Formulation and Characterization of Electrospun Nanofibers for Melatonin Ocular Delivery
<p>Schematic illustration of the production of melatonin-loaded PLA nanofibers.</p> "> Figure 2
<p>Schematic illustration of the production of melatonin-loaded PVA nanofibers.</p> "> Figure 3
<p>SEM images (magnification: 500× and 3500×) and diameter distribution of Melatonin-loaded PLA nanofibers with different concentration of drug 0.1% <span class="html-italic">w</span>/<span class="html-italic">w</span> (<b>A</b>), 0.3% <span class="html-italic">w</span>/<span class="html-italic">w</span> (<b>B</b>), 0.5% <span class="html-italic">w</span>/<span class="html-italic">w</span> (<b>C</b>), and Melatonin-loaded PLA nanofibers with Tween<sup>®</sup> 80 and different concentrations of drug 0.1% <span class="html-italic">w</span>/<span class="html-italic">w</span> (<b>D</b>), 0.3% <span class="html-italic">w</span>/<span class="html-italic">w</span> (<b>E</b>), 0.5% <span class="html-italic">w</span>/<span class="html-italic">w</span> (<b>F</b>).</p> "> Figure 4
<p>SEM images (magnification: 500× and 3500×) and diameter distribution of Melatonin-loaded PVA nanofibers with different concentration of drug 0.1% <span class="html-italic">w/w</span> (<b>A</b>), 0.3% <span class="html-italic">w/w</span> (<b>B</b>), 0.5% <span class="html-italic">w/w</span> (<b>C</b>), and Melatonin-loaded PVA nanofibers with Tween<sup>®</sup> 80 and different concentrations of drug 0.1% <span class="html-italic">w/w</span> (<b>D</b>), 0.3% <span class="html-italic">w/w</span> (<b>E</b>), 0.5% <span class="html-italic">w/w</span> (<b>F</b>).</p> "> Figure 5
<p>DSC curves of (<b>A</b>) Melatonin (a), PLA polymer (b), physical mixture MEL + PLA polymer (c), empty-PLA nanofibers (d), Melatonin-loaded PLA nanofibers with different concentration of drug 0.1% <span class="html-italic">w/w</span> (e), 0.3% <span class="html-italic">w/w</span> (f), 0.5% <span class="html-italic">w/w</span> (g), and Melatonin-loaded PLA nanofibers with Tween<sup>®</sup> 80 and different concentration of drug 0.1% <span class="html-italic">w/w</span> (h), 0.3% <span class="html-italic">w/w</span> (i), 0.5% <span class="html-italic">w/w</span> (l); and (<b>B</b>) Melatonin (a), PVA polymer (b), physical mixture MEL+PVA polymer (c), empty-PVA nanofibers (d), Melatonin-loaded PVA nanofibers with different concentration of drug 0.1% <span class="html-italic">w/w</span> (e), 0.3% <span class="html-italic">w/w</span> (f), 0.5% <span class="html-italic">w/w</span> (g), and Melatonin-loaded PVA nanofibers with Tween<sup>®</sup> 80 and different concentration of drug 0.1% <span class="html-italic">w/w</span> (h), 0.3% <span class="html-italic">w/w</span> (i), 0.5% <span class="html-italic">w/w</span> (l).</p> "> Figure 6
