Prediction of SPT-07A Pharmacokinetics in Rats, Dogs, and Humans Using a Physiologically-Based Pharmacokinetic Model and In Vitro Data
"> Figure 1
<p>Schematic diagram of whole-body PBPK model of SPT-07A with major tissues (Arrows connecting compartments stand for the blood flows. ROB represents the rest of the body).</p> "> Figure 2
<p>SPT-07A metabolism in CYP450 incubation system of liver microsomes (<b>A</b>). SPT-07A glucuronidation metabolism in liver microsomes (<b>B</b>), kidney microsomes (<b>C</b>), and intestine microsomes (<b>D</b>). SPT-07A glucuronidation in rhUGTs (<b>E</b>). SPT-07A glucuronidation in rhUGT1A1 and rhUGT2B7 (<b>F</b>). β-estradiol glucuronidation in HLMs, HKMs, and rhUGT1A1 (<b>G</b>). Zidovudine glucuronidation in HLMs, HKMs and rhUGT2B7 (<b>H</b>).</p> "> Figure 3
<p>Predicted population mean (black solid lines) and observed (black solid circles) plasma concentration-time profiles of SPT-07A in rats for single-dose 0.5 mg/kg (<b>A</b>), single-dose 1 mg/kg (<b>B</b>), single-dose 2 mg/kg (<b>C</b>) and multiple-dose 1 mg/kg (<b>D</b>). Blue areas represent 90% prediction intervals (5th–95th percentile boundaries; lower and upper black dashed lines, respectively) for a virtual population (n = 100).</p> "> Figure 4
<p>The predicted (lines) and observed (point) concentration-time profiles of SPT-07A in plasma (<b>A</b>) and tissues (<b>B</b>–<b>K</b>) of rats, in heart (<b>B</b>), liver (<b>C</b>), spleen (<b>D</b>), stomach (<b>E</b>), brain (<b>F</b>), intestine (<b>G</b>), muscle (<b>H</b>), lung (<b>I</b>), adipose (<b>J</b>), and kidney (<b>K</b>) of rats following iv 2 mg/kg. Blue areas represent 90% prediction intervals (5th–95th percentile boundaries; lower and upper black dashed lines, respectively) for a virtual 100 subjects. (<b>L</b>) Represents the relationship of observed and predicted AUC<sub>0–90 min</sub> of SPT-07A in the tissues above, in which solid and dashed lines indicate unity and twofold errors between predicted and observed data, respectively.</p> "> Figure 4 Cont.
<p>The predicted (lines) and observed (point) concentration-time profiles of SPT-07A in plasma (<b>A</b>) and tissues (<b>B</b>–<b>K</b>) of rats, in heart (<b>B</b>), liver (<b>C</b>), spleen (<b>D</b>), stomach (<b>E</b>), brain (<b>F</b>), intestine (<b>G</b>), muscle (<b>H</b>), lung (<b>I</b>), adipose (<b>J</b>), and kidney (<b>K</b>) of rats following iv 2 mg/kg. Blue areas represent 90% prediction intervals (5th–95th percentile boundaries; lower and upper black dashed lines, respectively) for a virtual 100 subjects. (<b>L</b>) Represents the relationship of observed and predicted AUC<sub>0–90 min</sub> of SPT-07A in the tissues above, in which solid and dashed lines indicate unity and twofold errors between predicted and observed data, respectively.</p> "> Figure 5
<p>Predicted population mean (black solid lines) and observed (black solid circles) plasma concentration-time profiles of SPT-07A for dogs single-dose 0.25 mg/kg (<b>A</b>), single-dose 0.5 mg/kg (<b>B</b>), single-dose 1 mg/kg (<b>C</b>) and multiple-dose 0.5 mg/kg (<b>D</b>). Blue areas represent 90% prediction intervals (5th–95th percentile boundaries; lower and upper black dashed lines, respectively) for a virtual population (n = 100).</p> "> Figure 6
<p>Predicted population mean (black solid lines) and observed (black solid circles) plasma concentration-time profiles of SPT-07A in humans for single-dose 10 mg (<b>A</b>), multiple-dose 10 mg (<b>B</b>), single-dose 20 mg (<b>C</b>), multiple-dose 20 mg (<b>D</b>), single-dose 40 mg (<b>E</b>) and multiple-dose 40 mg (<b>F</b>). Blue areas represent 90% prediction intervals (5th–95th percentile boundaries; lower and upper black dashed lines, respectively) for a virtual population (n = 100).</p> "> Figure 7
<p>The effects of changing hepatic metabolic velocity (<b>A</b>), renal metabolic velocity (<b>B</b>), unbound fraction in plasma <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mi>u</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math> (<b>C</b>), Adipose to plasma partition coefficients <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>K</mi> </mrow> <mrow> <mi>a</mi> <mi>d</mi> <mi>i</mi> <mi>p</mi> <mi>o</mi> <mi>s</mi> <mi>e</mi> <mo>:</mo> <mi>p</mi> <mi>l</mi> <mi>a</mi> <mi>s</mi> <mi>m</mi> <mi>a</mi> </mrow> </msub> </mrow> </semantics></math> (<b>D</b>), hepatic blood flow rate (<b>E</b>) and renal blood flow rate (<b>F</b>) in the human PBPK model on predicted human plasma concentration-time profile of SPT-07A.</p> "> Figure 8
