Optimization of the Micellar-Based In Situ Gelling Systems Posaconazole with Quality by Design (QbD) Approach and Characterization by In Vitro Studies
<p>Pareto charts. (<b>a</b>) T<sub>sol/gel</sub>; (<b>b</b>) log consistency index.</p> "> Figure 2
<p>Two-dimensional contour plot graphs; (<b>a</b>) T<sub>sol/gel</sub>; (<b>b</b>) log consistency index.</p> "> Figure 3
<p>Elastic (G′-red line) and viscous (G″-blue line) modulus as a function of the frequency of IS-OPT. (<b>a</b>) 5 °C; (<b>b</b>) 25 °C; (<b>c</b>) 35 °C; (<b>d</b>) in situ gel:STF(50:7) 35 °C.</p> "> Figure 4
<p>In vitro release value (mean ± stdeva) profile of PSC from the micellar-based in situ gelling system (<span class="html-italic">n</span> = 6).</p> "> Figure 5
<p>Time-kill determinations against <span class="html-italic">C. albicans</span> strain after treatment with diluted Noxafil<sup>®</sup> oral suspension, micellar-based in situ gelling system, and micelle and <span class="html-italic">C. albicans</span> as control. The <span class="html-italic">x</span>-axis represents the killing time (h), and the <span class="html-italic">y</span>-axis represents the logarithmic <span class="html-italic">C. albicans</span> survival (CFU).</p> "> Figure 6
<p>HET-CAM assay; (<b>a</b>) negative control, (<b>b</b>) positive control, (<b>c</b>) IS-OPT Placebo, and (<b>d</b>) IS-OPT (<span class="html-italic">n</span> = 6).</p> ">
Abstract
:1. Introduction
- Because of the high lipophilic character of PSC, micelles are a suitable carrier system for the eye that contain hydrophilic and lipophilic tissues together [1];
- The particle size of the micelles can be adjusted in accordance with the pore size of the ocular tissues [1];
- Micelles can be produced with reliable copolymers such as TPGS that have received GRAS approval [21].
2. Materials and Methods
2.1. Preparation and Characterization of PSC-Loaded TPGS Micelles
2.2. Pre-Formulation Studies of Micellar-Based In Situ Gelling Systems
2.3. Preparation of PSC-Loaded Micellar-Based In situ Gelling Systems
2.4. Characterization of In Situ Gelling Systems
2.4.1. Clarity, Gelling Capacity, and Drug Content
2.4.2. Rheology
2.5. In Situ Gel Formulation Development Based on the Quality by Design and Optimization
2.6. Characterization of Optimized In Situ Gel
2.6.1. Clarity, Gelling Capacity, and Drug Content
2.6.2. Rheology
2.7. Texture Profile Analysis (TPA)
2.8. In Vitro Release Study
2.9. Anti-Fungal Activity Studies—Time-Kill Assay
2.10. HET-CAM Toxicity Tests
2.11. Statistical Analysis
3. Results
3.1. Pre-Formulation Studies of Micellar-Based In Situ Gelling Systems
3.2. Characterization of In Situ Gelling Systems
3.2.1. Clarity, Gelling Capacity, and Drug Content
3.2.2. Rheology
3.3. In Situ Gel Formulation Development Based on the Quality by Design and Optimization
3.4. Characterization of Optimized In Situ Gel
3.4.1. Clarity, Gelling Capacity, and Drug Content
3.4.2. Rheology
3.5. Texture Profile Analysis (TPA)
3.6. In Vitro Release Study
3.7. Anti-Fungal Activity Studies—Time Kill Assay
3.8. HET-CAM Toxicity Tests
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durgun, M.E.; Güngör, S.; Özsoy, Y. Micelles: Promising Ocular Drug Carriers for Anterior and Posterior Segment Diseases. J. Ocul. Pharmacol. Ther. 2020, 36, 323–341. [Google Scholar] [CrossRef] [PubMed]
- Rupenthal, I.D.; Alany, R.G. Ocular Drug Delivery. In Pharmaceutical Manufacturing Handbook; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 729–767. [Google Scholar]