<p>FT-IR curves of (<b>A</b>) Melatonin (a), PLA polymer (b), Tween<sup>®</sup> 80 (c), physical mixture MEL+PLA polymer (d), empty-PLA nanofibers (e), Melatonin-loaded PLA nanofibers with different concentration of drug 0.1% <span class="html-italic">w/w</span> (f), 0.3% <span class="html-italic">w/w</span> (g), 0.5% <span class="html-italic">w/w</span> (h), and Melatonin-loaded PLA nanofibers with Tween<sup>®</sup> 80 and different concentration of drug 0.1% <span class="html-italic">w/w</span> (i), 0.3% <span class="html-italic">w/w</span> (l), 0.5% <span class="html-italic">w/w</span> (m); and (<b>B</b>) Melatonin (a), PVA polymer (b), Tween<sup>®</sup> 80 (c), physical mixture MEL+PVA polymer (d), empty-PVA nanofibers (e), Melatonin-loaded PVA nanofibers with different concentration of drug 0.1% <span class="html-italic">w/w</span> (f), 0.3% <span class="html-italic">w/w</span> (g), 0.5% <span class="html-italic">w/w</span> (h), and Melatonin-loaded PVA nanofibers with Tween<sup>®</sup> 80 and different concentration of drug 0.1% <span class="html-italic">w/w</span> (i), 0.3% <span class="html-italic">w/w</span> (l), 0.5% <span class="html-italic">w/w</span> (m).</p> "> Figure 7
<p>In vitro release profiles of MEL-loaded PLA nanofibers Melatonin-loaded PLA nanofibers with different concentration of drug 0.1% <span class="html-italic">w/w</span> (LM1), 0.3% <span class="html-italic">w/w</span> (LM2), 0.5% <span class="html-italic">w/w</span> (LM3), and Melatonin-loaded PLA nanofibers with Tween<sup>®</sup> 80 and different concentration of drug 0.1% <span class="html-italic">w/w</span> (LMT1), 0.3% <span class="html-italic">w/w</span> (LMT2), 0.5% <span class="html-italic">w/w</span> (LMT3) in phosphate buffered solution (pH 7.4) at 37 °C. Each point represents the mean value of three different experiments ±S.D.</p> "> Figure 8
<p>In vitro release profiles of MEL-loaded PVA nanofibers Melatonin-loaded PVA nanofibers with different concentration of drug 0.1% <span class="html-italic">w/w</span> (PM1), 0.3% <span class="html-italic">w/w</span> (PM2), 0.5% <span class="html-italic">w/w</span> (PM3), and Melatonin-loaded PVA nanofibers with Tween<sup>®</sup> 80 and different concentration of drug 0.1% <span class="html-italic">w/w</span> (PMT1), 0.3% <span class="html-italic">w/w</span> (PMT2), 0.5% <span class="html-italic">w/w</span> (PMT3) in phosphate buffered solution (pH 7.4) at 37 °C. Each point represents the mean value of three different experiments ± S.D.</p> "> Figure 9
<p>Images of the PVA (top) and PLA-based nanofibres (bottom) in the dry state, after addition of the medium (time 0), after 30 min and at the end of the experiment (24 h) at the two pH conditions tested (5.5 and 7.4).</p> "> Figure 10
<p>Swelling behavior of electrospun PLA-based nanofibers at pH 7.4 and 5.5.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Electrospinning of PLA Nanofibers
2.3. Preparation and Electrospinning of PVA Nanofibers
2.4. Scanning Electron Microscopy
2.5. Thermal Characterization of Nanofibers
2.6. FT-IR Spectroscopy Measurements