<p>Observed and predicted plasma concentration-time profiles of SPT-07A in humans by the PBPK (<b>A</b>), SSS<sub>rat</sub> (<b>B</b>), SSS<sub>dog</sub> (<b>C</b>), Elementary TS<sub>rat-dog</sub> (<b>D</b>), and Complex TS<sub>rat-dog</sub> (<b>E</b>). Compares the human plasma concentration-time profiles of SPT-07A predicted by five methods (<b>F</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. In Vitro Pharmacokinetic Studies
2.2.1. Blood to Plasma Partition Ratio
2.2.2. Plasma Protein Binding
2.2.3. CYP-Mediated Metabolism of SPT-07A in Hepatic Microsomes
2.2.4. UGT-Mediated Metabolism of SPT-07A in Hepatic, Renal, and Intestinal Microsomes
2.2.5. Determining the Unbound Fraction of SPT-07A in CYP and UGT Incubation Systems
2.2.6. Identification of rhUGTs Involved in Glucuronidation of SPT-07A
2.2.7. Enzyme Kinetics of SPT-07A in rhUGTs
2.2.8. Contributions of UGT1A1 and UGT2B7 to Glucuronidation of SPT-07A in HLMs and HKMs
2.2.9. In Vitro to In Vivo Extrapolation
2.3. In Vivo Pharmacokinetic Studies
2.3.1. Plasma Concentration—Time Profiles in Rats
2.3.2. Tissue Concentration—Time Profiles in Rats
2.3.3. Plasma Concentration—Time Curve in Dogs
2.3.4. Clinical Data Collection
2.4. LC-MS/MS Conditions for Plasma and Metabolic Enzymes Samples Analysis
2.5. PBPK Modeling of SPT-07A
2.5.1. PBPK Model Development
2.5.2. Validation of the Developed PBPK Model
Rat (0.25 kg) | Dog (8.5 kg) | Human (70 kg) | |||||||
---|---|---|---|---|---|---|---|---|---|
Volume (mL) | Blood Flow (mL/min) | Kt:pl | Volume (mL) | Blood Flow (mL/min) | Kt:pl | Volume (mL) | Blood Flow (mL/min) | Kt:pl | |
Lung | 1.25 | 83.90 | 0.59 | 85 | 1120 | 0.62 | 1170 | 5600 | 0.76 |
Heart | 0.83 | 4.07 | 1.13 | 43 | 43.3 | 0.76 | 310 | 240 | 3.62 |
Brain | 1.43 | 1.66 | 1.46 | 50 | 145 | 1.44 | 1450 | 700 | 4.16 |
Muscle | 117.50 a | 8.23 b | 0.90 | 4250 | 270 a | 0.81 | 35,000 | 750 | 1.19 |
Adipose | 19.00 | 5.82 | 1.92 | 1500 | 50 | 1.72 | 10,000 | 260 | 2.84 |
Skin | 47.50 | 4.82 | 7.20 | 774 c | 71.5 a | 6.46 | 7800 | 300 | 8.18 |
Kidney | 1.83 | 11.71 | 1.51 | 40 b | 170 | 0.79 | 280 | 1240 | 2.22 |
Spleen | 0.50 | 1.66 | 0.98 | 22 | 13.33 | 0.49 | 190 | 80 | 1.27 |
Stomach | 1.10 | 1.13 | 1.00 | 24 | 10 | 1.00 | 160 | 38.33 | 1.00 |
Liver | 9.15 | 12.30 | 1.53 | 213 | 323.33 | 0.81 | 1690 | 1518.33 | 2.06 |
Vein | 13.60 | – | – | 284 | – | – | 3470 | – | – |
Artery | 6.80 | – | – | 141 | – | – | 1730 | – | – |
Liver-art | – | 1.99 | – | – | 45 | – | – | 300 | – |
intestine | 10.01 | 7.52 | 1.00 | 203 | 255 | 1.00 | 1650 | 1100 | 1.00 |
Rest of body | 19.50 | 35.29 | 1.00 | 871 | 48.33 | 1.00 | 5100 | 592 | 1.00 |
MPPGL | 44.8 | 63.6 | 48.8 | ||||||
MPPGK | 17.9 | 44.0 | 17.8 | ||||||
MPPGI | 9.7 | 6.5 | 0.54 | ||||||
Rb | 1.10 | 0.92 | 0.92 | ||||||
fu,p | 28.70% | 25.77% | 32.64% |
Species | Microsomes | Enzymes | CLint,u | CLint,in vivo,u | Total CLint,in vivo,u | CLin.vivo | Contribution |
---|---|---|---|---|---|---|---|
μL/min/mg Protein | mL/min/kg | mL/min/kg | mL/min/kg | (%) | |||
Rat | RLMs | UGT | 2060 | 3380 | 3390 | 46.6 | 62.2 |
CYP | 5.14 | 8.43 | |||||
RKMs | UGT | 1500 | 196 | 196 | 24.4 | 32.6 | |
RIMs | UGT | 79.1 | 17.2 | 17.2 | 3.90 | 5.2 | |
Dog | DLMs | UGT | 12,200 | 25,500 | 25,500 | 37.8 | 87.3 |
CYP | 13.6 | 28.4 | |||||
DKMs | UGT | 112 | 27.1 | 27.1 | 5.50 | 12.7 | |
DIMs | UGT | – | – | – | – | ||
Human | HLMs | UGT | 745 | 934 | 938 | 20.4 | 76.5 |
CYP | 3.35 | 4.20 | |||||
HKMs | UGT | 339 | 26.5 | 26.5 | 6.14 | 23.1 | |
HIMs | UGT | 39.8 | 0.309 | 0.309 | 0.109 | 0.4 |
2.5.3. Parameter Sensitivity Analysis
2.5.4. Interspecies Scaling by Dedrick Method
2.5.5. Prediction Accuracies of Simulating SPT-07A Concentrations in Human Plasma Using Five Methods
3. Results
3.1. In Vitro PK Studies
3.1.1. Blood-Plasma Partition Ratios of SPT-07A and Plasma Protein Binding Rates of SPT-07A in Rats, Dogs, and Humans
3.1.2. Enzyme Kinetics and the Clearance of SPT-07A CYP and UGT Metabolism in Microsomes
3.1.3. The Contributions of UGT-Mediated Metabolism of SPT-07A in the Liver, Intestine, and Kidney to Systemic Clearance of SPT-07A in Rats, Dogs, and Humans
