Imageable AuNP-ECM Hydrogel Tissue Implants for Regenerative Medicine
<p>Schematic illustration of the technology. AuNPs are conjugated with Gd and encapsulated within an ECM-based hydrogel. The hydrogel is injected into the left ventricle of mice post ischemia–reperfusion injury, allowing to determine the location of the treatment in relation to scar tissue in the heart.</p> "> Figure 2
<p>Gd-AuNP characterization. (<b>a</b>) TEM image of the pristine AuNPs; scale bar = 200 nm. (<b>b</b>) Size distribution of the AuNPs. (<b>c</b>) Absorbance spectrum of the AuNPs. (<b>d</b>) Scheme of the Gd-AuNPs. (<b>e</b>) FTIR analysis of the different steps in Gd-AuNP synthesis: pristine AuNPs in orange, DTPA complex in green, GdL complex in pink, and Gd-AuNPs in purple. (<b>f</b>) Diameter of the conjugated AuNPs as indicated by DLS. (<b>g</b>) Charge of the conjugated AuNPs as indicated by zeta potential measurements. (<b>h</b>–<b>j</b>) TEM images of (<b>h</b>) pristine AuNPs and (<b>i</b>,<b>j</b>) Gd-AuNPs after negative staining; scale bars = 100, 50, and 25 nm, respectively.</p> "> Figure 3
<p>Gd-AuNP nanocomposite hydrogel characterization. (<b>a</b>) An image of the nanocomposite hydrogel after gelation at 37 °C. (<b>b</b>,<b>c</b>) HRSEM images of the nanocomposite hydrogel. The NPs appear in white. Scale bars (<b>b</b>) = 1 μm, (<b>c</b>) = 300 nm. (<b>d</b>) EDX analysis of the composite hydrogel. (<b>e</b>,<b>f</b>) Rheological properties of the composite hydrogel over time (<b>e</b>) and 15 min post gelation in 37 °C (<b>f</b>).</p> "> Figure 4
<p>Engineered cardiac implants within the nanocomposite hydrogel. (<b>a</b>,<b>b</b>) Viability test within the nanocomposite (<b>a</b>) and pristine hydrogels (<b>b</b>), 1 week post encapsulation; scale bar = 100 μm. (<b>c</b>,<b>d</b>) Cardiac sarcomeric actinin immunostaining of the nanocomposite implants on day 7 (<b>c</b>) and day 14 (<b>d</b>). Actinin in pink, nuclei in blue; scale bar = 25 μm. (<b>e</b>) Contraction rate of the nanocomposite implant before and after the addition of 1 µM noradrenaline.</p> "> Figure 5
<p>Detection of the nanocomposite hydrogel by MRI. (<b>a</b>) MRI imaging of AuNP-Gd, AuNP, and water solutions. (<b>b</b>) MRI imaging of droplets of the nanocomposite hydrogel, pristine hydrogel, and water. (<b>c</b>–<b>f</b>) Images of the heart slice (<b>c</b>,<b>e</b>) and ex vivo MRI imaging (<b>d</b>,<b>f</b>) of the treated (<b>c</b>,<b>d</b>) and untreated (<b>e</b>,<b>f</b>) hearts, 6 weeks post IRI surgery; scale bar = 1 mm.</p> "> Figure 6
<p>MRI imaging of the heart. (<b>a</b>–<b>d</b>) MRI images for (<b>a</b>) untreated, (<b>b</b>) pristine hydrogel-, (<b>c</b>) AuNP composite hydrogel-, and (<b>d</b>) Gd-AuNP composite hydrogel-treated mice, 6 weeks post IRI. The white arrow in (<b>d</b>) indicates the location of the Gd-AuNP composite hydrogel (black area), which was not observed in all other treatments. (<b>e</b>,<b>f</b>) MRI analysis monitoring the location of Gd-AuNP composite hydrogel (dashed area) over time. (<b>e</b>) SAX (short axis slices) and (<b>f</b>) LAX (long axis slices) at (<b>I</b>) 1 week, (<b>II</b>) 4 weeks, and (<b>III</b>) 6 weeks post IRI; scale bar = 1 mm.</p> "> Figure 7