- Wadhwa, S.; Paliwal, R.; Paliwal, S.; Vyas, S. Nanocarriers in Ocular Drug Delivery: An Update Review. Curr. Pharm. Des. 2009, 15, 2724–2750. [Google Scholar] [CrossRef] [PubMed]
- Gaudana, R.; Jwala, J.; Boddu, S.H.S.; Mitra, A.K. Recent perspectives in ocular drug delivery. Pharm. Res. 2009, 26, 1197–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özsoy, Y.; Güngör, S.; Kahraman, E.; Durgun, M.E. Polymeric micelles as a novel carrier for ocular drug delivery. In Nanoarchitectonics in Biomedicine; Elsevier: Amsterdam, The Netherlands, 2019; pp. 85–117. [Google Scholar]
- Jain, S.P.; Shah, S.P.; Rajadhyaksha, N.S.; Singh, P.S.; Amin, P.D. In Situ Ophthalmic Gel of Ciprofloxacin Hydrochloride for Once a Day Sustained Delivery. Drug Dev. Ind. Pharm. 2008, 34, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Pawar, P.; Kashyap, H.; Malhotra, S.; Sindhu, R. Hp--CD-Voriconazole In Situ Gelling System for Ocular Drug Delivery: In Vitro, Stability, and Antifungal Activities Assessment. Biomed. Res. Int. 2013, 2013, 341218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makwana, S.B.; Patel, V.A.; Parmar, S.J. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharma Sci. 2016, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Gratieri, T.; Gelfuso, G.M.; Rocha, E.M.; Sarmento, V.H.; de Freitas, O.; Lopez, R.F.V. A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur. J. Pharm. Biopharm. 2010, 75, 186–193. [Google Scholar] [CrossRef]
- Soliman, K.A.; Ullah, K.; Shah, A.; Jones, D.S.; Singh, T.R.R. Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discov. Today 2019, 24, 1575–1586. [Google Scholar] [CrossRef]
- Andes, D. Optimizing anti-fungal choice and administration. Curr. Med. Res. Opin. 2013, 29, 13–18. [Google Scholar] [CrossRef] [Green Version]
- FDA Orange Book: Approved Drug Products with Therapeutic Equivalence Evaluations. Available online: https://www.accessdata.fda.gov/scripts/cder/ob/search_product.cfm (accessed on 26 August 2020).
- Sponsel, W.E.; Graybill, J.R.; Nevarez, H.L.; Dang, D. Ocular and systemic Posaconazole(SCH-56592) treatment of invasive Fusarium solani keratitis and endophthalmitis. Br. J. Ophthalmol. 2002, 86, 829–830. [Google Scholar] [CrossRef] [Green Version]
- Amiel, H.; Chohan, A.B.; Snibson, G.R.; Vajpayee, R. Atypical fungal sclerokeratitis. Cornea 2008, 27, 382–383. [Google Scholar] [CrossRef] [PubMed]
- Durgun, M.E.; Kahraman, E.; Güngör, S.; Özsoy, Y. Optimization and Characterization of Aqueous Micellar Formulations for Ocular Delivery of an Antifungal Drug, Posaconazole. Curr. Pharm. Des. 2020, 26, 1543–1555. [Google Scholar] [CrossRef]
- Durgun, M.E.; Kahraman, E.; Hacıoğlu, M.; Güngör, S.; Özsoy, Y. Posaconazole micelles for ocular delivery: In vitro permeation, ocular irritation and antifungal activity studies. Drug Deliv. Transl. Res. 2022, 12, 662–675. [Google Scholar] [CrossRef]
- Mandal, A.; Gote, V.; Pal, D.; Ogundele, A.; Mitra, A.K. Ocular Pharmacokinetics of a Topical Ophthalmic Nanomicellar Solution of Cyclosporine (Cequa®) for Dry Eye Disease. Pharm. Res. 2019, 36, 36. [Google Scholar] [CrossRef] [PubMed]