3.1.4. In Vitro UGT Phenotyping of SPT-07A
3.1.5. The Contributions of UGT1A1 and UGT2B7 to Glucuronidation of SPT-07A in HLMs and HKMs
3.2. PBPK Modeling
3.2.1. The Simulation of SPT-07A Pharmacokinetics in Rats Using PBPK Model
3.2.2. The Simulation of SPT-07A Pharmacokinetics in Dogs Using PBPK Model
3.2.3. The Simulation of SPT-07A Pharmacokinetics in Humans Using PBPK Model
3.3. Sensitivity Analysis
3.4. Interspecies Allometric Scaling by Dedrick Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Ren, M.; Wang, J.; Ma, R.; Chen, H.; Xie, Q.; Li, H.; Li, J.; Wang, J. Progress in Borneol Intervention for Ischemic Stroke: A Systematic Review. Front. Pharmacol. 2021, 12, 606682. [Google Scholar] [CrossRef]
- Wu, H.-Y.; Tang, Y.; Gao, L.-Y.; Sun, W.-X.; Hua, Y.; Yang, S.-B.; Zhang, Z.-P.; Liao, G.-Y.; Zhou, Q.-G.; Luo, C.-X.; et al. The synergetic effect of edaravone and borneol in the rat model of ischemic stroke. Eur. J. Pharmacol. 2014, 740, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Li, J.; Dong, T.; Yuan, J.; Lu, D.; Ma, R.; Li, H.; Li, Y.; Ren, M.; Chen, H.; et al. Neuroprotective effects of synthetic borneol and natural borneol based on the neurovascular unit against cerebral ischaemic injury. J. Pharm. Pharmacol. 2022, 74, 236–249. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Long, Y.; Yu, S.; Zhang, D.; Yang, Q.; Ci, Z.; Cui, M.; Zhang, Y.; Wan, J.; Li, D.; et al. Borneol in cardio-cerebrovascular diseases: Pharmacological actions, mechanisms, and therapeutics. Pharmacol. Res. 2021, 169, 105627. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Li, L.; Fan, L.; Fan, W.; Liu, L.; Zhang, F.; Hu, Z.; Wang, K.; Yang, L.; Wang, Z. The history, stereochemistry, ethnopharmacology and quality assessment of borneol. J. Ethnopharmacol. 2023, 300, 115697. [Google Scholar] [CrossRef]
- Zhang, X.-G.; Shan, C.; Zhu, J.-Z.; Bao, X.-Y.; Tong, Q.; Wu, X.-F.; Tang, X.-C.; Xue, T.; Liu, J.; Zheng, G.-Q.; et al. Additive Neuroprotective Effect of Borneol with Mesenchymal Stem Cells on Ischemic Stroke in Mice. Front. Physiol. 2018, 8, 1133. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Zhao, W.; Zhong, J.; Wang, Y.; Chen, X. Pharmacokinetics, pharmacodynamics, safety, tolerability, and mass balance of single and continuous intravenous infusion of SPT-07A in healthy volunteers. Eur. J. Clin. Pharmacol. 2020, 76, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Davies, B.; Morris, T. Physiological parameters in laboratory animals and humans. Pharm. Res. 1993, 10, 1093–1095. [Google Scholar] [CrossRef]
- Shelby, M.K.; Cherrington, N.J.; Vansell, N.R.; Klaassen, C.D. Tissue mRNA expression of the rat UDP-glucuronosyltransferase gene family. Drug Metab. Dispos. 2003, 31, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Haller, S.; Schuler, F.; Lazic, S.E.; Bachir-Cherif, D.; Krämer, S.D.; Parrott, N.J.; Steiner, G.; Belli, S. Expression profiles of metabolic enzymes and drug transporters in the liver and along the intestine of beagle dogs. Drug Metab. Dispos. 2012, 40, 1603–1610. [Google Scholar] [CrossRef]
- Meech, R.; Hu, D.G.; McKinnon, R.A.; Mubarokah, S.N.; Haines, A.Z.; Nair, P.C.; Rowland, A.; Mackenzie, P.I. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol. Rev. 2019, 99, 1153–1222. [Google Scholar] [CrossRef] [PubMed]
- Knights, K.M.; Rowland, A.; Miners, J.O. Renal drug metabolism in humans: The potential for drug-endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT). Br. J. Clin. Pharmacol. 2013, 76, 587–602. [Google Scholar] [CrossRef]
- Sager, J.E.; Yu, J.; Ragueneau-Majlessi, I.; Isoherranen, N. Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulation Approaches: A Systematic Review of Published Models, Applications, and Model Verification. Drug Metab. Dispos. 2015, 43, 1823–1837. [Google Scholar] [CrossRef]
- Zhang, C.X.; Arnold, S.L.M. Potential and Challenges in Application of Physiologically Based Pharmacokinetic Modeling in Predicting Diarrheal Disease Impact on Oral Drug Pharmacokinetics. Drug Metab. Dispos. 2023; in press. [Google Scholar] [CrossRef]