2.7. In Vitro Drug Release Study
2.8. Swelling Properties
3. Results and Discussion
3.1. Morphological Characterization
3.2. Differential Scanning Calorimetry Measurements
3.3. FT-IR Analysis
3.4. In Vitro Drug Release from the Nanofibers
3.5. Swelling Properties in Aqueous Media
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dammak, A.; Huete-Toral, F.; Carpena-Torres, C.; Martin, A.; Pastrana, C.; Carracedo, G. From Oxidative Stress to Inflammation in the Posterior Ocular Diseases: Diagnosis and Treatment. Pharmaceutics 2021, 13, 1376. [Google Scholar] [CrossRef] [PubMed]
- Komeima, K.; Rogers, B.S.; Lu, L.; Campochiaro, P.A. Antioxidants Reduce Cone Cell Death in a Model of Retinitis Pigmentosa. Proc. Natl. Acad. Sci. USA 2006, 103, 11300–11305. [Google Scholar] [CrossRef] [PubMed]
- Alkozi, H.A.; Navarro, G.; Franco, R.; Pintor, J. Melatonin and the Control of Intraocular Pressure. Prog. Retin. Eye Res. 2020, 75, 100798. [Google Scholar] [CrossRef] [PubMed]
- Diéguez, H.H.; González Fleitas, M.F.; Aranda, M.L.; Calanni, J.S.; Keller Sarmiento, M.I.; Chianelli, M.S.; Alaimo, A.; Sande, P.H.; Romeo, H.E.; Rosenstein, R.E.; et al. Melatonin Protects the Retina from Experimental Nonexudative Age-Related Macular Degeneration in Mice. J. Pineal Res. 2020, 68, e12643. [Google Scholar] [CrossRef]
- Gubin, D.; Neroev, V.; Malishevskaya, T.; Cornelissen, G.; Astakhov, S.Y.; Kolomeichuk, S.; Yuzhakova, N.; Kabitskaya, Y.; Weinert, D. Melatonin Mitigates Disrupted Circadian Rhythms, Lowers Intraocular Pressure, and Improves Retinal Ganglion Cells Function in Glaucoma. J. Pineal Res. 2021, 70, e12730. [Google Scholar] [CrossRef]
- Carracedo-Rodríguez, G.; Martínez-Águila, A.; Rodriguez-Pomar, C.; Bodas-Romero, J.; Sanchez-Naves, J.; Pintor, J. Effect of Nutritional Supplement Based on Melatonin on the Intraocular Pressure in Normotensive Subjects. Int. Ophthalmol. 2020, 40, 419–422. [Google Scholar] [CrossRef]
- Ferreira de Melo, I.M.; Martins Ferreira, C.G.; Lima da Silva Souza, E.H.; Almeida, L.L.; Bezerra de Sá, F.; Cavalcanti Lapa Neto, C.J.; Paz de Castro, M.V.; Teixeira, V.W.; Coelho Teixeira, Á.A. Melatonin Regulates the Expression of Inflammatory Cytokines, VEGF and Apoptosis in Diabetic Retinopathy in Rats. Chem. Biol. Interact. 2020, 327, 109183. [Google Scholar] [CrossRef]
- Pescosolido, N.; Gatto, V.; Stefanucci, A.; Rusciano, D. Oral Treatment with the Melatonin Agonist Agomelatine Lowers the Intraocular Pressure of Glaucoma Patients. Ophthalmic Physiol. Opt. 2015, 35, 201–205. [Google Scholar] [CrossRef]
- Harpsøe, N.G.; Andersen, L.P.H.; Gögenur, I.; Rosenberg, J. Clinical Pharmacokinetics of Melatonin: A Systematic Review. Eur. J. Clin. Pharmacol. 2015, 71, 901–909. [Google Scholar] [CrossRef]
- Andersen, L.P.H.; Werner, M.U.; Rosenkilde, M.M.; Harpsøe, N.G.; Fuglsang, H.; Rosenberg, J.; Gögenur, I. Pharmacokinetics of Oral and Intravenous Melatonin in Healthy Volunteers. BMC Pharmacol. Toxicol. 2016, 17, 8. [Google Scholar] [CrossRef]