- Smyth-Medina, R.; Johnston, J.; Devries, D.K.; Jasper, A.; Kannarr, S.R.; Schechter, B.A.; Shen Lee, B.; Varghese, G.; Ogundele, A.; Darby, C.H.; et al. Effect of OTX-101, a Novel Nanomicellar Formulation of Cyclosporine A, on Conjunctival Staining in Patients with Keratoconjunctivitis Sicca: A Pooled Analysis of Phase 2b/3 and 3 Clinical Trials. J. Ocul. Pharmacol. Ther. 2019, 35, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Lallemand, F.; Schmitt, M.; Bourges, J.-L.; Gurny, R.; Benita, S.; Garrigue, J.-S. Cyclosporine A delivery to the eye: A comprehensive review of academic and industrial efforts. Eur. J. Pharm. Biopharm. 2017, 117, 14–28. [Google Scholar] [CrossRef]
- Walimbe, T.; Chelerkar, V.; Bhagat, P.; Joshi, A.; Raut, A. Effect of benzalkonium chloride-free latanoprost ophthalmic solution on ocular surface in patients with glaucoma. Clin. Ophthalmol. 2016, 10, 821. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Tan, S.; Feng, S.S. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials 2012, 33, 4889–4906. [Google Scholar] [CrossRef]
- Jaiswal, M.; Kumar, M.; Pathak, K. Zero order delivery of itraconazole via polymeric micelles incorporated in situ ocular gel for the management of fungal keratitis. Colloids Surf. B Biointerfaces 2015, 130, 23–30. [Google Scholar] [CrossRef]
- Cunha, S.; Costa, C.P.; Moreira, J.N.; Sousa Lobo, J.M.; Silva, A.C. Using the quality by design (QbD) approach to optimize formulations of lipid nanoparticles and nanoemulsions: A review. Nanomed. Nanotechnol. Biol. Med. 2020, 28, 102206. [Google Scholar] [CrossRef]
- Costa, C.P.; Cunha, S.; Moreira, J.N.; Silva, R.; Gil-Martins, E.; Silva, V.; Azevedo, L.; Peixoto, A.F.; Sousa Lobo, J.M.; Silva, A.C. Quality by design (QbD) optimization of diazepam-loaded nanostructured lipid carriers (NLC) for nose-to-brain delivery: Toxicological effect of surface charge on human neuronal cells. Int. J. Pharm. 2021, 607, 120933. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Xu, H.; Nie, S.; Pan, W. Temperature-Responsive, Pluronic-g-poly(acrylic acid) Copolymers In Situ Gels for Ophthalmic Drug Delivery: Rheology, In Vitro Drug Release, and In Vivo Resident Property. Drug Dev. Ind. Pharm. 2008, 34, 258–266. [Google Scholar] [CrossRef]
- Lihong, W.; Xin, C.; Yongxue, G.; Yiying, B.; Gang, C. Thermoresponsive ophthalmic poloxamer/tween/carbopol in situ gels of a poorly water-soluble drug fluconazole: Preparation and in vitro-in vivo evaluation. Drug Dev. Ind. Pharm. 2014, 40, 1402–1410. [Google Scholar] [CrossRef] [PubMed]
- Sai, N.; Dong, X.; Huang, P.; You, L.; Yang, C.; Liu, Y.; Wang, W.; Wu, H.; Yu, Y.; Du, Y.; et al. A Novel Gel-Forming Solution Based on PEG-DSPE/Solutol HS 15 Mixed Micelles and Gellan Gum for Ophthalmic Delivery of Curcumin. Molecules 2019, 25, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, J.B.; Cook, M.T.; Bruschi, M.L. Thermoresponsive systems composed of poloxamer 407 and HPMC or NaCMC: Mechanical, rheological and sol-gel transition analysis. Carbohydr. Polym. 2020, 240, 116268. [Google Scholar] [CrossRef]
- Krtalić, I.; Radošević, S.; Hafner, A.; Grassi, M.; Nenadić, M.; Cetina-Čižmek, B.; Filipović-Grčić, J.; Pepić, I.; Lovrić, J. D-Optimal Design in the Development of Rheologically Improved In Situ Forming Ophthalmic Gel. J. Pharm. Sci. 2018, 107, 1562–1571. [Google Scholar] [CrossRef]
- Than, Y.M.; Titapiwatanakun, V. Tailoring immediate release FDM 3D printed tablets using a quality by design (QbD) approach. Int. J. Pharm. 2021, 599, 120402. [Google Scholar] [CrossRef]
- Cirri, M.; Maestrelli, F.; Nerli, G.; Mennini, N.; D’Ambrosio, M.; Luceri, C.; Mura, P.A. Development of a Cyclodextrin-Based Mucoadhesive-Thermosensitive In Situ Gel for Clonazepam Intranasal Delivery. Pharmaceutics 2021, 13, 969. [Google Scholar] [CrossRef]