- Thiel, C.; Schneckener, S.; Krauss, M.; Ghallab, A.; Hofmann, U.; Kanacher, T.; Zellmer, S.; Gebhardt, R.; Hengstler, J.G.; Kuepfer, L. A systematic evaluation of the use of physiologically based pharmacokinetic modeling for cross-species extrapolation. J. Pharm. Sci. 2015, 104, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.W.; Lee, Y.B.; Cho, H.Y. Interpretation of Non-Clinical Data for Prediction of Human Pharmacokinetic Parameters: In Vitro-In Vivo Extrapolation and Allometric Scaling. Pharmaceutics 2019, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Punt, A.; Louisse, J.; Beekmann, K.; Pinckaers, N.; Fabian, E.; Van Ravenzwaay, B.; Carmichael, P.L.; Sorrell, I.; Moxon, T.E. Predictive performance of next generation human physiologically based kinetic (PBK) models based on in vitro and in silico input data. Altex 2022, 39, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.M.; Gardner, I.B.; Collard, W.T.; Stanley, P.J.; Oxley, P.; Hosea, N.A.; Plowchalk, D.; Gernhardt, S.; Lin, J.; Dickins, M.; et al. Simulation of human intravenous and oral pharmacokinetics of 21 diverse compounds using physiologically based pharmacokinetic modelling. Clin. Pharmacokinet. 2011, 50, 331–347. [Google Scholar] [CrossRef]
- Zhuang, X.; Lu, C. PBPK modeling and simulation in drug research and development. Acta Pharm. Sin. B 2016, 6, 430–440. [Google Scholar] [CrossRef]
- Baranczewski, P.; Stanczak, A.; Sundberg, K.; Svensson, R.; Wallin, A.; Jansson, J.; Postlind, H. Introduction to in vitro estimation of metabolic stability and drug interactions of new chemical entities in drug discovery and development. Pharmacol. Rep. 2006, 58, 453–472. [Google Scholar]
- Zhou, Y.; Dong, H.; Fan, J.; Zhu, M.; Liu, L.; Wang, Y.; Tang, P.; Chen, X. Cytochrome P450 2B6 and UDP-Glucuronosyltransferase Enzyme-Mediated Clearance of Ciprofol (HSK3486) in Humans: The Role of Hepatic and Extrahepatic Metabolism. Drug Metab. Dispos. 2024, 52, 106–117. [Google Scholar] [CrossRef]
- Miners, J.O.; Rowland, A.; Novak, J.J.; Lapham, K.; Goosen, T.C. Evidence-based strategies for the characterisation of human drug and chemical glucuronidation in vitro and UDP-glucuronosyltransferase reaction phenotyping. Pharmacol. Ther. 2021, 218, 107689. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Prieto Garcia, L.; Bergström, F.; Nordell, P.; Grime, K. Intrinsic Clearance Assay Incubational Binding: A Method Comparison. Drug Metab. Dispos. 2017, 45, 342–345. [Google Scholar] [CrossRef]
- Bertelsen, B.E.; Kellmann, R.; Viste, K.; Bjørnevik, A.T.; Eikesdal, H.P.; Lønning, P.E.; Sagen, J.V.; Almås, B. An Ultrasensitive Routine LC-MS/MS Method for Estradiol and Estrone in the Clinically Relevant Sub-Picomolar Range. J. Endocr. Soc. 2020, 4, bvaa047. [Google Scholar] [CrossRef] [PubMed]
- Rower, J.E.; Klein, B.; Bushman, L.R.; Anderson, P.L. Validation of a sensitive LC/MS/MS method for the determination of zidovudine and lamivudine in human plasma. Biomed. Chromatogr. 2012, 26, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Pierrillas, P.B.; Henin, E.; Ball, K.; Ogier, J.; Amiel, M.; Kraus-Berthier, L.; Chenel, M.; Bouzom, F.; Tod, M. Prediction of Human Nonlinear Pharmacokinetics of a New Bcl-2 Inhibitor Using PBPK Modeling and Interspecies Extrapolation Strategy. Drug Metab. Dispos. 2019, 47, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Lapham, K.; Callegari, E.; Cianfrogna, J.; Lin, J.; Niosi, M.; Orozco, C.C.; Sharma, R.; Goosen, T.C. In Vitro Characterization of Ertugliflozin Metabolism by UDP-Glucuronosyltransferase and Cytochrome P450 Enzymes. Drug Metab. Dispos. 2020, 48, 1350–1363. [Google Scholar] [CrossRef]
- Li, Y.; Fan, Y.; Su, H.; Wang, Q.; Li, G.-F.; Hu, Y.; Jiang, J.; Tan, B.; Qiu, F. Metabolic characteristics of Tanshinone I in human liver microsomes and S9 subcellular fractions. Xenobiotica 2018, 49, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jusko, W.J. Assessing Liver-to-Plasma Partition Coefficients and In Silico Calculation Methods: When Does the Hepatic Model Matter in PBPK? Drug Metab. Dispos. 2022, 50, 1501–1512. [Google Scholar] [CrossRef] [PubMed]
- Espié, P.; Tytgat, D.; Sargentini-Maier, M.-L.; Poggesi, I.; Watelet, J.-B. Physiologically based pharmacokinetics (PBPK). Drug Metab. Rev. 2009, 41, 391–407. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, K.; Liu, F.; Xie, Q.; Zhong, Z.; Miao, M.; Liu, X.; Liu, L. Prediction of Deoxypodophyllotoxin Disposition in Mouse, Rat, Monkey, and Dog by Physiologically Based Pharmacokinetic Model and the Extrapolation to Human. Front. Pharmacol. 2016, 7, 488. [Google Scholar] [CrossRef]