- Musumeci, T.; Bucolo, C.; Carbone, C.; Pignatello, R.; Drago, F.; Puglisi, G. Polymeric Nanoparticles Augment the Ocular Hypotensive Effect of Melatonin in Rabbits. Int. J. Pharm. 2013, 440, 135–140. [Google Scholar] [CrossRef]
- Quinteros, D.; Vicario-De-La-Torre, M.; Andrés-Guerrero, V.; Palma, S.; Allemandi, D.; Herrero-Vanrell, R.; Molina-Martínez, I.T. Hybrid Formulations of Liposomes and Bioadhesive Polymers Improve the Hypotensive Effect of the Melatonin Analogue 5-MCA-NAT in Rabbit Eyes. PLoS ONE 2014, 9, e110344. [Google Scholar] [CrossRef]
- Hafner, A.; Lovrić, J.; Romić, M.D.; Juretić, M.; Pepić, I.; Cetina-Čižmek, B.; Filipović-Grčić, J. Evaluation of Cationic Nanosystems with Melatonin Using an Eye-Related Bioavailability Prediction Model. Eur. J. Pharm. Sci. 2015, 75, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Carbone, C.; Manno, D.; Serra, A.; Musumeci, T.; Pepe, V.; Tisserand, C.; Puglisi, G. Innovative Hybrid vs. Polymeric Nanocapsules: The Influence of the Cationic Lipid Coating on the “4S.” Colloids Surf. B Biointerfaces 2016, 141, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Bessone, C.D.V.; Martinez, S.M.; Luna, J.D.; Marquez, M.A.; Ramírez, M.L.; Allemandi, D.A.; Carpentieri, Á.R.; Quinteros, D.A. Neuroprotective Effect of Melatonin Loaded in Ethylcellulose Nanoparticles Applied Topically in a Retinal Degeneration Model in Rabbits. Exp. Eye Res. 2020, 200, 108222. [Google Scholar] [CrossRef]
- Dal Monte, M.; Cammalleri, M.; Amato, R.; Pezzino, S.; Corsaro, R.; Bagnoli, P.; Rusciano, D. A Topical Formulation of Melatoninergic Compounds Exerts Strong Hypotensive and Neuroprotective Effects in a Rat Model of Hypertensive Glaucoma. Int. J. Mol. Sci. 2020, 21, 9267. [Google Scholar] [CrossRef] [PubMed]
- Romeo, A.; Bonaccorso, A.; Carbone, C.; Lupo, G.; Daniela Anfuso, C.; Giurdanella, G.; Caggia, C.; Randazzo, C.; Russo, N.; Luca Romano, G.; et al. Melatonin Loaded Hybrid Nanomedicine: DoE Approach, Optimization and in Vitro Study on Diabetic Retinopathy Model. Int. J. Pharm. 2022, 627, 122195. [Google Scholar] [CrossRef] [PubMed]
- Meraz-Dávila, S.; Pérez-García, C.E.; Feregrino-Perez, A.A. Challenges and Advantages of Electrospun Nanofibers in Agriculture: A Review. Mater. Res. Express 2021, 8, 042001. [Google Scholar] [CrossRef]
- Subbiah, T.; Bhat, G.S.; Tock, R.W.; Parameswaran, S.; Ramkumar, S.S. Electrospinning of Nanofibers. J. Appl. Polym. Sci. 2005, 96, 557–569. [Google Scholar] [CrossRef]
- Wu, T.; Ding, M.; Shi, C.; Qiao, Y.; Wang, P.; Qiao, R.; Wang, X.; Zhong, J. Resorbable Polymer Electrospun Nanofibers: History, Shapes and Application for Tissue Engineering. Chinese Chem. Lett. 2020, 31, 617–625. [Google Scholar] [CrossRef]
- Bhattarai, R.S.; Das, A.; Alzhrani, R.M.; Kang, D.; Bhaduri, S.B.; Boddu, S.H.S. Comparison of Electrospun and Solvent Cast Polylactic Acid (PLA)/Poly(Vinyl Alcohol) (PVA) Inserts as Potential Ocular Drug Delivery Vehicles. Mater. Sci. Eng. C 2017, 77, 895–903. [Google Scholar] [CrossRef]