- Edsman, K.; Carlfors, J.; Petersson, R. Rheological evaluation of poloxamer as an in situ gel for ophthalmic use. Eur. J. Pharm. Sci. 1998, 6, 105–112. [Google Scholar] [CrossRef]
- Patel, M.; Thakkar, H. Preparation and Evaluation of Thermoreversible Formulations of Flunarizine Hydrochloride for Nasal Delivery. Int. J. Pharm. Pharm. Sci. 2010, 2, 116–120. [Google Scholar]
- Jones, D.S.; Woolfson, A.D.; Brown, A.F.; O’Neil, M.J. Mucoadhesive, syringeable drug delivery systems for controlled application of metronidazole to the periodontal pocket: In vitro release kinetics, syringeability, mechanical and mucoadhesive properties. J. Control. Release 1997, 49, 71–79. [Google Scholar] [CrossRef]
- Jiang, T.-Y.; Sun, C.-S.; Shen, X.; Wang, T.-Y.; Wang, S.-L. Development of a poloxamer analogs/bioadhesive polymers-based in situ gelling ophthalmic delivery system for tiopronin. J. Appl. Polym. Sci. 2009, 114, 775–783. [Google Scholar] [CrossRef]
- Polat, H.K.; Bozdağ Pehlivan, S.; Özkul, C.; Çalamak, S.; Öztürk, N.; Aytekin, E.; Fırat, A.; Ulubayram, K.; Kocabeyoğlu, S.; İrkeç, M.; et al. Development of besifloxacin HCl loaded nanofibrous ocular inserts for the treatment of bacterial keratitis: In vitro, ex vivo and in vivo evaluation. Int. J. Pharm. 2020, 585, 119552. [Google Scholar] [CrossRef] [PubMed]
- Esentürk, İ.; Balkan, T.; Özhan, G.; Döşler, S.; Güngör, S.; Erdal, M.S.; Sarac, A.S. Voriconazole incorporated nanofiber formulations for topical application: Preparation, characterization and antifungal activity studies against Candida species. Pharm. Dev. Technol. 2020, 25, 440–453. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast M27-A3; Clinical and Laboratory Standards Institute (CLSI): Malvern, PA, USA, 2008. [Google Scholar]
- Luepke, N.P.; Kemper, F.H. The HET-CAM test: An alternative to the draize eye test. Food Chem. Toxicol. 1986, 24, 495–496. [Google Scholar] [CrossRef]
- ICCVAM Recommended Test Method Protocol: Hen’s Egg Test—Chorioallantoic Membrane (HET-CAM) Test Method. Available online: https://ntp.niehs.nih.gov/iccvam/docs/protocols/ivocular-hetcam.pdf (accessed on 23 July 2020).
- Gouda, R.; Baishya, H.; Qing, Z. Application of Mathematical Models in Drug Release Kinetics of Carbidopa and Levodopa ER Tablets. J. Dev. Drugs 2017, 6, 2. [Google Scholar] [CrossRef]
- Qi, H.; Chen, W.; Huang, C.; Li, L.; Chen, C.; Li, W.; Wu, C. Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin. Int. J. Pharm. 2007, 337, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Fathalla, Z.; Vangala, A.; Longman, M.; Khaled, K.A.; Hussein, A.K.; El-Garhy, O.H.; Alany, R.G. Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: Design, characterisation, toxicity and transcorneal permeation studies. Eur. J. Pharm. Biopharm. 2017, 114, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Joshi, S.C. Sol-Gel Behavior of Hydroxypropyl Methylcellulose (HPMC) in Ionic Media Including Drug Release. Materials 2011, 4, 1861–1905. [Google Scholar] [CrossRef] [Green Version]
- Bain, M.K.; Bhowmick, B.; Maity, D.; Mondal, D.; Mollick, M.M.R.; Rana, D.; Chattopadhyay, D. Synergistic effect of salt mixture on the gelation temperature and morphology of methylcellulose hydrogel. Int. J. Biol. Macromol. 2012, 51, 831–836. [Google Scholar] [CrossRef]
- Baloglu, E.; Karavana, S.Y.; Senyigit, Z.A.; Guneri, T. Rheological and mechanical properties of poloxamer mixtures as a mucoadhesive gel base. Pharm. Dev. Technol. 2011, 16, 627–636. [Google Scholar] [CrossRef]
