.02 |
49 | CNP0137202.1 | V | V | H, S | V | V | V | −5.617 | −26.19 |
50 | CNP0447500.2 | V | V | S | V | V | V | −5.548 | −30.9 |
51 | CNP0082143.1 | V | V | S | V | V | V | −5.521 | −23.5 |
52 | CNP0494492.1 | V | V | H | V | V | V | −5.438 | −34.27 |
53 | CNP0072475.0 | V | H | H, S | V | V | V | −5.437 | −24.42 |
54 | CNP0230498.0 | V | V | C | V | V | V | −5.423 | −31.45 |
55 | CNP0593935.1 | V | V | S | V | V | V | −5.401 | −41.93 |
56 | CNP0584646.1 | V | V | V | V | V | V | −5.306 | −26.65 |
57 | CNP0426972.1 | V | V | S | V | V | V | −5.271 | −28.24 |
58 | CNP0527671.1 | V | P | S | V | V | V | −5.231 | −29.94 |
59 | CNP0409130.2 | V | H | H | V | V | V | −5.205 | −47.38 |
60 | CNP0132892.1 | V | V | V | V | V | V | −5.107 | −35.67 |
61 | CNP0342805.1 | V | V | S | V | V | V | −5.047 | −21.43 |
62 | CNP0402166.0 | V | P | H, C | V | V | V | −4.929 | −45.77 |
63 | CNP0026895.0 | V | H | S | V | V | V | −4.734 | −33.7 |
64 | CNP0495360.0 | V | P | S | V | V | V | −4.643 | −26.87 |
65 | CNP0369082.2 | V | V | H | V | V | V | −4.49 | −30.31 |
66 | CNP0028540.0 | V | V | V | V | V | V | −4.4 | −27.38 |
67 | CNP0496673.2 | V | P | S | V | V | V | −3.917 | −25.68 |
68 | CNP0390445.1 | V | P | H, S | V | V | V | −3.685 | −33.48 |
ADMET Parameters | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Absorption | ||||||||||
Water solubility (log mol/L) | −1.88 | −2.24 | −3.1 | −2.01 | −4.12 | −3.561 | −2.929 | −3.808 | −4.441 | −2.97 |
Caco2 permeability (log Papp in 10−6 cm/s) | 0.14 | −0.31 | −0.17 | −0.49 | 0.67 | 1.337 | 1.027 | 1.21 | 1.376 | 0.108 |
Intestinal absorption (human) (% Absorbed) | 42.81 | 32.3 | 45 | 25.50 | 93.15 | 95.325 | 96.606 | 96.34 | 91.364 | 61.309 |
P-glycoprotein substrate (Yes/No) | NO | Yes | Yes | Yes | Yes | No | No | Yes | No | No |
Distribution | ||||||||||
BBB permeability (log BB) | −0.71 | −1.007 | −1.38 | −1.09 | −0.04 | −0.007 | −0.313 | 0.142 | 0.098 | −0.953 |
CNS permeability (log PS) | −3.18 | −4.15 | −3.80 | −3.92 | −2.132 | −2.176 | −2.333 | −2.135 | −3.22 | −3.414 |
Metabolism | ||||||||||
CYP2D6 substrate (Yes/No) | No | No | No | No | No | No | No | Yes | No | No |
CYP3A4 substrate (Yes/No) | No | No | No | No | Yes | Yes | Yes | Yes | No | No |
CYP1A2 inhibitor (Yes/No) | No | No | No | No | Yes | No | No | No | No | No |
CYP2C19 inhibitor (Yes/No) | No | No | No | No | No | No | No | No | Yes | No |
CYP2C9 inhibitor (Yes/No) | No | No | No | No | No | No | No | No | No | No |
CYP2D6 inhibitor (Yes/No) | No | No | No | No | No | No | No | No | No | No |
CYP3A4 inhibitor (Yes/No) | No | No | No | No | No | No | No | No | No | No |
Excretion | ||||||||||
Total Clearance (log mL/min/kg) | 0.93 | 1.04 | 0.225 | 0.524 | 0.196 | 1.101 | 0.506 | 0.762 | −0.374 | 1.05 |
Renal OCT2 substrate (Yes/No) | No | No | No | No | No | Yes | No | Yes | No | No |
Toxicity | ||||||||||
AMES toxicity (Yes/No) | No | No | No | No | No | No | No | No | No | No |
Max. tolerated dose (human) (log mg/kg/day) | 0.89 | 1.50 | 0.847 | −0.224 | 0.039 | −0.465 | 0.2 | −0.741 | 0.171 | 0.906 |
hERG I inhibitor (Yes/No) | No | No | No | No | No | No | No | No | No | No |
Hepatotoxicity (Yes/No) | Yes | Yes | Yes | No | Yes | No | No | No | No | Yes |
Property | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Physicochemical properties | ||||||||||
Molecular Weight (g/mol) | 310.35 | 329.353 | 410.44 | 388.37 | 383.46 | 264.36 | 337.41 | 308.37 | 279.44 | 347.41 |
LogP | 1.76 | −1.40 | 1.25 | 0.16 | 3.37 | 2.94 | 2.78 | 2.18 | 3.15 | 1.38 |
