The Development of a Sensitive Droplet Digital Polymerase Chain Reaction Test for Quantitative Detection of Goose Astrovirus
<p>Effect of annealing temperature on GAstV ddPCR system. The assay was run under annealing temperature gradients of 54, 55, 56, 57, 58, 59, 60, and 61 °C, respectively.</p> "> Figure 2
<p>Effect of primer-to-probe concentration ratio on the GAstV ddPCR system. The assay was conducted across a primer and probe concentration ratio gradient: 800:166, 500:250, 600:166, and 400:166. NC, no template control.</p> "> Figure 3
<p>Quantification of serially diluted cDNA of GAstV by ddPCR and qPCR. (<b>a</b>) Standard curves for cDNA of GAstV, constructed by ddPCR. The quantification correlation was obtained by plotting the log assumed concentration against the log starting concentration. (<b>b</b>) Standard curves for cDNA of GAstV, constructed by qPCR. The quantification correlation was obtained by plotting the log assumed concentration against the log starting concentration.</p> "> Figure 4
<p>Specificity analysis of the GAstV ddPCR assay. Lanes 1–7 (divided by vertical black dotted lines): the fluorescence amplitudes of NTC (negative control, ddH<sub>2</sub>O), GAstV, FAdV-4, H9N2, ALV, NDV, and MDV, respectively.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Viruses and Clinical Samples
2.2. Design of Primers and Probes
2.3. Nucleic Acid Extraction and Reverse Transcription
2.4. The ddPCR Assay
2.5. Limit of Blank (LoB) for ddPCR
2.6. QPCR Assay
2.7. Sensitivity Test of ddPCR and qPCR
2.8. Specificity and Reproducibility of ddPCR
2.9. Clinical Sample Detection by ddPCR and qPCR Assays
2.10. Statistical Analysis
3. Results
3.1. Development of a GAstV ddPCR Assay
3.2. Limit of Blank (LoB) for ddPCR
3.3. Analytical Sensitivity and Reproducibility
3.4. Analytical Specificity of the ddPCR Assay
3.5. Clinical Sample Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diakoudi, G.; Buonavoglia, A.; Pellegrini, F.; Capozza, P.; Vasinioti, V.I.; Cardone, R.; Catella, C.; Camero, M.; Parisi, A.; Capozzi, L.; et al. Identification of new astroviruses in synanthropic squamates. Res. Vet. Sci. 2023, 161, 103–109. [Google Scholar] [CrossRef]
- Neves, E.S.; Mendenhall, I.H.; Borthwick, S.A.; Su, Y.C.F.; Smith, G.J.D. Genetic diversity and expanded host range of astroviruses detected in small mammals in Singapore. One Health 2021, 12, 100218. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Yang, J.; Abd El-Aty, A.M.; Wang, R.; Ju, X. Base composition, adaptation, and evolution of goose astroviruses: Codon-based investigation. Poult. Sci. 2023, 102, 103029. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Jiang, M.; Dong, Y.; Wang, X.; Zhang, D. Genetic characterization of a novel group of avastroviruses in geese. Transbound. Emerg. Dis. 2018, 65, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Cao, Y.; Wang, J.; Fu, G.; Sun, M.; Zhang, L.; Meng, L.; Cui, G.; Huang, Y.; Hu, X.; et al. Isolation and characterization of an astrovirus causing fatal visceral gout in domestic goslings. Emerg. Microbes Infect. 2018, 7, 71. [Google Scholar] [CrossRef] [PubMed]
