SIV Infection Regulates Compartmentalization of Circulating Blood Plasma miRNAs within Extracellular Vesicles (EVs) and Extracellular Condensates (ECs) and Decreases EV-Associated miRNA-128
"> Figure 1
<p>Study workflow, EV and EC isolation and characterization. (<b>A</b>) Description of experimental model; 15 male Indian Rhesus Macaques were randomly assigned to 5 groups of 3. Pre-infection and pre-treatment blood plasma samples were collected and processed. (<b>B</b>) Methodological workflow for isolation of EVs and ECs and their characterization. (<b>C</b>) Representative PPLC spectra of EVs and ECs. Blue box: indicates EV-containing fraction. Green box: indicates EC-containing fraction. (<b>D</b>) Representative negative-stain TEM images of purified EVs and ECs from pooled (<span class="html-italic">n</span> = 15) RMs. Blue arrows indicate gold-labeled CD9 on the surface of EVs. Green arrows indicate ECs. Scale bars: 200 nm for EVs and ECs (Top), 50 nm EVs (bottom), and 100 nm ECs (bottom). (<b>E</b>–<b>G</b>) Nanoparticle tracking analysis (NTA) measurements of different BEV properties, including (<b>E</b>) mean EV size, (<b>F</b>) mean EV concentration, (<b>G</b>) mean EV zeta-potential.</p> "> Figure 2
<p>Identification of common BEV and BEC miRNAs. (<b>A</b>) Number of miRNAs detected (miRNA distribution count ≥1) for each RM (<span class="html-italic">n</span> = 15), for both EVs and ECs. (<b>B</b>) Venn diagram comparing total detectable miRNAs for EVs and ECs (<span class="html-italic">n</span> = 15). To be included in the list, miRNA count needed to be ≥1 at least 1 RM. (<b>C</b>,<b>D</b>) Venn diagram showing common and unique miRNAs among the 5 groups for (<b>C</b>) EVs and (<b>D</b>) ECs. Dotted red circle indicates miRNAs detected in monkeys (<span class="html-italic">n</span> = 15) for EVs (19) and ECs (114). (<b>E</b>,<b>F</b>) Top 10 detected commonly expressed miRNAs as measured by miRNA distribution counts for (<b>E</b>) EVs and (<b>F</b>) ECs. Unpaired T-test with Welch’s correction was used to assess statistical differences between EVs and ECs in panel (<b>A</b>). Error bars represent S.E.M. ****, <span class="html-italic">p</span> < 0.0001.</p> "> Figure 3
<p>The top 10 miRNAs identified in EVs and ECs regulate distinctive pathways. (<b>A</b>,<b>B</b>) miRNA-target enrichment analysis showing top target genes by number of interactions for A) EV-associated miRNAs and (<b>B</b>) EC-associated miRNAs. The color of the bars represents adjusted <span class="html-italic">p</span>-values (FDR). (<b>C</b>,<b>D</b>) Visualization of miRNA-target interaction network for (<b>C</b>) EV-associated miRNAs and (<b>D</b>) EC-associated miRNAs. Blue circles indicate miRNAs, yellow circles indicate their target genes. (<b>E</b>,<b>F</b>) Dot plot of functional enrichment analysis for target genes of top 10 miRNAs resulting from miRNA-target enrichment analysis for (<b>E</b>) EV-associated miRNAs and (<b>F</b>) EC-associated miRNAs. Color of dots represents adjusted <span class="html-italic">p</span>-values (FDR), and size of dots represents gene ratio (number of miRNA targets found enriched in each category/number of total genes associated with that category). (<b>G</b>) Venn diagram comparing differences and similarities in KEGG pathways of EV- and EC-associated miRNAs.</p> "> Figure 4
<p>Identification and pathway analysis of common and unique miRNAs associated with EVs and ECs. (<b>A</b>) Venn diagram showing common and unique miRNAs among the common EV and EC miRNAs (<span class="html-italic">n</span> = 15). (<b>B</b>) miRNA distribution counts of EV-associated unique miRNAs (1) for <span class="html-italic">n</span> = 15 RMs. (<b>C</b>) miRNA distribution counts of top 10 EC-associated miRNAs. (<b>D</b>) miRNA-target enrichment analysis showing top target genes by number of interactions for the 1 unique EV-associated miRNA. (<b>E</b>) Visualization of miRNA-target interaction network for the 1 unique EV-associated miRNA. (<b>F</b>) miRNA-target enrichment analysis showing top target genes by number of interactions for the top 10 unique EC-associated miRNAs. (<b>G</b>) Visualization of miRNA-target interaction network for the top 10 unique EC-associated miRNAs. (<b>H</b>) Dot plot of functional enrichment analysis for the top 10 unique EC-associated miRNAs. Color of dots represents adjusted <span class="html-italic">p</span>-values (FDR), and size of dots represents gene ratio (number of miRNA targets found enriched in each category/number of total genes associated with that category). (<b>I</b>) PCA plot of the 18 (arrow from panel (<b>A</b>)) common EV and EC