<p>Imaging the coverage area of the treatment in relation to scar area. (<b>a</b>–<b>d</b>) Segmentation process for detection of the Gd-AuNP nanocomposite hydrogel (yellow). (<b>a</b>) LV wall in MRI imaging. (<b>b</b>) K-means algorithm, k = 4. (<b>c</b>) The location of the Gd-AuNPs composite hydrogel as detected by the algorithm. (<b>d</b>) Final MRI image with the location of the hydrogel. (<b>e</b>–<b>h</b>) Subtraction process for detection of the scar tissue (red). (<b>e</b>) LV wall post systemic injection of Gd. (<b>f</b>) LV wall before systemic injection of Gd. (<b>g</b>) Subtraction MRI image. (<b>h</b>) Final MRI image with the location of the scar tissue after noise filtering. (<b>i</b>) Merged image of (<b>d</b>,<b>h</b>). The nanocomposite hydrogel (yellow) with respect to the scar tissue (red), 45 min post systemic injection of Gd-DTPA solution; scale bars = 1 mm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. AuNP Synthesis
2.2. Gadolinium-Coated Gold Nanoparticle (Gd-AuNP) Synthesis
2.3. AuNP and Gd-AuNP Characterization
2.4. ECM-Based Hydrogel Preparation
2.4.1. High-Resolution Scanning Electron Microscopy (HRSEM)
2.4.2. Energy-Dispersive X-ray Spectroscopy (EDX)
2.4.3. Rheological Properties
2.5. Induced Pluripotent Stem Cell (iPSC) Culture
2.5.1. Cardiomyocyte Differentiation from iPSCs
2.5.2. AuNP Implant Preparation
2.5.3. Cell Viability
2.5.4. Implant Immunostaining
2.5.5. Norepinephrine Response Experiment
2.6. Phantom Exp
2.7. Animal Study
2.7.1. Ischemia–Reperfusion Injury (IRI) Surgery
2.7.2. MRI Imaging
2.8. Assessment of Scar Tissue and Gd-AuNP Location
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R. Heart disease and stroke Statistics-2019 update a report from the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef] [PubMed]
- Kayani, W.T.; Ballantyne, C.M. Improving outcomes after myocardial infarction in the US population. J. Am. Heart Assoc. 2018, 7, e008407. [Google Scholar] [CrossRef] [PubMed]
- Sutton, M.G.S.J.; Sharpe, N. Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation 2000, 101, 2981–2988. [Google Scholar] [CrossRef] [PubMed]
- Yellon, D.M.; Hausenloy, D.J. Myocardial reperfusion injury. N. Engl. J. Med. 2007, 357, 1121–1135. [Google Scholar] [CrossRef]
- Christie, J.D.; Edwards, L.B.; Kucheryavaya, A.Y.; Benden, C.; Dobbels, F.; Kirk, R.; Rahmel, A.O.; Stehlik, J.; Hertz, M.I. The Registry of the International Society for Heart and Lung Transplantation: Twenty-eighth adult lung and heart-lung transplant report—2011. J. Heart Lung Transplant. 2011, 30, 1104–1122. [Google Scholar] [CrossRef]
- Kittleson, M.M. New issues in heart transplantation for heart failure. Curr. Treat. Options Cardiovasc. Med. 2012, 14, 356–369. [Google Scholar] [CrossRef]
- Mehra, M.R.; Canter, C.E.; Hannan, M.M.; Semigran, M.J.; Uber, P.A.; Baran, D.A.; Danziger-Isakov, L.; Kirklin, J.K.; Kirk, R.; Kushwaha, S.S. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: A 10-year update. J. Heart Lung Transplant. 2016, 35, 1–23. [Google Scholar] [CrossRef]
- Tian, B.; Cohen-Karni, T.; Qing, Q.; Duan, X.; Xie, P.; Lieber, C.M. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 2010, 329, 830–834. [Google Scholar] [CrossRef]
- Hu, W.; Yang, C.; Guo, X.; Wu, Y.; Loh, X.J.; Li, Z.; Wu, Y.-L.; Wu, C. Research Advances of Injectable Functional Hydrogel Materials in the Treatment of Myocardial Infarction. Gels 2022, 8, 423. [Google Scholar] [CrossRef]
- Ifkovits, J.L.; Tous, E.; Minakawa, M.; Morita, M.; Robb, J.D.; Koomalsingh, K.J.; Gorman, J.H., III; Gorman, R.C.; Burdick, J.A. Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc. Natl. Acad. Sci. USA 2010, 107, 11507–11512. [Google Scholar] [CrossRef]
- Peña, B.; Laughter, M.; Jett, S.; Rowland, T.J.; Taylor, M.R.; Mestroni, L.; Park, D. Injectable hydrogels for cardiac tissue engineering. Macromol. Biosci. 2018, 18, 1800079. [Google Scholar] [CrossRef] [PubMed]