- Jakubczak, A.; Kowalczyk, M.; Mazurkiewicz, I.; Kondracki, M. Detection of mink astrovirus in Poland and further phylogenetic comparison with other European and Canadian astroviruses. Virus Genes 2021, 57, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Opriessnig, T.; Xiao, C.-T.; Halbur, P.G. Porcine Astrovirus Type 5-Associated Enteritis in Pigs. J. Comp. Pathol. 2020, 181, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, C.; Zeng, M.; Yue, H.; Tang, C. Identification of a novel astrovirus in goats in China. Infect. Genet. Evol. 2021, 96, 105105. [Google Scholar] [CrossRef] [PubMed]
- Sajewicz-Krukowska, J.; Jastrzębski, J.P.; Grzybek, M.; Domańska-Blicharz, K.; Tarasiuk, K.; Marzec-Kotarska, B. Transcriptome Sequencing of the Spleen Reveals Antiviral Response Genes in Chickens Infected with CAstV. Viruses 2021, 13, 2374. [Google Scholar] [CrossRef]
- Zhu, Q.; Miao, Y.; Wang, J.; Bai, W.; Yang, X.; Yu, S.; Guo, D.; Sun, D. Isolation, identification, and pathogenicity of a goose astrovirus causing fatal gout in goslings. Vet. Microbiol. 2022, 274, 109570. [Google Scholar] [CrossRef]
- Niu, X.; Tian, J.; Yang, J.; Jiang, X.; Wang, H.; Chen, H.; Yi, T.; Diao, Y. Novel Goose Astrovirus Associated Gout in Gosling, China. Vet. Microbiol. 2018, 220, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Tian, J.; Tang, Y.; Diao, Y. Isolation and genomic characterization of gosling gout caused by a novel goose astrovirus. Transbound. Emerg. Dis. 2018, 65, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, F.; Liu, N.; Yang, L.; Zhang, D. Complete genome sequence of a novel avastrovirus in goose. Arch. Virol. 2017, 162, 2135–2139. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Zhang, W.; Xu, L.; Liu, Q.; Song, X.; Shao, Y.; Tu, J.; Qi, K. Facile, ultrasensitive, and highly specific diagnosis of goose astrovirus via reverse transcription-enzymatic recombinase amplification coupled with a CRISPR-Cas12a system detection. Poult. Sci. 2022, 101, 102208. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Cui, X.; Hu, J.; Li, Z.; Choi, J.R.; Yang, Q.; Lin, M.; Ying Hui, L.; Xu, F. Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications. Biosens. Bioelectron. 2017, 90, 459–474. [Google Scholar] [CrossRef] [PubMed]
- Nazir, S. Medical diagnostic value of digital PCR (dPCR): A systematic review. Biomed. Eng. Adv. 2023, 6, 100092. [Google Scholar] [CrossRef]
- Tiwari, A.; Ahmed, W.; Oikarinen, S.; Sherchan, S.P.; Heikinheimo, A.; Jiang, G.; Simpson, S.L.; Greaves, J.; Bivins, A. Application of digital PCR for public health-related water quality monitoring. Sci. Total Environ. 2022, 837, 155663. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Han, X.; Zhang, X.; Liu, J.; Yao, L. Development of a droplet digital PCR assay for detection of group A porcine rotavirus. Front. Vet. Sci. 2023, 10, 1113537. [Google Scholar] [CrossRef] [PubMed]