miRNAs. Unit variance scaling is applied to rows; SVD with imputation is used to calculate principal components. X and Y axis show principal component 1 and principal component 2, which explain 74.4% and 19.1% of the total variance, respectively. Predication ellipses are such that with a probability of 0.95, a new observation from the same group will fall inside the ellipse. <span class="html-italic">N</span> = 15 data points. (<b>J</b>) Hierarchical clustering heatmap of the 18 common EV and EC miRNAs. Rows are centered; unit variance scaling is applied to rows. Both rows and columns are clustered using correlation distance and average linkage. (<b>K</b>) miRNA-target enrichment analysis showing top target genes by number of interactions for the 18 common EV- and EC-associated miRNAs. (<b>L</b>) Visualization of miRNA-target interaction network for 18 common EV- and EC-associated miRNAs. (<b>M</b>) Dot plot of functional enrichment analysis for target genes of 18 common EV- and EC-associated miRNAs. Color of dots represents adjusted <span class="html-italic">p</span>-values (FDR), and size of dots represents gene ratio (number of miRNA targets found enriched in each category/number of total genes associated with that category.</p> "> Figure 5
<p>SIV infection of RMs longitudinally downregulates EV-associated miR-128-3p. (<b>A</b>) Schematic of SIV infection of RMs; 12 male Indian RMs were infected with SIV. One month post-infection (1 MPI), blood plasma was collected from <span class="html-italic">n</span> = 12 RMS. Five months post-infection (5 MPI), blood plasma was collected from <span class="html-italic">n</span> = 3 RMS. (<b>B</b>) Number of miRNAs detected (miRNA distribution count ≥ 1) for each RM, for both EVs and ECs. Pre (<span class="html-italic">n</span> = 15), SIV 1 MPI (<span class="html-italic">n</span> = 12), SIV 5 MPI (<span class="html-italic">n</span> = 3). (<b>C</b>–<b>F</b>) Volcano plots showing down-regulated (blue) and up-regulated (red) miRNAs in (<b>C</b>) EVs 1 MPI, (<b>D</b>) ECs 1 MPI, (<b>E</b>) EVs 5 MPI, and (<b>F</b>) BCs 5 MPI compared to healthy uninfected RMs (Pre). (<b>G</b>–<b>I</b>) miRNA-target enrichment analysis (<b>G</b>), visualization of miRNA-target interaction network (<b>H</b>), and dot plot of functional enrichment analysis (<b>I</b>) for the longitudinally downregulated EV-associated miRNAs (miR-206, miR-99a-5p, miR-128-3p). Color of dots in panel (<b>I</b>) represents adjusted <span class="html-italic">p</span>-values (FDR), and size of dots represents gene ratio (number of miRNA targets found enriched in each category/number of total genes associated with that category. (<b>J</b>) TaqMan PCR validation using 128a-3p specific assays. Statistical differences were assessed by ordinary one-way ANOVA test with Tukey’s correction (<span class="html-italic">n</span> = 3). *, <span class="html-italic">p</span> < 0.05. (<b>K</b>) miRNA-target enrichment analysis showing top target genes by number of interactions for miR-128-3p. (<b>L</b>) Visualization of miRNA-target interaction network for miR-128-3p. (<b>M</b>,<b>N</b>) Dot plots of functional enrichment analysis (<b>M</b>) KEGG and (<b>N</b>) disease Ontology for target genes of miR-128-3p. Color of dots represents adjusted <span class="html-italic">p</span>-values (FDR), and size of dots represents gene ratio (number of miRNA targets found enriched in each category/number of total genes associated with that category). Unpaired T-test with Welch’s correction was used to assess statistical differences between EVs and ECs in panels (<b>B</b>) and (<b>J</b>) (left). Error bars represent S.E.M. *, <span class="html-italic">p</span> < 0.05; ****, <span class="html-italic">p</span> < 0.0001; ns, not significant. In Panel J, Ordinary One-way ANOVA multiple comparison test (Tukey’s test) was used to assess statistical differences, with ns denoting non-significant.</p> "> Figure 6
<p>Circulating blood plasma miRNAs and their association with EVs and ECs in uninfected and SIV-infected rhesus macaques. Part of this illustration was created with BioRender.com.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Isolation and Characterization of the Physical Properties of Blood Plasma Extracellular Vesicles (EVs) and Extracellular Condensates (ECs)
2.2. Complexity and Enrichment of Circulating miRNA in EVs and ECs
2.3. Predictive Functional and Pathways Categories of Differentially Enriched miRNAs in EVs and ECs
2.4. Common and Unique EV/EC-Associated miRNA-Linked Biological Networks and Functional Pathways
2.5. Effect of SIV Infection on EV and EC miRNAome
3. Materials and Methods