- Albanese, R.A.; Banks, H.T.; Evans, M.V.; Potter, L.K. Physiologically based pharmacokinetic models for the transport of trichloroethylene in adipose tissue. Bull. Math. Biol. 2002, 64, 97–131. [Google Scholar] [CrossRef]
- Levitt, D.G. PKQuest: PBPK modeling of highly lipid soluble and extracellular solutes. ADMET DMPK 2019, 7, 60–75. [Google Scholar] [CrossRef]
- Jones, H.M.; Mayawala, K.; Poulin, P. Dose selection based on physiologically based pharmacokinetic (PBPK) approaches. AAPS J. 2013, 15, 377–387. [Google Scholar] [CrossRef]
- Schmitt, W. General approach for the calculation of tissue to plasma partition coefficients. Toxicol. Vitr. 2008, 22, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Ruark, C.D.; Hack, C.E.; Robinson, P.J.; Mahle, D.A.; Gearhart, J.M. Predicting Passive and Active Tissue: Plasma Partition Coefficients: Interindividual and Interspecies Variability. J. Pharm. Sci. 2014, 103, 2189–2198. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.-M.; Sun, B.-B.; Wang, Z.-J.; Zheng, X.-K.; Zhao, K.-J.; Chen, Y.; Zhang, J.-X.; Liu, P.-H.; Zhu, L.; Xu, R.-J.; et al. Physiologically based pharmacokinetic–pharmacodynamic modeling for prediction of vonoprazan pharmacokinetics and its inhibition on gastric acid secretion following intravenous/oral administration to rats, dogs and humans. Acta Pharmacol. Sin. 2020, 41, 852–865. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.P.; Delp, M.D.; Lindstedt, S.L.; Rhomberg, L.R.; Beliles, R.P. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Health 1997, 13, 407–484. [Google Scholar] [CrossRef]
- Shi, X.; Yang, S.; Zhang, G.; Song, Y.; Su, D.; Liu, Y.; Guo, F.; Shan, L.; Cai, J. The different metabolism of morusin in various species and its potent inhibition against UDP-glucuronosyltransferase (UGT) and cytochrome p450 (CYP450) enzymes. Xenobiotica 2015, 46, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Scotcher, D.; Billington, S.; Brown, J.; Jones, C.R.; Brown, C.D.A.; Rostami-Hodjegan, A.; Galetin, A. Microsomal and Cytosolic Scaling Factors in Dog and Human Kidney Cortex and Application for In Vitro-In Vivo Extrapolation of Renal Metabolic Clearance. Drug Metab. Dispos. 2017, 45, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Litterst, C.L.; Mimnaugh, E.G.; Reagan, R.L.; Gram, T.E. Comparison of in vitro drug metabolism by lung, liver, and kidney of several common laboratory species. Drug Metab. Dispos. 1975, 3, 259–265. [Google Scholar] [PubMed]
- Knights, K.M.; Spencer, S.M.; Fallon, J.K.; Chau, N.; Smith, P.C.; Miners, J.O. Scaling factors for the in vitro-in vivo extrapolation (IV-IVE) of renal drug and xenobiotic glucuronidation clearance. Br. J. Clin. Pharmacol. 2016, 81, 1153–1164. [Google Scholar] [CrossRef] [PubMed]
- Hatley, O.J.D.; Jones, C.R.; Galetin, A.; Rostami-Hodjegan, A. Optimization of intestinal microsomal preparation in the rat: A systematic approach to assess the influence of various methodologies on metabolic activity and scaling factors. Biopharm. Drug Dispos. 2017, 38, 187–208. [Google Scholar] [CrossRef] [PubMed]
- Bruyère, A.; Declèves, X.; Bouzom, F.; Ball, K.; Marques, C.; Treton, X.; Pocard, M.; Valleur, P.; Bouhnik, Y.; Panis, Y.; et al. Effect of variations in the amounts of P-glycoprotein (ABCB1), BCRP (ABCG2) and CYP3A4 along the human small intestine on PBPK models for predicting intestinal first pass. Mol. Pharm. 2010, 7, 1596–1607. [Google Scholar] [CrossRef]
- Sayama, H.; Komura, H.; Kogayu, M. Application of Hybrid Approach Based on Empirical and Physiological Concept for Predicting Pharmacokinetics in Humans—Usefulness of Exponent on Prospective Evaluation of Predictability. Drug Metab. Dispos. 2013, 41, 498–507. [Google Scholar] [CrossRef]
- Mahmood, I.; Balian, J.D. The pharmacokinetic principles behind scaling from preclinical results to phase I protocols. Clin. Pharmacokinet. 1999, 36, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Caron, W.P.; Clewell, H.; Dedrick, R.; Ramanathan, R.K.; Davis, W.L.; Yu, N.; Tonda, M.; Schellens, J.H.; Beijnen, J.H.; Zamboni, W.C. Allometric scaling of pegylated liposomal anticancer drugs. J. Pharmacokinet. Pharmacodyn. 2011, 38, 653–669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.G.; Ho, T.; Callendrello, A.L.; Clark, R.J.; Santone, E.A.; Kinsman, S.; Xiao, D.; Fox, L.G.; Einolf, H.J.; Stresser, D.M. Evaluation of calibration curve-based approaches to predict clinical inducers and noninducers of CYP3A4 with plated human hepatocytes. Drug Metab. Dispos. 2014, 42, 1379–1391. [Google Scholar] [CrossRef] [PubMed]