- Verhaegen, B.; De Reu, K.; De Zutter, L.; Verstraete, K.; Heyndrickx, M.; Van Coillie, E. Comparison of Droplet Digital PCR and qPCR for the Quantification of Shiga Toxin-Producing Escherichia coli in Bovine Feces. Toxins 2016, 8, 157. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, S.; Zheng, Y.; Zheng, X.; Lin, J.-M. Droplet-based digital PCR (ddPCR) and its applications. TrAC Trends Anal. Chem. 2023, 158, 116897. [Google Scholar] [CrossRef]
- An, D.; Zhang, J.; Yang, J.; Tang, Y.; Diao, Y. Novel goose-origin astrovirus infection in geese: The effect of age at infection. Poult. Sci. 2020, 99, 4323–4333. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Xu, R.; Lv, Y.; Bao, E. Goose astrovirus infection affects uric acid production and excretion in goslings. Poult. Sci. 2020, 99, 1967–1974. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Yang, J.; He, D.; Diao, Y.; Tang, Y. Evidence of vertical transmission of novel astrovirus virus in goose. Vet. Microbiol. 2020, 244, 108657. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, B.; Yan, M.; Diao, Y.; Tang, Y. First report of a novel goose astrovirus outbreak in Cherry Valley ducklings in China. Transbound. Emerg. Dis. 2019, 67, 1019–1024. [Google Scholar] [CrossRef]
- Wei, F.; Yang, J.; Wang, Y.; Chen, H.; Diao, Y.; Tang, Y. Isolation and characterization of a duck-origin goose astrovirus in China. Emerg. Microbes Infect. 2020, 9, 1046–1054. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-Y.; Hu, W.-Q.; Liu, T.-N.; Zhang, H.-H.; Opriessnig, T.; Xiao, C.-T. Isolation and evolutionary analyses of gout-associated goose astrovirus causing disease in experimentally infected chickens. Poult. Sci. 2021, 100, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zou, J.; Liu, X.; Pan, Y.; Mu, Y.; Li, S.; Wang, J.; Xu, F.; Wang, Y. TaqMan-probe-based multiplex real-time RT-qPCR for simultaneous detection of GoAstV, GPV, and GoCV. Poult. Sci. 2023, 102, 102396. [Google Scholar] [CrossRef]
- Yin, D.; Yang, J.; Tian, J.; He, D.; Tang, Y.; Diao, Y. Establishment and application of a TaqMan-based one-step real-time RT-PCR for the detection of novel goose-origin astrovirus. J. Virol. Methods 2020, 275, 113757. [Google Scholar] [CrossRef]
- Yi, Z.; Ding, R.; Cao, R.; Sun, W.; Sun, M.; Dong, Y.; Rehana, B.; Bao, E.; Lv, Y. Development of a duplex TaqMan real-time RT-PCR assay for simultaneous detection of goose astrovirus genotypes 1 and 2. J. Virol. Methods 2022, 306, 114542. [Google Scholar] [CrossRef]
- Wang, A.; Liu, L.; Zhang, S.; Ye, W.; Zheng, T.; Xie, J.; Wu, S.; Wu, Z.; Feng, Q.; Dong, H.; et al. Development of a duplex real-time reverse transcription-polymerase chain reaction assay for the simultaneous detection of goose astrovirus genotypes 1 and 2. J. Virol. Methods 2022, 310, 114612. [Google Scholar] [CrossRef]