- Mirzaeei, S.; Taghe, S.; Asare-Addo, K.; Nokhodchi, A. Polyvinyl Alcohol/Chitosan Single-Layered and Polyvinyl Alcohol/Chitosan/Eudragit RL100 Multi-Layered Electrospun Nanofibers as an Ocular Matrix for the Controlled Release of Ofloxacin: An In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2021, 22, 170. [Google Scholar] [CrossRef] [PubMed]
- Grimaudo, M.A.; Concheiro, A.; Alvarez-Lorenzo, C. Crosslinked Hyaluronan Electrospun Nanofibers for Ferulic Acid Ocular Delivery. Pharmaceutics 2020, 12, 274. [Google Scholar] [CrossRef] [PubMed]
- Aburahma, M.H.; Mahmoud, A.A. Biodegradable Ocular Inserts for Sustained Delivery of Brimonidine Tartarate: Preparation and in Vitro/in Vivo Evaluation. AAPS PharmSciTech 2011, 12, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Kazsoki, A.; Omer, S.M.; Kovacs, Z. Formulation of Levocetirizine-Loaded Core—Shell Type Nanofibrous Orally Dissolving Webs as a Potential Alternative for Immediate Release Dosage Forms. Pharmaceutics 2022, 14, 1442. [Google Scholar] [CrossRef]
- Pourtalebi, L.; Ghazali, M.; Ashra, H.; Azadi, A. Heliyon A Comparison of Models for the Analysis of the Kinetics of Drug Release from PLGA-Based Nanoparticles. Heliyon 2020, 6, e03451. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Yu, X.; Markel, D.C.; Shi, T.; Ren, W. Coaxial PCL/PVA Electrospun Nanofibers: Osseointegration Enhancer and Controlled Drug Release Device. Biofabrication 2013, 5, 035006. [Google Scholar] [CrossRef]
- Park, J.C.; Ito, T.; Kim, K.O.; Kim, K.W.; Kim, B.S.; Khil, M.S.; Kim, H.Y.; Kim, I.S. Electrospun Poly(Vinyl Alcohol) Nanofibers: Effects of Degree of Hydrolysis and Enhanced Water Stability. Polym. J. 2010, 42, 273–276. [Google Scholar] [CrossRef]
- Mwiiri, F.K.; Rolf, D. Influence of PVA Molecular Weight and Concentration on Electrospinnability of Birch Bark Extract-Loaded Nanofibrous Scaffolds Intended for Enhanced Wound Healing. Molecules 2020, 25, 4799. [Google Scholar] [CrossRef]
- Duygulu, N.E.; Ciftci, F.; Ustundag, C.B. Electrospun Drug Blended Poly(Lactic Acid) (PLA) Nanofibers and Their Antimicrobial Activities. J. Polym. Res. 2020, 27, 232. [Google Scholar] [CrossRef]
- Pavezi, K.J.P.; Rocha, A.; Bonafé, E.G.; Martins, A.F. Electrospinning-Electrospraying of Poly(Acid Lactic) Solutions in Binary Chloroform/Formic Acid and Chloroform/Acetic Acid Mixtures. J. Mol. Liq. 2020, 320, 114448. [Google Scholar] [CrossRef]
- Mohiti-Asli, M.; Saha, S.; Murphy, S.V.; Gracz, H.; Pourdeyhimi, B.; Atala, A.; Loboa, E.G. Ibuprofen Loaded PLA Nanofibrous Scaffolds Increase Proliferation of Human Skin Cells in Vitro and Promote Healing of Full Thickness Incision Wounds In Vivo. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2017, 105, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Casasola, R.; Thomas, N.L.; Trybala, A.; Georgiadou, S. Electrospun Poly Lactic Acid (PLA) Fibres: Effect of Different Solvent Systems on Fibre Morphology and Diameter. Polymer 2014, 55, 4728–4737. [Google Scholar] [CrossRef]