- Engtrakul, J.J.; Foti, R.S.; Strelevitz, T.J.; Fisher, M.B. Altered AZT (3′-azido-3′-deoxythymidine) glucuronidation kinetics in liver microsomes as an explanation for underprediction of in vivo clearance: Comparison to hepatocytes and effect of incubation environment. Drug Metab. Dispos. 2005, 33, 1621–1627. [Google Scholar] [CrossRef] [PubMed]
- Naritomi, Y.; Terashita, S.; Kimura, S.; Suzuki, A.; Kagayama, A.; Sugiyama, Y. Prediction of human hepatic clearance from in vivo animal experiments and in vitro metabolic studies with liver microsomes from animals and humans. Drug Metab. Dispos. 2001, 29, 1316–1324. [Google Scholar] [PubMed]
- Wu, B.; Dong, D.; Hu, M.; Zhang, S. Quantitative prediction of glucuronidation in humans using the in vitro- in vivo extrapolation approach. Curr. Top. Med. Chem. 2013, 13, 1343–1352. [Google Scholar] [CrossRef]
- Gill, K.L.; Houston, J.B.; Galetin, A. Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: Comparison with liver and intestinal glucuronidation and impact of albumin. Drug Metab. Dispos. 2012, 40, 825–835. [Google Scholar] [CrossRef]
- Kemper, R.A.; Nabb, D.L. In vitro studies in microsomes from rat and human liver, kidney, and intestine suggest that perfluorooctanoic acid is not a substrate for microsomal UDP-glucuronosyltransferases. Drug Chem. Toxicol. 2005, 28, 281–287. [Google Scholar] [CrossRef]
- Francke, S.; Mamidi, R.N.; Solanki, B.; Scheers, E.; Jadwin, A.; Favis, R.; Devineni, D. In vitro metabolism of canagliflozin in human liver, kidney, intestine microsomes, and recombinant uridine diphosphate glucuronosyltransferases (UGT) and the effect of genetic variability of UGT enzymes on the pharmacokinetics of canagliflozin in humans. J. Clin. Pharmacol. 2015, 55, 1061–1072. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wu, Z.; Ma, Z.; Wu, B. Glucuronidation of macelignan by human liver microsomes and expressed UGT enzymes: Identification of UGT1A1 and 2B7 as the main contributing enzymes. Biopharm. Drug Dispos. 2014, 35, 513–524. [Google Scholar] [CrossRef]
- Nakamura, A.; Nakajima, M.; Yamanaka, H.; Fujiwara, R.; Yokoi, T. Expression of UGT1A and UGT2B mRNA in human normal tissues and various cell lines. Drug Metab. Dispos. 2008, 36, 1461–1464. [Google Scholar] [CrossRef] [PubMed]
- Ahire, D.; Patel, M.; Deshmukh, S.V.; Prasad, B. Quantification of Accurate Composition and Total Abundance of Homologous Proteins by Conserved-Plus-Surrogate Peptide Approach: Quantification of UDP Glucuronosyltransferases in Human Tissues. Drug Metab. Dispos. 2023, 51, 285–292. [Google Scholar] [CrossRef]
- Nakamura, K.; Hirayama-Kurogi, M.; Ito, S.; Kuno, T.; Yoneyama, T.; Obuchi, W.; Terasaki, T.; Ohtsuki, S. Large-scale multiplex absolute protein quantification of drug-metabolizing enzymes and transporters in human intestine, liver, and kidney microsomes by SWATH-MS: Comparison with MRM/SRM and HR-MRM/PRM. Proteomics 2016, 16, 2106–2117. [Google Scholar] [CrossRef]
- Soars, M.G.; Riley, R.J.; Findlay, K.A.; Coffey, M.J.; Burchell, B. Evidence for significant differences in microsomal drug glucuronidation by canine and human liver and kidney. Drug Metab. Dispos. 2001, 29, 121–126. [Google Scholar]
- Heikkinen, A.T.; Friedlein, A.; Matondo, M.; Hatley, O.J.; Petsalo, A.; Juvonen, R.; Galetin, A.; Rostami-Hodjegan, A.; Aebersold, R.; Lamerz, J.; et al. Quantitative ADME proteomics—CYP and UGT enzymes in the Beagle dog liver and intestine. Pharm. Res. 2015, 32, 74–90. [Google Scholar] [CrossRef]
- Fu, Y.; Tang, R.; Chen, R.; Wang, A.; Ren, J.; Zhu, S.; Feng, X.; Fan, D. Efficacy and safety of Y-2 sublingual tablet for patients with acute ischaemic stroke: Protocol of a phase III randomised double-blind placebo-controlled multicentre trial. Stroke Vasc. Neurol. 2024, 9, 90–95. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, A.; Tang, R.; Li, S.; Tian, X.; Xia, X.; Ren, J.; Yang, S.; Chen, R.; Zhu, S.; et al. Sublingual Edaravone Dexborneol for the Treatment of Acute Ischemic Stroke: The TASTE-SL Randomized Clinical Trial. JAMA Neurol. 2024, 81, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Irintscheff, A.; Davidoff, M. Distribution of some hydrolases in the rat kidney (author’s transl). Histochemistry 1981, 71, 463–480. [Google Scholar] [CrossRef]