- Wan, C.; Chen, C.; Cheng, L.; Fu, G.; Shi, S.; Liu, R.; Chen, H.; Fu, Q.; Huang, Y. Specific detection of the novel goose astrovirus using a TaqMan real-time RT-PCR technology. Microb. Pathog. 2019, 137, 103766. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Kang, Z.; Wan, C.; Zhang, F.; Tan, M.; Zeng, Y.; Wu, C.; Huang, Y.; Su, Q.; Guo, X. Rapid diagnosis of different goose astrovirus genotypes with Taqman-based duplex real-time quantitative PCR. Poult. Sci. 2023, 102, 102730. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Zhang, X.; Zhang, W.; Lian, M.; Meng, X.; Li, T.; Xie, Q.; Shao, H.; Wan, Z.; Qin, A.; et al. A peptide-based ELISA for detection of antibodies against novel goose astrovirus type 1. J. Virol. Methods 2023, 312, 114646. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Sun, M.; Jiang, X.; Zhang, S.; Wei, F.; Wu, B.; Diao, Y.; Tang, Y. Development of an indirect competitive ELISA method based on ORF2 detecting the antibodies of novel goose astrovirus. J. Virol. Methods 2023, 311, 114643. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Chen, Q.; Sui, C.; Hu, W.; Yu, Z.; Zhang, Z.; Mu, X.; Xu, X.; Yao, L.; Kan, Y.; et al. Rapid and visual detection of novel astroviruses causing fatal gout in goslings using one-step reverse transcription loop-mediated isothermal amplification. Poult. Sci. 2020, 99, 4259–4264. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wei, F.; Tang, Y.; Diao, Y. Development of immunochromatographic strip assay for rapid detection of novel goose astrovirus. J. Virol. Methods 2021, 297, 114263. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Xi, J.; Chen, X.; Hu, S.; Chen, N.; Qiao, S.; Wan, S.; Bao, D. The development of a sensitive droplet digital PCR for quantitative detection of porcine reproductive and respiratory syndrome virus. Int. J. Biol. Macromol. 2017, 104, 1223–1228. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.-Q.; Wang, M.; Gao, F.; Zhuang, J.; Tang, G.; Zhang, Y.-J. Recent Development of Droplet Microfluidics in Digital Polymerase Chain Reaction. Chin. J. Anal. Chem. 2016, 44, 1300–1307. [Google Scholar] [CrossRef]
- Chen, B.; Jiang, Y.; Cao, X.; Liu, C.; Zhang, N.; Shi, D. Droplet digital PCR as an emerging tool in detecting pathogens nucleic acids in infectious diseases. Clin. Chim. Acta 2021, 517, 156–161. [Google Scholar] [CrossRef]
- Huerta, M.; Roselló, S.; Sabater, L.; Ferrer, A.; Tarazona, N.; Roda, D.; Gambardella, V.; Alfaro-Cervelló, C.; Garcés-Albir, M.; Cervantes, A.; et al. Circulating Tumor DNA Detection by Digital-Droplet PCR in Pancreatic Ductal Adenocarcinoma: A Systematic Review. Cancers 2021, 13, 994. [Google Scholar] [CrossRef]
- Pomari, E.; Piubelli, C.; Perandin, F.; Bisoffi, Z. Digital PCR: A new technology for diagnosis of parasitic infections. Clin. Microbiol. Infect. 2019, 25, 1510–1516. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.-k.; Xu, L.; Liang, Y.-q.; Yin, D.-d.; Tu, J.; Song, X.-j.; Shao, Y.; Liu, H.-m.; Qi, K.-z. Simultaneous differentiation and diagnosis of goose parvovirus and astrovirus in clinical samples with duplex SYBR Green I real-time PCR. Mol. Cell. Probes 2020, 52, 101561. [Google Scholar] [CrossRef] [PubMed]
Reagent | Test Days | Number of Tests | Sample 1 | Sample 2 | Sample 3 | Sample 4 |
---|---|---|---|---|---|---|
Reagent batch 1 | 1 | 1 | 0 | 0 | 0 | 1.1 |
2 | 1.1 | 1.1 | 1.1 | 0 | ||
3 | 0 | 0 | 0 | 0 | ||
2 | 1 | 0 | 0 | 0 | 0 | |
2 | 2.3 | 1.2 | 1.3 | 1.2 | ||
3 | 0 | 1.4 | 0 | 0 | ||
3 | 1 | 0 | 0 | 0 | 1.1 | |
2 | 0 | 1.3 | 0 | 0 | ||
3 | 2.6 | 0 | 2.3 | 0 | ||