- Jones, D.S.; Bruschi, M.L.; de Freitas, O.; Gremião, M.P.D.; Lara, E.H.G.; Andrews, G.P. Rheological, mechanical and mucoadhesive properties of thermoresponsive, bioadhesive binary mixtures composed of poloxamer 407 and carbopol 974P designed as platforms for implantable drug delivery systems for use in the oral cavity. Int. J. Pharm. 2009, 372, 49–58. [Google Scholar] [CrossRef] [PubMed]
- De Souza Ferreira, S.B.; Da Silva, J.B.; Volpato Junqueira, M.; Belincanta Borghi-Pangoni, F.; Guttierres Gomes, R.; Luciano Bruschi, M. The importance of the relationship between mechanical analyses and rheometry of mucoadhesive thermoresponsive polymeric materials for biomedical applications. J. Mech. Behav. Biomed. Mater. 2017, 74, 142–153. [Google Scholar] [CrossRef]
- Okur, N.Ü.; Bülbül, E.Ö.; Yağcılar, A.P.; Siafaka, P.I. Current Status of Mucoadhesive Gel Systems for Buccal Drug Delivery. Curr. Pharm. Des. 2021, 27, 2015–2025. [Google Scholar] [CrossRef] [PubMed]
- Kan, S.; Lu, J.; Liu, J.; Wang, J.; Zhao, Y. A quality by design (QbD) case study on enteric-coated pellets: Screening of critical variables and establishment of design space at laboratory scale. Asian J. Pharm. Sci. 2014, 9, 268–278. [Google Scholar] [CrossRef] [Green Version]
- Jang, E.H.; Park, Y.S.; Choi, D.H. Investigation of the effects of materials and dry granulation process on the mirabegron tablet by integrated QbD approach with multivariate analysis. Powder Technol. 2021, 382, 23–39. [Google Scholar] [CrossRef]
- Jayagopal, B.; Murugesh, S. QbD-mediated RP-UPLC method development invoking an FMEA-based risk assessment to estimate nintedanib degradation products and their pathways. Arab. J. Chem. 2020, 13, 7087–7103. [Google Scholar] [CrossRef]
- Jones, D.S.; Woolfson, A.D.; Brown, A.F. Textural, viscoelastic and mucoadhesive properties of pharmaceutical gels composed of cellulose polymers. Int. J. Pharm. 1997, 151, 223–233. [Google Scholar] [CrossRef]
- Cevher, E.; Taha, M.A.M.; Orlu, M.; Araman, A. Evaluation of Mechanical and Mucoadhesive Properties of Clomiphene Citrate Gel Formulations Containing Carbomers and Their Thiolated Derivatives. Drug Deliv. 2008, 15, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Hägerström, H.; Edsman, K. Interpretation of mucoadhesive properties of polymer gel preparations using a tensile strength method. J. Pharm. Pharmacol. 2010, 53, 1589–1599. [Google Scholar] [CrossRef]
Gelling Capacity | Definition |
---|---|
- | No gelling |
+ | Gelation immediately and remained for several minutes |
++ | Gelation immediately and remained for several hours |
+++ | Gelation immediately and remained for long hours |
++++ | Solid gel structure |
Factor | Target | Justification |
---|---|---|
Route of administration | Ocular | Topical application to the targeted tissue |
Delivery system | Micellar-based in situ gels | Increase the contact time of drug delivery system with ocular tissues |
Drug content | ≥90% | To obtain treatment dose of the API |
pH | 6.6–7.8 | For maximum comfort and patient compliance |
Clarity | Clear | Increase the patient compliance |
Gelling capacity | Gelation immediately and remained for several or long hours | Affect the contact time of drug delivery system with ocular tissues |
Tsol/gel temperature | 30–35 °C | Transform from solution to gel form at physiological ocular temperature |
Log consistency index | 0–1 | For ease of application and reduction of elimination rate |
Critical Material Attributes | Levels (w/v%) | |||