- Rodell, C.B.; Lee, M.E.; Wang, H.; Takebayashi, S.; Takayama, T.; Kawamura, T.; Arkles, J.S.; Dusaj, N.N.; Dorsey, S.M.; Witschey, W.R. Injectable shear-thinning hydrogels for minimally invasive delivery to infarcted myocardium to limit left ventricular remodeling. Circ. Cardiovasc. Interv. 2016, 9, e004058. [Google Scholar] [CrossRef] [PubMed]
- Shilo, M.; Oved, H.; Wertheim, L.; Gal, I.; Noor, N.; Green, O.; Baruch, E.; Shabat, D.; Shapira, A.; Dvir, T. Injectable Nanocomposite Implants Reduce ROS Accumulation and Improve Heart Function after Infarction. Adv. Sci. 2021, 8, e2102919. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Liu, W. Functional hydrogels for the treatment of myocardial infarction. NPG Asia Mater. 2022, 14, 9. [Google Scholar] [CrossRef]
- Vial, S.; Reis, R.L.; Oliveira, J.M. Recent advances using gold nanoparticles as a promising multimodal tool for tissue engineering and regenerative medicine. Curr. Opin. Solid State Mater. Sci. 2017, 21, 92–112. [Google Scholar] [CrossRef]
- Yadid, M.; Feiner, R.; Dvir, T. Gold nanoparticle-integrated scaffolds for tissue engineering and regenerative medicine. Nano Lett. 2019, 19, 2198–2206. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Wang, X.; Burda, C.; Basilion, J.P. Recent development of gold nanoparticles as contrast agents for cancer diagnosis. Cancers 2021, 13, 1825. [Google Scholar] [CrossRef]
- Nicholls, F.J.; Rotz, M.W.; Ghuman, H.; MacRenaris, K.W.; Meade, T.J.; Modo, M. DNA–gadolinium–gold nanoparticles for in vivo T1 MR imaging of transplanted human neural stem cells. Biomaterials 2016, 77, 291–306. [Google Scholar] [CrossRef]
- Perry, H.L.; Botnar, R.M.; Wilton-Ely, J.D. Gold nanomaterials functionalised with gadolinium chelates and their application in multimodal imaging and therapy. Chem. Commun. 2020, 56, 4037–4046. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Park, J.-A.; Kim, H.-K.; Kim, J.-H.; Jeong, S.-W.; Jung, J.-C.; Lee, G.-H.; Lee, J.; Chang, Y.; Kim, T.-J. Gold nanoparticles functionalized by gadolinium–DTPA conjugate of cysteine as a multimodal bioimaging agent. Bioorganic Med. Chem. Lett. 2010, 20, 2287–2291. [Google Scholar] [CrossRef] [PubMed]
- Nezafat, Z.; Mohazzab, B.F.; Jaleh, B.; Nasrollahzadeh, M.; Baran, T.; Shokouhimehr, M. A promising nanocatalyst: Upgraded Kraft lignin by titania and palladium nanoparticles for organic dyes reduction. Inorg. Chem. Commun. 2021, 130, 108746. [Google Scholar] [CrossRef]
- Edri, R.; Gal, I.; Noor, N.; Harel, T.; Fleischer, S.; Adadi, N.; Green, O.; Shabat, D.; Heller, L.; Shapira, A. Personalized hydrogels for engineering diverse fully autologous tissue implants. Adv. Mater. 2019, 31, 1803895. [Google Scholar] [CrossRef] [PubMed]
- Brandl, F.; Sommer, F.; Goepferich, A. Rational design of hydrogels for tissue engineering: Impact of physical factors on cell behavior. Biomaterials 2007, 28, 134–146. [Google Scholar] [CrossRef]
- Caliari, S.R.; Burdick, J.A. A practical guide to hydrogels for cell culture. Nat. Methods 2016, 13, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Kloxin, A.M.; Kloxin, C.J.; Bowman, C.N.; Anseth, K.S. Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv. Mater. 2010, 22, 3484–3494. [Google Scholar] [CrossRef]
- Lou, J.; Stowers, R.; Nam, S.; Xia, Y.; Chaudhuri, O. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials 2018, 154, 213–222. [Google Scholar] [CrossRef]