- Iwano, S.; Higashi, E.; Miyoshi, T.; Ando, A.; Miyamoto, Y. Focused DNA microarray analysis for sex-dependent gene expression of drug metabolizing enzymes, transporters and nuclear receptors in rat livers and kidneys. J. Toxicol. Sci. 2012, 37, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Bélanger, A.S.; Caron, P.; Harvey, M.; Zimmerman, P.A.; Mehlotra, R.K.; Guillemette, C. Glucuronidation of the antiretroviral drug efavirenz by UGT2B7 and an in vitro investigation of drug-drug interaction with zidovudine. Drug Metab. Dispos. 2009, 37, 1793–1796. [Google Scholar] [CrossRef] [PubMed]
- Callegari, E.; Lin, J.; Tse, S.; Goosen, T.C.; Sahasrabudhe, V. Physiologically-Based Pharmacokinetic Modeling of the Drug-Drug Interaction of the UGT Substrate Ertugliflozin Following Co-Administration with the UGT Inhibitor Mefenamic Acid. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Yang, Y.; Grimstein, M.; Zhang, X.; Kitabi, E.; Earp, J.C.; Arya, V.; Reynolds, K.S.; Zhu, H.; Wang, Y. Whole Body PBPK Modeling of Remdesivir and Its Metabolites to Aid in Estimating Active Metabolite Exposure in the Lung and Liver in Patients With Organ Dysfunction. Clin. Pharmacol. Ther. 2022, 111, 624–634. [Google Scholar] [CrossRef]
- Annet, L.; Materne, R.; Danse, E.; Jamart, J.; Horsmans, Y.; Van Beers, B.E. Hepatic flow parameters measured with MR imaging and Doppler US: Correlations with degree of cirrhosis and portal hypertension. Radiology 2003, 229, 409–414. [Google Scholar] [CrossRef]
- Drozdzik, M.; Lapczuk-Romanska, J.; Wenzel, C.; Skalski, L.; Szeląg-Pieniek, S.; Post, M.; Parus, A.; Syczewska, M.; Kurzawski, M.; Oswald, S. Protein Abundance of Drug Metabolizing Enzymes in Human Hepatitis C Livers. Int. J. Mol. Sci. 2023, 24, 4543. [Google Scholar] [CrossRef]
- Konishi, K.; Minematsu, T.; Nagasaka, Y.; Tabata, K. Application of a physiologically based pharmacokinetic model for the prediction of mirabegron plasma concentrations in a population with severe renal impairment. Biopharm. Drug Dispos. 2019, 40, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Kollipara, S.; Ahmed, T.; Praveen, S. Physiologically based pharmacokinetic modeling (PBPK) to predict drug-drug interactions for encorafenib. Part II. Prospective predictions in hepatic and renal impaired populations with clinical inhibitors and inducers. Xenobiotica 2023, 53, 339–356. [Google Scholar] [CrossRef]
- Li, J.; Menard, V.; Benish, R.L.; Jurevic, R.J.; Guillemette, C.; Stoneking, M.; Zimmerman, P.A.; Mehlotra, R.K. Worldwide Variation in Human Drug-Metabolism Enzyme Genes CYP2B6 and UGT2B7: Implications for HIV/AIDS Treatment. Pharmacogenomics 2012, 13, 555–570. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Lin, X.-Q.; Cai, W.-K.; Xu, G.-L.; Zhou, M.-D.; Yang, M.; He, G.-H. Effect of UGT2B7 genotypes on plasma concentration of valproic acid: A meta-analysis. Eur. J. Clin. Pharmacol. 2017, 74, 433–442. [Google Scholar] [CrossRef]
- Areepium, N.; Panomvana, D.; Rungwanonchai, P.; Sathaporn, S.; Voravud, N. Effects of CYP2D6 and UGT2B7 polymorphisms on pharmacokinetics of tamoxifen in Thai breast cancer patients. Breast Cancer Targets Ther. 2013, 5, 73–78. [Google Scholar] [CrossRef]
- Mehlotra, R.K.; Bockarie, M.J.; Zimmerman, P.A. Prevalence of UGT1A9 and UGT2B7 nonsynonymous single nucleotide polymorphisms in West African, Papua New Guinean, and North American populations. Eur. J. Clin. Pharmacol. 2006, 63, 1–8. [Google Scholar] [CrossRef]
- Huang, Q.; Riviere, J.E. The application of allometric scaling principles to predict pharmacokinetic parameters across species. Expert. Opin. Drug Metab. Toxicol. 2014, 10, 1241–1253. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H. Applications and limitations of interspecies scaling and in vitro extrapolation in pharmacokinetics. Drug Metab. Dispos. 1998, 26, 1202–1212. [Google Scholar] [PubMed]
- Jones, H.M.; Parrott, N.; Jorga, K.; Lavé, T. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin. Pharmacokinet. 2006, 45, 511–542. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Hussain, A.; Leal, M.; Mayersohn, M.; Fluhler, E. Interspecies prediction of human drug clearance based on scaling data from one or two animal species. Drug Metab. Dispos. 2007, 35, 1886–1893. [Google Scholar] [CrossRef]