---|---|---|---|---|
X1: Poloxamer 188 | 0 | 15 | 17.5 | 20 |
X2: Poloxamer 47 | 0 | 15 | 17.5 | 20 |
Score | |||
---|---|---|---|
Effect | 30 s | 120 s | 300 s |
Lysis | 5 | 3 | 1 |
Hemorrhage | 7 | 5 | 3 |
Coagulation | 9 | 7 | 5 |
Cumulative Score | Irritation Assessment |
---|---|
Up to 0.9 | Practically none |
1–4.9 | Slight |
5–8.9 | Moderate |
9 and above | Strong |
Formulation | Poloxamer 407 | Poloxamer 188 | HPMC 50M | HPMC 60M | HPMC 75HD100 | Carbopol 980 | MC | Na CMC | Results |
---|---|---|---|---|---|---|---|---|---|
1 | 15 | - | - | - | - | - | - | - | Gelation observed |
2 | 17.5 | - | - | - | - | - | - | - | Gelation observed |
3 | 20 | - | - | - | - | - | - | - | Gelation observed |
4 | - | 15 | - | - | - | - | - | - | Gelation observed |
5 | - | 17.5 | - | - | - | - | - | - | Gelation observed |
6 | - | 20 | - | - | - | - | - | - | Gelation observed |
7 | 15 | 15 | - | - | - | - | - | - | Gelation observed |
8 | 15 | 17.5 | - | - | - | - | - | - | Gelation observed |
9 | 15 | 20 | - | - | - | - | - | - | Gelation observed |
10 | 17.5 | 15 | - | - | - | - | - | - | Gelation observed |
11 | 17.5 | 17.5 | - | - | - | - | - | - | Gelation observed |
12 | 17.5 | 20 | - | - | - | - | - | - | Gelation observed |
13 | 20 | 15 | - | - | - | - | - | - | Gelation observed |
14 | 20 | 17.5 | - | - | - | - | - | - | Gelation observed |
15 | 20 | 20 | - | - | - | - | - | - | Gelation observed |
16 | 15 | - | 0.5 | - | - | - | - | - | Gelation observed |
17 | 15 | - | 0.7 | - | - | - | - | - | Gelation observed |
18 | 15 | - | 1 | - | - | - | - | - | Gelation observed |
19 | 15 | - | - | 0.5 | - | - | - | - | Gelation observed |
20 | 15 | - | - | 0.7 | - | - | - | - | Gelation observed |
21 | 15 | - | - | 1 | - | - | - | - | Gelation observed |
22 | 15 | - | - | - | 0.5 | - | - | - | No gelation |
23 | 15 | - | - | - | 0.7 | - | - | - | No gelation |
24 | 15 | - | - | - | 1 | - | - | - | No gelation |
25 | 17.5 | - | 0.5 | - | - | - | - | - | Gelation observed |
26 | 17.5 | - | 0.7 | - | - | - | - | - | Gelation observed |
27 | 17.5 | - | 1 | - | - | - | - | - | Gelation observed |
28 | 17.5 | - | - | 0.5 | - | - | - | - | Gelation observed |
29 | 17.5 | - | - | 0.7 | - | - | - | - | Gelation observed |
30 | 17.5 | - | - | 1 | - | - | - | - | Gelation observed |
31 | 17.5 | - | - | - | 0.5 | - | - | - | No gelation |
32 | 17.5 | - | - | - | 0.7 | - | - | - | No gelation |
33 | 17.5 | - | - | - | 1 | - | - | - | No gelation |
34 | 20 | - | 0.5 | - | - | - | - | - | Gelation observed |
35 | 20 | - | 0.7 | - | - | - | - | - | Gelation observed |
36 | 20 | - | 1 | - | - | - | - | - | Gelation observed |
37 | 20 | - | - | 0.5 | - | - | - | - | Gelation observed |
38 | 20 | - | - | 0.7 | - | - | - | - | Gelation observed |
39 | 20 | - | - | 1 | - | - | - | - | Gelation observed |
40 | 20 | - | - | - | 0.5 | - | - | - | No gelation |
41 | 20 | - | - | - | 0.7 | - | - | - | No gelation |
42 | 20 | - | - | - | 1 | - | - | - | No gelation |
43 | - | 15 | 0.5 | - | - | - | - | - | Gelation observed |
44 | - | 15 | 0.7 | - | - | - | - | - | Gelation observed |
45 | - | 15 | 1 | - | - | - | - | - | Gelation observed |
46 | - | 15 | - | 0.5 | - | - | - | - | Gelation observed |
47 | - | 15 | - | 0.7 | - | - | - | - | Gelation observed |
48 | - | 15 | - | 1 | - | - | - | - | Gelation observed |
49 | - | 15 | - | - | 0.5 | - | - | - | No gelation |
50 | - | 15 | - | - | 0.7 | - | - | - | No gelation |