- Tibbitt, M.W.; Anseth, K.S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 2009, 103, 655–663. [Google Scholar] [CrossRef]
- Aydingoz, U.; Kerimoglu, U.; Canyigit, M. “Black” Contrast Effect During Magnetic Resonance Arthrography Attributable to Inadvertent Administration of Excessive Gadolinium Chelates. J. Comput. Assist. Tomogr. 2005, 29, 333–335. [Google Scholar] [CrossRef]
- Bleicher, A.; Kanal, E. A serial dilution study of gadolinium-based MR imaging contrast agents. Am. J. Neuroradiol. 2008, 29, 668–673. [Google Scholar] [CrossRef]
- Genovese, E.A.; Bertolotti, E.; Fugazzola, C. Erroneous intra-articular injection of gadolinium solution at 0.5 mol/l concentration: A case report. Cases J. 2009, 2, 9320. [Google Scholar] [CrossRef] [PubMed]
- Akkaya, M.; Higuchi, K.; Koopmann, M.; Burgon, N.; Erdogan, E.; Damal, K.; Kholmovski, E.; McGann, C.; Marrouche, N.F. Relationship between left atrial tissue structural remodelling detected using late gadolinium enhancement MRI and left ventricular hypertrophy in patients with atrial fibrillation. Europace 2013, 15, 1725–1732. [Google Scholar] [CrossRef] [PubMed]
- Bisbal, F.; Guiu, E.; Cabanas-Grandío, P.; Berruezo, A.; Prat-Gonzalez, S.; Vidal, B.; Garrido, C.; Andreu, D.; Fernandez-Armenta, J.; Tolosana, J.M. CMR-guided approach to localize and ablate gaps in repeat AF ablation procedure. JACC Cardiovasc. Imaging 2014, 7, 653–663. [Google Scholar] [CrossRef]
- McGann, C.J.; Kholmovski, E.G.; Oakes, R.S.; Blauer, J.J.; Daccarett, M.; Segerson, N.; Airey, K.J.; Akoum, N.; Fish, E.; Badger, T.J. New magnetic resonance imaging-based method for defining the extent of left atrial wall injury after the ablation of atrial fibrillation. J. Am. Coll. Cardiol. 2008, 52, 1263–1271. [Google Scholar] [CrossRef]
- Oakes, R.S.; Badger, T.J.; Kholmovski, E.G.; Akoum, N.; Burgon, N.S.; Fish, E.N.; Blauer, J.J.; Rao, S.N.; DiBella, E.V.; Segerson, N.M. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation 2009, 119, 1758–1767. [Google Scholar] [CrossRef] [PubMed]
- Peters, D.C.; Wylie, J.V.; Hauser, T.H.; Kissinger, K.V.; Botnar, R.M.; Essebag, V.; Josephson, M.E.; Manning, W.J. Detection of pulmonary vein and left atrial scar after catheter ablation with three-dimensional navigator-gated delayed enhancement MR imaging: Initial experience. Radiology 2007, 243, 690–695. [Google Scholar] [CrossRef]
- Wu, Y.; Tang, Z.; Li, B.; Firmin, D.; Yang, G. Recent advances in fibrosis and scar segmentation from cardiac mri: A state-of-the-art review and future perspectives. Front. Physiol. 2021, 12, 709230. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shilo, M.; Baruch, E.-S.; Wertheim, L.; Oved, H.; Shapira, A.; Dvir, T. Imageable AuNP-ECM Hydrogel Tissue Implants for Regenerative Medicine. Pharmaceutics 2023, 15, 1298. https://doi.org/10.3390/pharmaceutics15041298
Shilo M, Baruch E-S, Wertheim L, Oved H, Shapira A, Dvir T. Imageable AuNP-ECM Hydrogel Tissue Implants for Regenerative Medicine. Pharmaceutics. 2023; 15(4):1298. https://doi.org/10.3390/pharmaceutics15041298
Chicago/Turabian StyleShilo, Malka, Ester-Sapir Baruch, Lior Wertheim, Hadas Oved, Assaf Shapira, and Tal Dvir. 2023. "Imageable AuNP-ECM Hydrogel Tissue Implants for Regenerative Medicine" Pharmaceutics 15, no. 4: 1298. https://doi.org/10.3390/pharmaceutics15041298
APA StyleShilo, M., Baruch, E. -S., Wertheim, L., Oved, H., Shapira, A., & Dvir, T. (2023). Imageable AuNP-ECM Hydrogel Tissue Implants for Regenerative Medicine. Pharmaceutics, 15(4), 1298. https://doi.org/10.3390/pharmaceutics15041298