3.1. Macaques and Viruses (Used for This Study and the Follow-Up Study Presented in Manuscript 2)
3.2. Isolation of EVs and ECsViruses (Used for This Study and the Follow-Up Study in Manuscript 2)
3.3. Transmission Electron Microscopy (TEM)
3.4. Nanoparticle Tracking Analysis (NTA) (Used for This Study and the Follow-Up Study in Manuscript 2)
3.5. Total RNA Isolation (Used for This Study and the Follow-Up Study in Manuscript 2)
3.6. Library Preparation and sRNA Sequencing (Used for This Study and the Follow-Up Study in Manuscript 2)
3.7. Identification of Common miRNAs (Used for This Study and the Follow-Up Study in Manuscript 2)
3.8. PCA Plot and Heatmap Generation (Used for This Study and the Follow-Up Study in Manuscript 2)
3.9. Identification of Differentially-Enriched miRNAs (Used for This Study and the Follow-Up Study in Manuscript 2)
3.10. miRNA-Target Enrichment Analysis (Used for This Study and the Follow-Up Study in Manuscript 2)
3.11. Validation of miRNA by Real-Time Quantitative PCR (RT-qPCR)
3.12. Statistical Analyses (Used for This Study and the Follow-Up Study in Manuscript 2)
4. Discussion
Conclusions and Translational Relevance
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ecs | Extracellular condensates |
EVs | Extracellular vesicles |
ART | Anti-retroviral therapy |
THC | Delta-9-tetrahydrocannabinol |
VEH | Vehicle |
References
- Huntzinger, E.; Izaurralde, E. Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nat. Rev. Genet. 2011, 12, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, M.M.; Sohel, M.M.; Schellander, K.; Tesfaye, D. Characterization and importance of microRNAs in mammalian gonadal functions. Cell Tissue Res. 2012, 349, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Aalto, A.P.; Pasquinelli, A.E. Small non-coding RNAs mount a silent revolution in gene expression. Curr. Opin. Cell Biol. 2012, 24, 333–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Croce, C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 2016, 1, 15004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinniah, R.; Adimulam, T.; Nandlal, L.; Arumugam, T.; Ramsuran, V. The Effect of miRNA Gene Regulation on HIV Disease. Front. Genet. 2022, 13, 862642. [Google Scholar] [CrossRef]
- Bali, P.; Kenny, P.J. MicroRNAs and Drug Addiction. Front. Genet. 2013, 4, 43. [Google Scholar] [CrossRef] [Green Version]
- Hwang, H.W.; Mendell, J.T. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br. J. Cancer 2007, 96, R40–R44. [Google Scholar] [CrossRef]
- Gilad, S.; Meiri, E.; Yogev, Y.; Benjamin, S.; Lebanony, D.; Yerushalmi, N.; Benjamin, H.; Kushnir, M.; Cholakh, H.; Melamed, N.; et al. Serum microRNAs are promising novel biomarkers. PLoS ONE 2008, 3, e3148. [Google Scholar] [CrossRef] [Green Version]
- Taylor, D.D.; Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 2008, 110, 13–21. [Google Scholar] [CrossRef]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [Green Version]
- Munir, J.; Yoon, J.K.; Ryu, S. Therapeutic miRNA-Enriched Extracellular Vesicles: Current Approaches and Future Prospects. Cells 2020, 9, 2271. [Google Scholar] [CrossRef]
- Kaddour, H.; Lyu, Y.; Shouman, N.; Mohan, M.; Okeoma, C.M. Development of Novel High-Resolution Size-Guided Turbidimetry-Enabled Particle Purification Liquid Chromatography (PPLC): Extracellular Vesicles and Membraneless Condensates in Focus. Int. J. Mol. Sci. 2020, 21, 5361. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, F.A.; Kaddour, H.; Lyu, Y.; Preece, C.; Cohen, J.; Baer, L.; Stopeck, A.T.; Thompson, P.; Okeoma, C.M. Blood plasma derived extracellular vesicles (BEVs): Particle purification liquid chromatography (PPLC) and proteomics analysis reveal BEVs as potential minimally invasive tool for predicting response to breast cancer treatment. Breast Cancer Res. Treat. 2022, 196, 423–437. [Google Scholar] [CrossRef] [PubMed]
- Simons, M.; Raposo, G. Exosomes—Vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 2009, 21, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Bobrie, A.; Colombo, M.; Raposo, G.; Thery, C. Exosome secretion: Molecular mechanisms and roles in immune responses. Traffic 2011, 12, 1659–1668. [Google Scholar] [CrossRef] [PubMed]
- Thery, C.; Ostrowski, M.; Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 2009, 9, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Admyre, C.; Grunewald, J.; Thyberg, J.; Gripenback, S.; Tornling, G.; Eklund, A.; Scheynius, A.; Gabrielsson, S. Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur. Respir. J. 2003, 22, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Admyre, C.; Johansson, S.M.; Qazi, K.R.; Filen, J.J.; Lahesmaa, R.; Norman, M.; Neve, E.P.; Scheynius, A.; Gabrielsson, S. Exosomes with immune modulatory features are present in human breast milk. J. Immunol. 2007, 179, 1969–1978. [Google Scholar] [CrossRef] [Green Version]