- Kazsoki, A.; Farkas, A.; Balogh-weiser, D.; Mancuso, E.; Sharma, P.K. Novel Combination of Non-Invasive Morphological and Solid-State Characterisation of Drug-Loaded Core-Shell Electrospun Fi Bres. Int. J. Pharm. 2020, 587, 119706. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Mohamed, A.; Gordon, S.H.; Willett, J.L.; Sessa, D.J. DSC Study of Biodegradable Poly(Lactic Acid) and Poly(Hydroxy Ester Ether) Blends. Thermochim. Acta 2003, 406, 115–127. [Google Scholar] [CrossRef]
- Krstić, M.; Radojević, M.; Stojanović, D.; Radojević, V.; Uskoković, P.; Ibrić, S. Formulation and Characterization of Nanofibers and Films with Carvedilol Prepared by Electrospinning and Solution Casting Method. Eur. J. Pharm. Sci. 2017, 101, 160–166. [Google Scholar] [CrossRef]
- Kazsoki, A.; Szabó, P.; Domján, A.; Balázs, A.; Bozó, T.; Kellermayer, M.; Farkas, A.; Balogh-Weiser, D.; Pinke, B.; Darcsi, A.; et al. Microstructural Distinction of Electrospun Nanofibrous Drug Delivery Systems Formulated with Different Excipients. Mol. Pharm. 2018, 15, 4214–4225. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, N.; Mazlan, M.M.; Tawakkal, I.S.M.A.; Talib, R.A.; Kian, L.K.; Fouad, H.; Jawaid, M. Development of Active Agents Filled Polylactic Acid Films for Food Packaging Application. Int. J. Biol. Macromol. 2020, 163, 1451–1457. [Google Scholar] [CrossRef]
- Toledano-Osorio, M.; Aguilera, F.S.; Muñoz-Soto, E.; Osorio, E.; Toledano, M.; Escames, G.; Medina-Castillo, A.L.; Osorio, M.T.; López-López, M.T.; Vallecillo-Rivas, M.; et al. Melatonin-Doped Polymeric Nanoparticles Induce High Crystalline Apatite Formation in Root Dentin. Dent. Mater. 2021, 37, 1698–1713. [Google Scholar] [CrossRef]
- Korbag, I.; Mohamed Saleh, S. Studies on the Formation of Intermolecular Interactions and Structural Characterization of Polyvinyl Alcohol/Lignin Film. Int. J. Environ. Stud. 2016, 73, 226–235. [Google Scholar] [CrossRef]
- Sabirneeza, A.A.F.; Subhashini, S. Poly(Vinyl Alcohol–Proline) as Corrosion Inhibitor for Mild Steel in 1M Hydrochloric Acid. Int. J. Ind. Chem. 2014, 5, 111–120. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, A.; Wang, C.; Cui, B.; Sun, C.; Zhao, X.; Zeng, Z.; Shen, Y.; Gao, F.; Liu, G.; et al. Synthesis and Characterization of Emamectin-Benzoate Slow-Release Microspheres with Different Surfactants. Sci. Rep. 2017, 7, 12761. [Google Scholar] [CrossRef] [PubMed]
- Panda, B.P.; Wei, M.X.; Shivashekaregowda, N.K.H.; Patnaik, S. Design, Fabrication and Characterization of PVA/PLGA Electrospun Nanofibers Carriers for Improvement of Drug Delivery of Gliclazide in Type-2 Diabetes. Proceedings 2020, 78, 14. [Google Scholar] [CrossRef]
- Papadopoulou, V.; Kosmidis, K.; Vlachou, M.; Macheras, P. On the Use of the Weibull Function for the Discernment of Drug Release Mechanisms. Int. J. Pharm. 2006, 309, 44–50. [Google Scholar] [CrossRef]