51 | - | 15 | - | - | 1 | - | - | - | No gelation |
52 | - | 17.5 | - | - | - | No gelation | |||
53 | - | 17.5 | 0.5 | - | - | - | - | - | No gelation |
54 | - | 17.5 | 0.7 | - | - | - | - | - | No gelation |
55 | - | 17.5 | 1 | - | - | - | - | - | Gelation observed |
56 | - | 17.5 | - | 0.5 | - | - | - | - | Gelation observed |
57 | - | 17.5 | - | 0.7 | - | - | - | - | Gelation observed |
58 | - | 17.5 | - | 1 | - | - | - | - | Gelation observed |
59 | - | 17.5 | - | - | 0.5 | - | - | - | No gelation |
60 | - | 17.5 | - | - | 0.7 | - | - | - | No gelation |
61 | - | 20 | - | - | 1 | - | - | - | No gelation |
62 | - | 20 | 0.5 | - | - | - | - | - | Gelation observed |
63 | - | 20 | 0.7 | - | - | - | - | - | Gelation observed |
64 | - | 20 | 1 | - | - | - | - | - | No gelation |
65 | - | 20 | - | 0.5 | - | - | - | - | Gelation observed |
66 | - | 20 | - | 0.7 | - | - | - | - | Gelation observed |
67 | - | 20 | - | 1 | - | - | - | - | No gelation |
68 | - | 20 | - | - | 0.5 | - | - | - | No gelation |
69 | - | 20 | - | - | 0.7 | - | - | - | No gelation |
70 | - | 20 | - | - | 1 | - | - | - | No gelation |
71 | 15 | - | - | - | - | 0.05 | - | - | No gelation |
72 | 15 | - | - | - | - | 0.1 | - | - | No gelation |
73 | 15 | - | - | - | - | 0.15 | - | - | No gelation |
74 | 15 | - | - | - | - | 0.2 | - | - | No gelation |
75 | 15 | - | - | - | - | 0.25 | - | - | No gelation |
76 | - | 15 | - | - | - | 0.05 | - | - | No gelation |
77 | - | 15 | - | - | - | 0.1 | - | - | No gelation |
78 | - | 15 | - | - | - | 0.15 | - | - | No gelation |
79 | - | 15 | - | - | - | 0.2 | - | - | No gelation |
80 | - | 15 | - | - | - | 0.25 | - | - | No gelation |
81 | 15 | - | - | - | - | - | 0.2 | - | No gelation, not clear |
82 | 15 | - | - | - | - | - | 0.5 | - | No gelation, not clear |
83 | 15 | - | - | - | - | - | 0.4 | No gelation, not clear | |
84 | - | 15 | - | - | - | - | 0.2 | - | No gelation, not clear |
85 | - | 15 | - | - | - | - | 0.5 | - | No gelation, not clear |
86 | - | 15 | - | - | - | - | - | 0.4 | No gelation, not clear |
Formulation | Poloxamer 407 | Poloxamer 188 | Clarity | pH | Gelling Capacity | Drug Content |
---|---|---|---|---|---|---|
IS1 | 15 | - | Clear | 7.4 | - | 100.40 |
IS2 | 17.5 | - | Clear | 7.4 | + | 99.47 |
IS3 | 20 | - | Clear | 7.35 | + | 97.48 |
IS4 | - | 15 | Clear | 7.4 | - | 100.13 |
IS5 | - | 17.5 | Clear | 7.41 | - | 94.56 |
IS6 | - | 20 | Clear | 7.45 | - | 92.1 |
IS7 | 15 | 15 | Clear | 7.34 | - | 96.34 |
IS8 | 15 | 17.5 | Clear | 7.37 | - | 98.53 |
IS9 | 15 | 20 | Clear | 7.35 | - | 91.22 |
IS10 | 17.5 | 15 | Clear | 7.4 | - | 94.56 |
IS11 | 17.5 | 17.5 | Clear | 7.41 | - | 92.1 |
IS12 | 17.5 | 20 | Clear | 7.39 | - | 94.58 |
IS13 | 20 | 15 | Clear | 7.4 | ++ | 93.07 |
IS14 | 20 | 17.5 | Clear | 7.4 | - | 91.73 |
IS15 | 20 | 20 | Clear | 7.41 | - | 93.21 |
IS-OPT | 20 | 0.404 | Clear | 7.39 | ++ | 90.97 |
Formulation | Poloxamer 407 | Poloxamer 188 | Ʈ0 (Pa) | K (Pa.s) | η | Hysteresis Area | Tsol/gel |
---|---|---|---|---|---|---|---|
IS1 | 15 | - | 1.5613 ± 0.1617 | 0.0411 ± 0.0181 | 1.0378 ± 0.0621 | −2955.00 ± 1132.06 | 42.72 ± 1.23 |
IS2 | 17.5 | - | 153.5667 ± 18.0514 | 0.0209 ± 0.01275 | 1.1340 ± 0.0827 | −28,052.33 ± 23,665.50 | 35.75 ± 0.03 |
IS3 | 20 | - | 204.0667 ± 15.0699 | 0.7253 ± 0.5412 | 0.9527 ± 0.3337 | 3117.67 ± 9595.36 | 30.36 ± 0.27 |
IS4 | - | 15 | 0.3178 ± 0.3340 | 0.0065 ± 0.0032 | 1.0547 ± 0.0992 | 2216.33 ± 773.13 | 50.62 ± 0.92 |
IS5 | - | 17.5 | 0.4035 ± 0.1407 | 0.0068 ± 0.0019 | 1.0537 ± 0.0487 | 1446.67 ± 542.53 | 55.22 ± 3.9 |