- Baum, M.K.; Rafie, C.; Lai, S.; Sales, S.; Page, B.; Campa, A. Crack-cocaine use accelerates HIV disease progression in a cohort of HIV-positive drug users. J. Acquir. Immune Defic. Syndr. 2009, 50, 93–99. [Google Scholar] [CrossRef]
- Caby, M.P.; Lankar, D.; Vincendeau-Scherrer, C.; Raposo, G.; Bonnerot, C. Exosomal-like vesicles are present in human blood plasma. Int. Immunol. 2005, 17, 879–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotvall, J.; Valadi, H. Cell to cell signalling via exosomes through esRNA. Cell Adhes. Migr. 2007, 1, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Madison, M.N.; Roller, R.J.; Okeoma, C.M. Human semen contains exosomes with potent anti-HIV-1 activity. Retrovirology 2014, 11, 102. [Google Scholar] [CrossRef] [Green Version]
- Palanisamy, V.; Sharma, S.; Deshpande, A.; Zhou, H.; Gimzewski, J.; Wong, D.T. Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS ONE 2010, 5, e8577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisitkun, T.; Shen, R.F.; Knepper, M.A. Identification and proteomic profiling of exosomes in human urine. Proc. Natl. Acad. Sci. USA 2004, 101, 13368–13373. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.A.; Daniel, R. Human vaginal fluid contains exosomes that have an inhibitory effect on an early step of the HIV-1 life cycle. AIDS 2016, 30, 2611–2616. [Google Scholar] [CrossRef]
- Vojtech, L.; Woo, S.; Hughes, S.; Levy, C.; Ballweber, L.; Sauteraud, R.P.; Strobl, J.; Westerberg, K.; Gottardo, R.; Tewari, M.; et al. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res. 2014, 42, 7290–7304. [Google Scholar] [CrossRef] [Green Version]
- Madison, M.N.; Jones, P.H.; Okeoma, C.M. Exosomes in human semen restrict HIV-1 transmission by vaginal cells and block intravaginal replication of LP-BM5 murine AIDS virus complex. Virology 2015, 482, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Madison, M.N.; Okeoma, C.M. Exosomes: Implications in HIV-1 Pathogenesis. Viruses 2015, 7, 4093–4118. [Google Scholar] [CrossRef] [Green Version]
- Madison, M.N.; Welch, J.L.; Okeoma, C.M. Isolation of Exosomes from Semen for in vitro Uptake and HIV-1 Infection Assays. Bio-protocol 2017, 7, e2216. [Google Scholar] [CrossRef] [Green Version]
- Welch, J.L.; Kaddour, H.; Schlievert, P.M.; Stapleton, J.T.; Okeoma, C.M. Articles of Significant Interest in This Issue. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [Green Version]
- Welch, J.L.; Kaddour, H.; Schlievert, P.M.; Stapleton, J.T.; Okeoma, C.M. Semen exosomes promote transcriptional silencing of HIV-1 by disrupting NF-kB/Sp1/Tat circuitry. J. Virol. 2018, 92, e00731-18. [Google Scholar] [CrossRef] [Green Version]
- Welch, J.L.; Kaddour, H.; Winchester, L.; Fletcher, C.V.; Stapleton, J.T.; Okeoma, C.M. Semen Extracellular Vesicles From HIV-1-Infected Individuals Inhibit HIV-1 Replication In Vitro, and Extracellular Vesicles Carry Antiretroviral Drugs In Vivo. J. Acquir. Immune Defic. Syndr. 2020, 83, 90–98. [Google Scholar] [CrossRef]
- Welch, J.L.; Madison, M.N.; Margolick, J.B.; Galvin, S.; Gupta, P.; Martinez-Maza, O.; Dash, C.; Okeoma, C.M. Effect of prolonged freezing of semen on exosome recovery and biologic activity. Sci. Rep. 2017, 7, 45034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, J.L.; Stapleton, J.T.; Okeoma, C.M. Vehicles of intercellular communication: Exosomes and HIV-1. J. Gen. Virol. 2019, 100, 350. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Kaddour, H.; Kopcho, S.; Panzner, T.D.; Shouman, N.; Kim, E.-Y.; Martinson, J.; McKay, H.; Martinez-Maza, O.; Margolick, J.B.; et al. Human Immunodeficiency Virus (HIV) Infection and Use of Illicit Substances Promote Secretion of Semen Exosomes that Enhance Monocyte Adhesion and Induce Actin Reorganization and Chemotactic Migration. Cells 2019, 8, 1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadiu, I.; Narayanasamy, P.; Dash, P.K.; Zhang, W.; Gendelman, H.E. Biochemical and biologic characterization of exosomes and microvesicles as facilitators of HIV-1 infection in macrophages. J. Immunol. 2012, 189, 744–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, B.Z.; Salimi, B.; Gadd, S.L.; Huang, C.C.; Kabat, W.J.; Kersey, D.; McCabe, C.; Heald-Sargent, T.; Katz, E.D.; Yogev, R. Differential gene expression of soluble CD8+ T-cell mediated suppression of HIV replication in three older children. J. Med. Virol. 2011, 83, 24–32. [Google Scholar] [CrossRef]