- Tomic, I.; Vidis-Millward, A.; Mueller-Zsigmondy, M.; Cardot, J. Setting Accelerated Dissolution Test for PLGA Microspheres Containing Peptide, Investigation of Critical Parameters Affecting Drug Release Rate and Mechanism. Int. J. Pharm. 2016, 505, 42–51. [Google Scholar] [CrossRef]
- Schoeller, J.; Itel, F.; Wuertz-Kozak, K.; Fortunato, G.; Rossi, R.M. PH-Responsive Electrospun Nanofibers and Their Applications. Polym. Rev. 2022, 62, 351–399. [Google Scholar] [CrossRef]
- da Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-Roitman, J.; Schroeder, A. Biocompatibility, Biodegradation and Excretion of Polylactic Acid (PLA) in Medical Implants and Theranostic Systems. Chem. Eng. J. 2018, 340, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Crawford, K.; Gorman, C.B. Effects of Temperature and PH on the Degradation of Poly(Lactic Acid) Brushes. Macromolecules 2011, 44, 4777–4782. [Google Scholar] [CrossRef]
Sample | Melatonin (% w/w) | Tween® 80 (% w/w) |
---|---|---|
Empty-L | 0 | 0 |
LM1 | 0.1 | 0 |
LM2 | 0.3 | 0 |
LM3 | 0.5 | 0 |
LMT1 | 0.1 | 0.5 |
LMT2 | 0.3 | 0.5 |
LMT3 | 0.5 | 0.5 |
Sample | Melatonin (% w/w) | Tween® 80 (% w/w) |
---|---|---|
Empty-P | 0 | 0 |
PM1 | 0.1 | 0 |
PM2 | 0.3 | 0 |
PM3 | 0.5 | 0 |
PMT1 | 0.1 | 0.5 |
PMT2 | 0.3 | 0.5 |
PMT3 | 0.5 | 0.5 |
Sample | β Parameter | τd | Correlation Coefficient |
---|---|---|---|
LM1 | 5.0607 | 35.22 | 0.9612 |
LM2 | 4.8539 | 34.81 | 0.9483 |
LM3 | 6.1983 | 49.53 | 0.9367 |
LMT1 | 5.8622 | 91.42 | 0.9792 |
LMT2 | 11.4432 | 95.11 | 0.9737 |
LMT3 | 17.1458 | 97.40 | 0.9279 |
PM1 | 5.2927 | 93.32 | 0.9609 |
PM2 | 8.0208 | 93.10 | 0.9157 |
PM3 | 10.3280 | 95.83 | 0.9717 |
PMT1 | 11.2443 | 91.67 | 0.9631 |
PMT2 | 10.7446 | 94.78 | 0.9677 |
PMT3 | 12.7788 | 99.11 | 0.9286 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romeo, A.; Kazsoki, A.; Omer, S.; Pinke, B.; Mészáros, L.; Musumeci, T.; Zelkó, R. Formulation and Characterization of Electrospun Nanofibers for Melatonin Ocular Delivery. Pharmaceutics 2023, 15, 1296. https://doi.org/10.3390/pharmaceutics15041296
Romeo A, Kazsoki A, Omer S, Pinke B, Mészáros L, Musumeci T, Zelkó R. Formulation and Characterization of Electrospun Nanofibers for Melatonin Ocular Delivery. Pharmaceutics. 2023; 15(4):1296. https://doi.org/10.3390/pharmaceutics15041296
Chicago/Turabian StyleRomeo, Alessia, Adrienn Kazsoki, Safaa Omer, Balázs Pinke, László Mészáros, Teresa Musumeci, and Romána Zelkó. 2023. "Formulation and Characterization of Electrospun Nanofibers for Melatonin Ocular Delivery" Pharmaceutics 15, no. 4: 1296. https://doi.org/10.3390/pharmaceutics15041296
APA StyleRomeo, A., Kazsoki, A., Omer, S., Pinke, B., Mészáros, L., Musumeci, T., & Zelkó, R. (2023). Formulation and Characterization of Electrospun Nanofibers for Melatonin Ocular Delivery. Pharmaceutics, 15(4), 1296. https://doi.org/10.3390/pharmaceutics15041296