IS6 | - | 20 | 0.4759 ± 0.0628 | 0.0098 ± 0.0011 | 1.0480 ± 0.0154 | 675.73 ± 278.41 | - |
IS7 | 15 | 15 | 3.9093 ± 0.6473 | 0.0223 ± 0.0063 | 1.1787 ± 0.0290 | −27,526.67 ± 13,332.85 | 46.85 ± 0.47 |
IS8 | 15 | 17.5 | 6.9697 ± 1.2405 | 0.0142 ± 0.0019 | 1.2807 ± 0.0265 | −34,804.33 ± 38,112.95 | 50.57 ± 1.73 |
IS9 | 15 | 20 | 18.2967 ± 2.7344 | 0.0119 ± 0.0058 | 1.4470 ± 0.0183 | −12,055.00 ± 2156.67 | 51.95 ± 0.04 |
IS10 | 17.5 | 15 | 2.9977 ± 2.5657 | 0.0854 ± 0.0252 | 1.0650 ± 0.0702 | −28,046.67 ± 14,896.65 | 41.00 ± 0.06 |
IS11 | 17.5 | 17.5 | 5.4685 ± 4.9357 | 0.1174 ± 0.0968 | 1.1000 ± 0.1293 | −139,000.00 ± 37,070.74 | 46.47 ± 0.4 |
IS12 | 17.5 | 20 | 12.7900 ± 2.5590 | 0.0796 ± 0.0225 | 1.1993 ± 0.0176 | −234,866.67 ± 118,235.75 | 48.18 ± 3.41 |
IS13 | 20 | 15 | −1.6990 ± 7.1550 | 0.2297 ± 0.1736 | 1.0047 ± 0,1353 | −179,730.00 ± 134,857.11 | 35.51 ± 0.21 |
IS14 | 20 | 17.5 | −2.1033 ± 15.5105 | 0.6272 ± 0.4439 | 0.9414 ± 0.1520 | −179,033.33 ± 61,502.87 | 40.94 ± 0.09 |
IS15 | 20 | 20 | −107.4100 ± 108.47959 | 13.6847 ± 12.5832 | 0.6972 ± 0.3390 | −249,233.33 ± 68,141.05 | 41.28 ± 0.28 |
CQA | R2 | Adjusted R2 | Predicted R2 |
---|---|---|---|
Tsol/gel temperature | 97.75% | 96.34% | 91.66% |
Gelling capacity | 53.74% | 28.05% | 0.00% |
Drug content | 74.81% | 60.81% | 26.60% |
Log consistency index | 85.88% | 78.04% | 51.60% |
CQA | p Value |
---|---|
Tsol/gel temperature | 0.000 |
Gelling capacity | 0.159 |
Drug content | 0.015 |
Log consistency index | 0.001 |
Temperature | Shear Rate (Ʈ0-Pa) | Consistency Index (k-Pa.s) | Rheological Exponent | Hysteresis Area |
---|---|---|---|---|
5 °C | 0.2945 ± 0.2752 | 0.06332 ± 0.05627 | 0.9411 ± 0.0830 | 8025 ± 5045.87 |
25 °C | 1.3503 ± 0.6372 | 0.2692 ± 0.0459 | 0.9490 ± 0.0239 | −18,336.67 ± 6730.53 |
35 °C | 172.47 ± 75.2095 | 0.5174 ± 0.5842 | 0.8521 ± 0.1809 | −12,080.67 ± 5971.31 |
Temperature | Hardness (N) | Compressibility (N.mm) | Adhesiveness (N.mm) | Cohesiveness |
---|---|---|---|---|
5 °C | 0.06 ± 0.00 | 0.26 ± 0.03 | 0.10 ± 0.00 | 0.57 ± 0.12 |
25 °C | 0.08 ± 0.00 | 0.39 ± 0.06 | 0.20 ± 0.00 | 0.73 ± 0.04 |
35 °C | 0.16 ± 0.10 | 1.58 ± 0.15 | 1.17 ± 0.46 | 1.10 ± 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durgun, M.E.; Mesut, B.; Hacıoğlu, M.; Güngör, S.; Özsoy, Y. Optimization of the Micellar-Based In Situ Gelling Systems Posaconazole with Quality by Design (QbD) Approach and Characterization by In Vitro Studies. Pharmaceutics 2022, 14, 526. https://doi.org/10.3390/pharmaceutics14030526
Durgun ME, Mesut B, Hacıoğlu M, Güngör S, Özsoy Y. Optimization of the Micellar-Based In Situ Gelling Systems Posaconazole with Quality by Design (QbD) Approach and Characterization by In Vitro Studies. Pharmaceutics. 2022; 14(3):526. https://doi.org/10.3390/pharmaceutics14030526
Chicago/Turabian StyleDurgun, Meltem Ezgi, Burcu Mesut, Mayram Hacıoğlu, Sevgi Güngör, and Yıldız Özsoy. 2022. "Optimization of the Micellar-Based In Situ Gelling Systems Posaconazole with Quality by Design (QbD) Approach and Characterization by In Vitro Studies" Pharmaceutics 14, no. 3: 526. https://doi.org/10.3390/pharmaceutics14030526
APA StyleDurgun, M. E., Mesut, B., Hacıoğlu, M., Güngör, S., & Özsoy, Y. (2022). Optimization of the Micellar-Based In Situ Gelling Systems Posaconazole with Quality by Design (QbD) Approach and Characterization by In Vitro Studies. Pharmaceutics, 14(3), 526. https://doi.org/10.3390/pharmaceutics14030526