- Khatua, A.K.; Taylor, H.E.; Hildreth, J.E.; Popik, W. Exosomes packaging APOBEC3G confer human immunodeficiency virus resistance to recipient cells. J. Virol. 2009, 83, 512–521. [Google Scholar] [CrossRef] [Green Version]
- Kodidela, S.; Wang, Y.; Patters, B.J.; Gong, Y.; Sinha, N.; Ranjit, S.; Gerth, K.; Haque, S.; Cory, T.; McArthur, C.; et al. Proteomic Profiling of Exosomes Derived from Plasma of HIV-Infected Alcohol Drinkers and Cigarette Smokers. J. Neuroimmune Pharmacol. 2019, 15, 501–519. [Google Scholar] [CrossRef]
- Konadu, K.A.; Chu, J.; Huang, M.B.; Amancha, P.K.; Armstrong, W.; Powell, M.D.; Villinger, F.; Bond, V.C. Association of Cytokines With Exosomes in the Plasma of HIV-1-Seropositive Individuals. J. Infect. Dis. 2015, 211, 1712–1716. [Google Scholar] [CrossRef] [PubMed]
- Konadu, K.A.; Huang, M.B.; Roth, W.; Armstrong, W.; Powell, M.; Villinger, F.; Bond, V. Isolation of Exosomes from the Plasma of HIV-1 Positive Individuals. J. Vis. Exp. 2016, 107, e53495. [Google Scholar] [CrossRef] [Green Version]
- Kramer, B.; Pelchen-Matthews, A.; Deneka, M.; Garcia, E.; Piguet, V.; Marsh, M. HIV interaction with endosomes in macrophages and dendritic cells. Blood Cells Mol. Dis. 2005, 35, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Lenassi, M.; Cagney, G.; Liao, M.; Vaupotic, T.; Bartholomeeusen, K.; Cheng, Y.; Krogan, N.J.; Plemenitas, A.; Peterlin, B.M. HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 2010, 11, 110–122. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Aliotta, J.M.; Asara, J.M.; Tucker, L.; Quesenberry, P.; Lally, M.; Ramratnam, B. Quantitative proteomic analysis of exosomes from HIV-1-infected lymphocytic cells. Proteomics 2012, 12, 2203–2211. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, A.; Iordanskiy, S.; Das, R.; Van Duyne, R.; Santos, S.; Jaworski, E.; Guendel, I.; Sampey, G.; Dalby, E.; Iglesias-Ussel, M.; et al. Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J. Biol. Chem. 2013, 288, 20014–20033. [Google Scholar] [CrossRef] [Green Version]
- Naslund, T.I.; Paquin-Proulx, D.; Paredes, P.T.; Vallhov, H.; Sandberg, J.K.; Gabrielsson, S. Exosomes from breast milk inhibit HIV-1 infection of dendritic cells and subsequent viral transfer to CD4+ T cells. AIDS 2014, 28, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.G.; Booth, A.; Gould, S.J.; Hildreth, J.E. Evidence that HIV budding in primary macrophages occurs through the exosome release pathway. J. Biol. Chem. 2003, 278, 52347–52354. [Google Scholar] [CrossRef] [Green Version]
- Park, I.W.; He, J.J. HIV-1 is budded from CD4+ T lymphocytes independently of exosomes. Virol. J. 2010, 7, 234. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, H.; DeRose, R.; Inoue, T. Harnessing biomolecular condensates in living cells. J. Biochem. 2019, 166, 13–27. [Google Scholar] [CrossRef]
- Barberán-Soler, S.; Vo, J.M.; Hogans, R.E.; Dallas, A.; Johnston, B.H.; Kazakov, S.A. Decreasing miRNA sequencing bias using a single adapter and circularization approach. Genome Biol. 2018, 19, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA 2011, 108, 5003–5008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Licursi, V.; Conte, F.; Fiscon, G.; Paci, P. MIENTURNET: An interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinform. 2019, 20, 545. [Google Scholar] [CrossRef] [Green Version]
- Houzet, L.; Jeang, K.T. MicroRNAs and human retroviruses. Biochim. Biophys. Acta 2011, 1809, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Schopman, N.C.; van Montfort, T.; Willemsen, M.; Knoepfel, S.A.; Pollakis, G.; van Kampen, A.; Sanders, R.W.; Haasnoot, J.; Berkhout, B. Selective packaging of cellular miRNAs in HIV-1 particles. Virus Res. 2012, 169, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.T.; Thomas, M.J.; Sova, P.; Green, R.R.; Palermo, R.E.; Katze, M.G. Next-generation sequencing of small RNAs from HIV-infected cells identifies phased microrna expression patterns and candidate novel microRNAs differentially expressed upon infection. mBio 2013, 4, e00549-12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaddour, H.; Kopcho, S.; Lyu, Y.; Shouman, N.; Paromov, V.; Pratap, S.; Dash, C.; Kim, E.-Y.; Martinson, J.; McKay, H.; et al. HIV-infection and cocaine use regulate semen extracellular vesicles proteome and miRNAome in a manner that mediates strategic monocyte haptotaxis governed by miR-128 network. Cell. Mol. Life Sci. 2021, 79, 5. [Google Scholar] [CrossRef]
- Kumar, V.; Torben, W.; Mansfield, J.; Alvarez, X.; Vande Stouwe, C.; Li, J.; Byrareddy, S.N.; Didier, P.J.; Pahar, B.; Molina, P.E.; et al. Cannabinoid Attenuation of Intestinal Inflammation in Chronic SIV-Infected Rhesus Macaques Involves T Cell Modulation and Differential Expression of Micro-RNAs and Pro-inflammatory Genes. Front. Immunol. 2019, 10, 914. [Google Scholar] [CrossRef]