Dose (mg/kg) a | Cmax (ng/mL) | Cmax R c | AUC (μg·min/mL) | AUC R d | CL (mL/min/kg) | CL R e | t1/2 (min) | t1/2 R f | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Obs | Pre | Obs | Pre | Obs | Pre | Obs | Pre | ||||||
Rats | 0.5 | 3.09 | 3.78 | 1.22 | 146 | 129 | 0.88 | 107 | 58.2 | 0.54 | |||
1 | 6.25 | 7.56 | 1.21 | 149 | 0.87 | 98.0 | 0.59 | ||||||
2 | 16.0 | 15.1 | 0.95 | 122 | 1.06 | 60.2 | 0.97 | ||||||
1.0 b | 6.82 | 7.46 | 1.09 | 135 | 131 | 0.97 | 97.5 | 58.0 | 0.60 | ||||
Dogs | 0.25 | 3.31 ± 0.717 | 3.60 | 1.09 | 71.7 ± 21.0 | 67.7 | 0.94 | 113 ± 51.2 | 76.7 | 0.68 | |||
0.5 | 7.50 ± 1.18 | 7.19 | 0.96 | 63.1 ± 10.4 | 1.07 | 119 ± 12.2 | 0.64 | ||||||
1 | 13.3 ± 2.14 | 14.4 | 1.08 | 71.2 ± 14.9 | 0.95 | 118 ± 40.8 | 0.65 | ||||||
0.5 b | 6.06 ± 1.03 | 7.19 | 1.19 | 77.4 ± 14.3 | 67.7 | 0.87 | 126 ± 38.2 | 76.7 | 0.61 | ||||
Humans | 10 | 55.1 ± 11.6 | 70.1 | 1.27 | 5.06 ± 0.506 | 5.76 | 1.14 | 30.7 ± 3.17 | 24.3 | 0.79 | 231 ± 99.8 | 179 | 0.77 |
20 | 90.5 ± 15.7 | 140 | 1.55 | 9.81 ± 1.80 | 11.5 | 1.17 | 33.8 ± 5.61 | 0.72 | 251 ± 73.7 | 0.71 | |||
40 | 210 ± 71.4 | 281 | 1.34 | 18.3 ± 4.38 | 23.0 | 1.26 | 35.1 ± 12.0 | 0.69 | 219 ± 67.9 | 0.82 | |||
10 b | 53.1 ± 9.21 | 70.5 | 1.33 | 5.38 ± 0.895 | 5.87 | 1.09 | 26.5 ± 5.67 | 23.9 | 0.90 | 348 ± 147 | 180 | 0.52 | |
20 b | 92.7 ± 12.6 | 141 | 1.52 | 11.4 ± 1.82 | 11.7 | 1.03 | 25.9 ± 4.18 | 0.92 | 384 ± 172 | 0.47 | |||
40 b | 203 ± 61.6 | 282 | 1.39 | 20.3 ± 5.11 | 23.5 | 1.16 | 28.0 ± 7.59 | 0.85 | 350 ± 119 | 0.51 |
Fold Error (Change/Control) | ||||
---|---|---|---|---|
Cmax | AUClast | CL | t1/2 | |
Control 1-fold | / | / | / | / |
Liver metabolic velocity 10-fold | 0.97 | 0.96 | 1.04 | 0.99 |
Liver metabolic velocity 1/10-fold | 1.22 | 1.36 | 0.73 | 1.08 |
Kidney metabolic velocity 10-fold | 0.81 | 0.76 | 1.33 | 0.95 |
Kidney metabolic velocity 1/10-fold | 1.16 | 1.24 | 0.80 | 1.05 |
fup 2-fold | 0.91 | 0.88 | 1.14 | 0.98 |
fup 1/2-fold | 1.10 | 1.15 | 0.86 | 1.03 |
Kadipose:plasma 2-fold | 1.00 | 0.99 | 1.00 | 1.12 |
Kadipose:plasma ½-fold | 1.00 | 1.00 | 1.00 | 0.91 |
hepatic blood flow 2-fold | 0.68 | 0.60 | 1.68 | 0.92 |
hepatic blood flow 1/2-fold | 1.34 | 1.56 | 0.63 | 1.14 |
kidneys blood flow 2-fold | 0.97 | 0.95 | 1.05 | 0.99 |
kidneys blood flow 1/2-fold | 1.04 | 1.06 | 0.94 | 1.01 |
Method | mg | Fold Error (Predicted/Observed) | GMFE | RMSE | |||
---|---|---|---|---|---|---|---|
Cmax | AUC | CL | t1/2 | ||||
PBPKhuman | 10 | 1.27 | 1.11 | 0.89 | 0.77 | 0.94 | 0.17 |
20 | 1.55 | 1.13 | 0.86 | 0.71 | |||
40 | 1.34 | 1.24 | 0.77 | 0.82 | |||
SSSrat | 10 | 0.46 | 0.76 | 1.30 | 1.16 | 0.97 | 0.22 |
20 | 0.56 | 0.78 | 1.25 | 1.06 | |||
40 | 0.48 | 0.85 | 1.12 | 1.22 | |||
SSSdog | 10 | 0.64 | 0.68 | 1.45 | 0.90 | 0.79 | 0.19 |
20 | 0.78 | 0.70 | 1.39 | 0.83 | |||
40 | 0.68 | 0.76 | 1.25 | 0.95 | |||
Elementary TSrat-dog | 10 | 0.63 | 0.77 | 1.28 | 1.00 | 0.97 | 0.20 |
20 | 0.77 | 0.79 | 1.23 | 0.92 | |||
40 | 0.66 | 0.86 | 1.10 | 1.05 | |||
Complex TSrat-dog | 10 | 0.61 | 0.64 | 1.56 | 0.65 | 0.71 | 0.22 |
20 | 0.75 | 0.65 | 1.50 | 0.60 | |||
40 | 0.64 | 0.71 | 1.34 | 0.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Kong, W.; Wang, Z.; Liu, X.; Liu, L. Prediction of SPT-07A Pharmacokinetics in Rats, Dogs, and Humans Using a Physiologically-Based Pharmacokinetic Model and In Vitro Data. Pharmaceutics 2024, 16, 1596. https://doi.org/10.3390/pharmaceutics16121596
Zhu X, Kong W, Wang Z, Liu X, Liu L. Prediction of SPT-07A Pharmacokinetics in Rats, Dogs, and Humans Using a Physiologically-Based Pharmacokinetic Model and In Vitro Data. Pharmaceutics. 2024; 16(12):1596. https://doi.org/10.3390/pharmaceutics16121596
Chicago/Turabian StyleZhu, Xiaoqiang, Weimin Kong, Zehua Wang, Xiaodong Liu, and Li Liu. 2024. "Prediction of SPT-07A Pharmacokinetics in Rats, Dogs, and Humans Using a Physiologically-Based Pharmacokinetic Model and In Vitro Data" Pharmaceutics 16, no. 12: 1596. https://doi.org/10.3390/pharmaceutics16121596
APA StyleZhu, X., Kong, W., Wang, Z., Liu, X., & Liu, L. (2024). Prediction of SPT-07A Pharmacokinetics in Rats, Dogs, and Humans Using a Physiologically-Based Pharmacokinetic Model and In Vitro Data. Pharmaceutics, 16(12), 1596. https://doi.org/10.3390/pharmaceutics16121596