#Acceptors | 6 | 6 | 8 | 8 | 4 | 3 | 3 | 3 | 1 | 4 |
#Donors | 2 | 4 | 4 | 5 | 1 | 1 | 3 | 2 | 2 | 2 |
#Heavy atoms | 22 | 23 | 28 | 28 | 27 | 19 | 25 | 23 | 19 | 25 |
#Arom. heavy atoms | 0 | 0 | 6 | 10 | 12 | 0 | 5 | 6 | 0 | 6 |
Fraction Csp3 | 0.80 | 0.79 | 0.53 | 0.35 | 0.33 | 0.81 | 0.57 | 0.42 | 0.73 | 0.61 |
#Rotatable bonds | 5 | 7 | 1 | 3 | 5 | 2 | 1 | 1 | 3 | 6 |
Molar refractivity | 80.13 | 81.92 | 101.34 | 97.02 | 109.12 | 74.14 | 93.61 | 95.75 | 86.24 | 97.55 |
TPSA (Å2) | 109.93 | 142.19 | 166.66 | 136.68 | 92.14 | 46.53 | 73.32 | 52.57 | 82.50 | 91.64 |
Drug-likeness | ||||||||||
Lipinski alert | Yes; 0 violation | Yes; 0 violation | Yes; 0 violation | Yes; 0 violation | Yes; 0 violation | Yes | Yes | Yes | Yes | Yes |
Ghose | Yes | No; 1 violation: WLOGP < −0.4 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Veber | Yes | No; 1 violation: TPSA > 140 | No; 1 violation: TPSA > 140 | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Egan | Yes | No; 1 violation: TPSA > 131.6 | No; 1 violation: TPSA > 131.6 | No; 1 violation: TPSA > 131.6 | Yes | Yes | Yes | Yes | Yes | Yes |
Muegge | No; 1 violation: XLOGP3 < −2 | No; 1 violation: XLOGP3 < −2 | No; 1 violation: TPSA > 150 | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Bioavailability Score | 0.55 | 0.55 | 0.11 | 0.56 | 0.56 | 0.55 | 0.85 | 0.55 | 0.55 | 0.56 |
Medicinal chemistry | ||||||||||
PAINS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Brenk | 1 alert: phthali-mide | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 0 |
Leadlikeness | Yes | No; 1 violation: Rotors > 7 | No; 1 violation: MW > 350 | No; 1 violation: MW > 350 | No; 2 violations: MW > 350, XLOGP3 > 3.5 | Yes | Yes | Yes | Yes | Yes |
Synthetic accessibility | 3.92 | 4.48 | 5.15 | 5.09 | 4.23 | 5.00 | 5.58 | 4.74 | 4.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomaa, M.S.; Alturki, M.S.; Tawfeeq, N.; Hussein, D.A.; Pottoo, F.H.; Al Khzem, A.H.; Sarafroz, M.; Abubshait, S. Discovery of Non-Peptide GLP-1 Positive Allosteric Modulators from Natural Products: Virtual Screening, Molecular Dynamics, ADMET Profiling, Repurposing, and Chemical Scaffolds Identification. Pharmaceutics 2024, 16, 1607. https://doi.org/10.3390/pharmaceutics16121607
Gomaa MS, Alturki MS, Tawfeeq N, Hussein DA, Pottoo FH, Al Khzem AH, Sarafroz M, Abubshait S. Discovery of Non-Peptide GLP-1 Positive Allosteric Modulators from Natural Products: Virtual Screening, Molecular Dynamics, ADMET Profiling, Repurposing, and Chemical Scaffolds Identification. Pharmaceutics. 2024; 16(12):1607. https://doi.org/10.3390/pharmaceutics16121607
Chicago/Turabian StyleGomaa, Mohamed S., Mansour S. Alturki, Nada Tawfeeq, Dania A. Hussein, Faheem H. Pottoo, Abdulaziz H. Al Khzem, Mohammad Sarafroz, and Samar Abubshait. 2024. "Discovery of Non-Peptide GLP-1 Positive Allosteric Modulators from Natural Products: Virtual Screening, Molecular Dynamics, ADMET Profiling, Repurposing, and Chemical Scaffolds Identification" Pharmaceutics 16, no. 12: 1607. https://doi.org/10.3390/pharmaceutics16121607
APA StyleGomaa, M. S., Alturki, M. S., Tawfeeq, N., Hussein, D. A., Pottoo, F. H., Al Khzem, A. H., Sarafroz, M., & Abubshait, S. (2024). Discovery of Non-Peptide GLP-1 Positive Allosteric Modulators from Natural Products: Virtual Screening, Molecular Dynamics, ADMET Profiling, Repurposing, and Chemical Scaffolds Identification. Pharmaceutics, 16(12), 1607. https://doi.org/10.3390/pharmaceutics16121607