- Chandra, L.C.; Kumar, V.; Torben, W.; Vande Stouwe, C.; Winsauer, P.; Amedee, A.; Molina, P.E.; Mohan, M. Chronic administration of Delta9-tetrahydrocannabinol induces intestinal anti-inflammatory microRNA expression during acute simian immunodeficiency virus infection of rhesus macaques. J. Virol. 2015, 89, 1168–1181. [Google Scholar] [CrossRef] [Green Version]
- Molina, P.E.; Winsauer, P.; Zhang, P.; Walker, E.; Birke, L.; Amedee, A.; Stouwe, C.V.; Troxclair, D.; McGoey, R.; Varner, K.; et al. Cannabinoid administration attenuates the progression of simian immunodeficiency virus. AIDS Res. Hum. Retrovir. 2011, 27, 585–592. [Google Scholar] [CrossRef] [Green Version]
- Winsauer, P.J.; Molina, P.E.; Amedee, A.M.; Filipeanu, C.M.; McGoey, R.R.; Troxclair, D.A.; Walker, E.M.; Birke, L.L.; Stouwe, C.V.; Howard, J.M.; et al. Tolerance to chronic delta-9-tetrahydrocannabinol (Delta(9)-THC) in rhesus macaques infected with simian immunodeficiency virus. Exp. Clin. Psychopharmacol. 2011, 19, 154–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kechin, A.; Boyarskikh, U.; Kel, A.; Filipenko, M. cutPrimers: A New Tool for Accurate Cutting of Primers from Reads of Targeted Next Generation Sequencing. J. Comput. Biol. 2017, 24, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Heberle, H.; Meirelles, G.V.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015, 16, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef]
- Turchinovich, A.; Weiz, L.; Langheinz, A.; Burwinkel, B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011, 39, 7223–7233. [Google Scholar] [CrossRef]
- Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011, 13, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.; Zeng, Y.; Qian, Y.; Dong, J.; Zhang, Z.; Zhang, J. MicroRNA let-7c-5p improves neurological outcomes in a murine model of traumatic brain injury by suppressing neuroinflammation and regulating microglial activation. Brain Res. 2018, 1685, 91–104. [Google Scholar] [CrossRef]
- Zhang, J.; Han, L.; Chen, F. Let-7a-5p regulates the inflammatory response in chronic rhinosinusitis with nasal polyps. Diagn. Pathol. 2021, 16, 27. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, H.; Hong, L.; Zhao, H.; Wang, J.; Li, H.; Che, H.; Zhang, Z. MicroRNA let-7c-5p Suppressed Lipopolysaccharide-Induced Dental Pulp Inflammation by Inhibiting Dentin Matrix Protein-1-Mediated Nuclear Factor kappa B (NF-κB) Pathway In Vitro and In Vivo. Med. Sci. Monit. 2018, 24, 6656–6665. [Google Scholar] [CrossRef]
- Bernstein, D.L.; Zuluaga-Ramirez, V.; Gajghate, S.; Reichenbach, N.L.; Polyak, B.; Persidsky, Y.; Rom, S. miR-98 reduces endothelial dysfunction by protecting blood-brain barrier (BBB) and improves neurological outcomes in mouse ischemia/reperfusion stroke model. J. Cereb. Blood Flow Metab. 2020, 40, 1953–1965. [Google Scholar] [CrossRef]
- Rom, S.; Dykstra, H.; Zuluaga-Ramirez, V.; Reichenbach, N.L.; Persidsky, Y. miR-98 and let-7g* protect the blood-brain barrier under neuroinflammatory conditions. J. Cereb. Blood Flow Metab. 2015, 35, 1957–1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, D.L.; Gajghate, S.; Reichenbach, N.L.; Winfield, M.; Persidsky, Y.; Heldt, N.A.; Rom, S. let-7g counteracts endothelial dysfunction and ameliorating neurological functions in mouse ischemia/reperfusion stroke model. Brain Behav. Immun. 2020, 87, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Triboulet, R.; Mari, B.; Lin, Y.L.; Chable-Bessia, C.; Bennasser, Y.; Lebrigand, K.; Cardinaud, B.; Maurin, T.; Barbry, P.; Baillat, V.; et al. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 2007, 315, 1579–1582. [Google Scholar] [CrossRef] [PubMed]
- Chiang, K.; Rice, A.P. Mini ways to stop a virus: microRNAs and HIV-1 replication. Future Virol. 2011, 6, 209–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhuri, E.; Dash, S.; Balasubramaniam, M.; Padron, A.; Holland, J.; Sowd, G.A.; Villalta, F.; Engelman, A.N.; Pandhare, J.; Dash, C. The HIV-1 capsid-binding host factor CPSF6 is post-transcriptionally regulated by the cellular microRNA miR-125b. J. Biol. Chem. 2020, 295, 5081–5094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasubramaniam, M.; Pandhare, J.; Dash, C. Are microRNAs Important Players in HIV-1 Infection? An Update. Viruses 2018, 10, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaminathan, S.; Suzuki, K.; Seddiki, N.; Kaplan, W.; Cowley, M.J.; Hood, C.L.; Clancy, J.L.; Murray, D.D.; Méndez, C.; Gelgor, L.; et al. Differential regulation of the Let-7 family of microRNAs in CD4+ T cells alters IL-10 expression. J. Immunol. 2012, 188, 6238–6246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayuso, C.; Rimola, J.; Vilana, R.; Burrel, M.; Darnell, A.; García-Criado, Á.; Bianchi, L.; Belmonte, E.; Caparroz, C.; Barrufet, M.; et al. Diagnosis and staging of hepatocellular carcinoma (HCC): Current guidelines. Eur. J. Radiol. 2018, 101, 72–81. [Google Scholar] [CrossRef]