Reagent batch 2 | 1 | 1 | 0 | 0 | 0 | 0 |
2 | 1.2 | 2.7 | 5.8 | 0 | ||
3 | 2.2 | 4.7 | 0 | 1.2 | ||
2 | 1 | 0 | 0 | 1.1 | 0 | |
2 | 0 | 1.2 | 0 | 0 | ||
3 | 0 | 0 | 0 | 1.2 | ||
3 | 1 | 0 | 2.2 | 1.2 | 3.8 | |
2 | 2.3 | 0 | 0 | 0 | ||
3 | 0 | 0 | 0 | 0 |
Input of GAstV RNA Copy Number | qPCR Hit Rate (Positive/Total) | ddPCR Hit Rate (Positive/Total) |
---|---|---|
500 | 1.00 (36/36) | ND |
300 | 0.97 (35/36) | ND |
200 | 0.94 (34/36) | ND |
100 | 0.31 (11/36) | ND |
50 | ND | 1.00 (36/36) |
20 | ND | 1.00 (36/36) |
10 | ND | 0.97 (35/36) |
5 | ND | 0.64 (23/36) |
2 | ND | 0.25 (9/36) |
1 | ND | 0.08 (3/36) |
NTC | 0.00 (0/24) | 0.00 (0/236) |
LoD | 280 | 10 |
Concentration of GAstV RNA (copies/µL) | Intra-Assay Variation (Robustness) | Inter-Assay Variation (Reproducibility) | ||||
---|---|---|---|---|---|---|
Mean of Detected Concentration (copies/µL) | SD | CV (%) | Mean of Detected Concentration (copies/µL) | SD | CV (%) | |
200,000 | 197,745.6 | 558.1 | 0.35 | 199,579.1 | 584.7 | 0.36 |
20,000 | 19,550.5 | 399.9 | 2.50 | 19,625.1 | 278.0 | 1.74 |
2000 | 1959.4 | 32.5 | 2.03 | 1938.0 | 32.4 | 2.05 |
200 | 205.0 | 3.9 | 2.32 | 196.6 | 5.1 | 3.19 |
20 | 19.7 | 0.7 | 4.34 | 19.3 | 0.7 | 4.43 |
10 | 9.8 | 0.3 | 4.08 | 10.3 | 0.4 | 4.45 |
Concentration of GAstV RNA (copies/µL) | Intra-Assay Variation (Robustness) | Inter-Assay Variation (Reproducibility) | ||||
---|---|---|---|---|---|---|
Mean of Detected Concentration (copies/µL) | SD | CV (%) | Mean of Detected Concentration (copies/µL) | SD | CV (%) | |
200,000 | 171,717.4 | 5040.0 | 2.94 | 179,935.8 | 1303.1 | 0.72 |
20,000 | 27,794.6 | 549.4 | 1.98 | 30,952.9 | 1012.0 | 3.27 |
2000 | 2462.0 | 126.0 | 5.12 | 2668.7 | 481.6 | 18.04 |
500 | 685.3 | 45.7 | 6.67 | 674.1 | 55.4 | 8.21 |
200 | 73.9 | 13.2 | 17.91 | 58.9 | 9.1 | 15.41 |
ddPCR | Total | |||
---|---|---|---|---|
Positive | Negative | |||
qPCR | Positive | 21 | 0 | 21 |
Negative | 11 | 4 | 15 | |
Total | 32 | 4 | 36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Jin, Q.; Zhang, X.; Zhao, J.; Li, N.; Dong, B.; Yu, J.; Yao, L. The Development of a Sensitive Droplet Digital Polymerase Chain Reaction Test for Quantitative Detection of Goose Astrovirus. Viruses 2024, 16, 765. https://doi.org/10.3390/v16050765
Shi J, Jin Q, Zhang X, Zhao J, Li N, Dong B, Yu J, Yao L. The Development of a Sensitive Droplet Digital Polymerase Chain Reaction Test for Quantitative Detection of Goose Astrovirus. Viruses. 2024; 16(5):765. https://doi.org/10.3390/v16050765
Chicago/Turabian StyleShi, Jianzhou, Qianyue Jin, Xiaozhan Zhang, Jinbing Zhao, Na Li, Bingxue Dong, Jinran Yu, and Lunguang Yao. 2024. "The Development of a Sensitive Droplet Digital Polymerase Chain Reaction Test for Quantitative Detection of Goose Astrovirus" Viruses 16, no. 5: 765. https://doi.org/10.3390/v16050765
APA StyleShi, J., Jin, Q., Zhang, X., Zhao, J., Li, N., Dong, B., Yu, J., & Yao, L. (2024). The Development of a Sensitive Droplet Digital Polymerase Chain Reaction Test for Quantitative Detection of Goose Astrovirus. Viruses, 16(5), 765. https://doi.org/10.3390/v16050765