- Carossino, M.; Dini, P.; Kalbfleisch, T.S.; Loynachan, A.T.; Canisso, I.F.; Shuck, K.M.; Timoney, P.J.; Cook, R.F.; Balasuriya, U.B.R. Downregulation of MicroRNA eca-mir-128 in Seminal Exosomes and Enhanced Expression of CXCL16 in the Stallion Reproductive Tract Are Associated with Long-Term Persistence of Equine Arteritis Virus. J. Virol. 2018, 92, e00015-18. [Google Scholar] [CrossRef] [Green Version]
- Bondanese, V.P.; Francisco-Garcia, A.; Bedke, N.; Davies, D.E.; Sanchez-Elsner, T. Identification of host miRNAs that may limit human rhinovirus replication. World J. Biol. Chem. 2014, 5, 437–456. [Google Scholar] [CrossRef] [Green Version]
- Eletto, D.; Russo, G.; Passiatore, G.; Del Valle, L.; Giordano, A.; Khalili, K.; Gualco, E.; Peruzzi, F. Inhibition of SNAP25 expression by HIV-1 Tat involves the activity of mir-128a. J. Cell. Physiol. 2008, 216, 764–770. [Google Scholar] [CrossRef] [Green Version]
- Bochnakian, A.; Zhen, A.; Zisoulis, D.G.; Idica, A.; KewalRamani, V.N.; Neel, N.; Daugaard, I.; Hamdorf, M.; Kitchen, S.; Lee, K.; et al. Interferon-Inducible MicroRNA miR-128 Modulates HIV-1 Replication by Targeting TNPO3 mRNA. J. Virol. 2019, 93, e00364-19. [Google Scholar] [CrossRef] [Green Version]
- Idica, A.; Sevrioukov, E.A.; Zisoulis, D.G.; Hamdorf, M.; Daugaard, I.; Kadandale, P.; Pedersen, I.M. MicroRNA miR-128 represses LINE-1 (L1) retrotransposition by down-regulating the nuclear import factor TNPO1. J. Biol. Chem. 2017, 292, 20494–20508. [Google Scholar] [CrossRef] [Green Version]
- Bruno, I.G.; Karam, R.; Huang, L.; Bhardwaj, A.; Lou, C.H.; Shum, E.Y.; Song, H.W.; Corbett, M.A.; Gifford, W.D.; Gecz, J.; et al. Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay. Mol. Cell 2011, 42, 500–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megraw, M.; Sethupathy, P.; Gumireddy, K.; Jensen, S.T.; Huang, Q.; Hatzigeorgiou, A.G. Isoform specific gene auto-regulation via miRNAs: A case study on miR-128b and ARPP-21. Theor. Chem. Acc. 2010, 125, 593–598. [Google Scholar] [CrossRef] [Green Version]
- Rakhilin, S.V.; Olson, P.A.; Nishi, A.; Starkova, N.N.; Fienberg, A.A.; Nairn, A.C.; Surmeier, D.J.; Greengard, P. A network of control mediated by regulator of calcium/calmodulin-dependent signaling. Science 2004, 306, 698–701. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Zhu, H.; Zhao, Q.; Huang, J.; Zhou, C.; He, J.; Liang, Y. MiR-128 suppresses metastatic capacity by targeting metadherin in breast cancer cells. Biol. Res. 2020, 53, 43. [Google Scholar] [CrossRef]
- Ge, X.; Gu, Y.; Li, D.; Jiang, M.; Zhao, S.; Li, Z.; Liu, S. Knockdown of lncRNA PCAT1 Enhances Radiosensitivity of Cervical Cancer by Regulating miR-128/GOLM1 Axis. OncoTargets Ther. 2020, 13, 10373–10385. [Google Scholar] [CrossRef]
- Geng, Y.B.; Pan, C.C.; Xu, C.; Zuo, P.C.; Wang, Y.; Li, X.O.; Zhang, L.W. Long non-coding RNA LINC00346 regulates proliferation and apoptosis by targeting miR-128-3p/SZRD1 axis in glioma. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9581–9590. [Google Scholar] [CrossRef]
- Wang, B.; Hang, J.; Li, W.; Yuan, W. Knockdown of LncRNA DLEU2 Inhibits Cervical Cancer Progression via Targeting miR-128-3p. OncoTargets Ther. 2020, 13, 10173–10184. [Google Scholar] [CrossRef]
- Wang, R.; Liu, L.; Jiao, J.; Gao, D. Knockdown of MIR4435-2HG Suppresses the Proliferation, Migration and Invasion of Cervical Cancer Cells via Regulating the miR-128-3p/MSI2 Axis in vitro. Cancer Manag. Res. 2020, 12, 8745–8756. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, Q.; Yan, L.; Jiao, Y.; Su, Q.; Li, X.; Liu, C.; Zhao, F. MiRNA-128 and MiRNA-142 Regulate Tumorigenesis and EMT in Oral Squamous Cell Carcinoma Through HOXA10. Cancer Manag. Res. 2020, 12, 9987–9997. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, X.; Du, L.; Wang, Y.; Liu, X.; Tian, H.; Wang, L.; Li, P.; Zhao, Y.; Duan, W.; et al. Exosome-transmitted miR-128-3p increase chemosensitivity of oxaliplatin-resistant colorectal cancer. Mol. Cancer 2019, 18, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smirnova, L.; Gräfe, A.; Seiler, A.; Schumacher, S.; Nitsch, R.; Wulczyn, F.G. Regulation of miRNA expression during neural cell specification. Eur. J. Neurosci. 2005, 21, 1469–1477. [Google Scholar] [CrossRef] [PubMed]
- Persengiev, S.P.; Kondova, I.I.; Bontrop, R.E. The Impact of MicroRNAs on Brain Aging and Neurodegeneration. Curr. Gerontol. Geriatr. Res. 2012, 2012, 359369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukiw, W.J. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport 2007, 18, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Zare, M.; Soleimani, M.; Akbarzadeh, A.; Bakhshandeh, B.; Aghaee-Bakhtiari, S.H.; Zarghami, N. A Novel Protocol to Differentiate Induced Pluripotent Stem Cells by Neuronal microRNAs to Provide a Suitable Cellular Model. Chem. Biol. Drug Des. 2015, 86, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Evangelisti, C.; Florian, M.C.; Massimi, I.; Dominici, C.; Giannini, G.; Galardi, S.; Buè, M.C.; Massalini, S.; McDowell, H.P.; Messi, E.; et al. MiR-128 up-regulation inhibits Reelin and DCX expression and reduces neuroblastoma cell motility and invasiveness. FASEB J. 2009, 23, 4276–4287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godlewski, J.; Nowicki, M.O.; Bronisz, A.; Williams, S.; Otsuki, A.; Nuovo, G.; Raychaudhury, A.; Newton, H.B.; Chiocca, E.A.; Lawler, S. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 2008, 68, 9125–9130. [Google Scholar] [CrossRef] [Green Version]
- Guidi, M.; Muiños-Gimeno, M.; Kagerbauer, B.; Martí, E.; Estivill, X.; Espinosa-Parrilla, Y. Overexpression of miR-128 specifically inhibits the truncated isoform of NTRK3 and upregulates BCL2 in SH-SY5Y neuroblastoma cells. BMC Mol. Biol. 2010, 11, 95. [Google Scholar] [CrossRef] [Green Version]
- Papagiannakopoulos, T.; Friedmann-Morvinski, D.; Neveu, P.; Dugas, J.C.; Gill, R.M.; Huillard, E.; Liu, C.; Zong, H.; Rowitch, D.H.; Barres, B.A.; et al. Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene 2012, 31, 1884–1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Chao, T.; Li, R.; Liu, W.; Chen, Y.; Yan, X.; Gong, Y.; Yin, B.; Liu, W.; Qiang, B.; et al. MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J. Mol. Med. 2009, 87, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Wei, W.; Coelho, C.M.; Li, X.; Baker-Andresen, D.; Dudley, K.; Ratnu, V.S.; Boskovic, Z.; Kobor, M.S.; Sun, Y.E.; et al. The brain-specific microRNA miR-128b regulates the formation of fear-extinction memory. Nat. Neurosci. 2011, 14, 1115–1117. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.F.; Yu, M.L.; Yu, G.; Bian, J.J.; Deng, X.M.; Wan, X.J.; Zhu, K.M. Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem. Biophys. Res. Commun. 2010, 394, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Tosar, J.P.; Gámbaro, F.; Sanguinetti, J.; Bonilla, B.; Witwer, K.W.; Cayota, A. Assessment of small RNA sorting into different extracellular fractions revealed by high-throughput sequencing of breast cell lines. Nucleic Acids Res. 2015, 43, 5601–5616. [Google Scholar] [CrossRef] [Green Version]
- Cortez, M.A.; Bueso-Ramos, C.; Ferdin, J.; Lopez-Berestein, G.; Sood, A.K.; Calin, G.A. MicroRNAs in body fluids--the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 2011, 8, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Schwarzenbach, H.; Nishida, N.; Calin, G.A.; Pantel, K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat. Rev. Clin. Oncol. 2014, 11, 145–156. [Google Scholar] [CrossRef]
- Thomas, S.P.; Hoang, T.T.; Ressler, V.T.; Raines, R.T. Human angiogenin is a potent cytotoxin in the absence of ribonuclease inhibitor. RNA 2018, 24, 1018–1027. [Google Scholar] [CrossRef] [Green Version]
- Loo, J.M.; Scherl, A.; Nguyen, A.; Man, F.Y.; Weinberg, E.; Zeng, Z.; Saltz, L.; Paty, P.B.; Tavazoie, S.F. Extracellular metabolic energetics can promote cancer progression. Cell 2015, 160, 393–406. [Google Scholar] [CrossRef] [Green Version]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Hou, D.; Chen, X.; Li, D.; Zhu, L.; Zhang, Y.; Li, J.; Bian, Z.; Liang, X.; Cai, X.; et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA. Cell Res. 2012, 22, 107–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18, 997–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Animal ID | Pre-Infection/Pre-Treatment Samples Used | SIV Inoculum | 1st Post-Infection Blood Collection | 2nd Post-Infection Blood Collection |
---|---|---|---|---|
JD66 | Yes | SIVmac251 | 1 MPI | 5 MPI |
IN24 | Yes | SIVmac251 | 1 MPI | 5 MPI |
JH47 | Yes | SIVmac251 | 1 MPI | 5 MPI |
JI45 | Yes | NA | NA | NA |
JC85 | Yes | NA | NA | NA |
JT80 | Yes | NA | NA | NA |
LM56 | Yes | NA | NA | NA |
LA88 | Yes | NA | NA | NA |
LN60 | Yes | NA | NA | NA |
LA55 | Yes | NA | NA | NA |
KV50 | Yes | NA | NA | NA |
LM85 | Yes | NA | NA | NA |
HI78 | Yes | NA | NA | NA |
HN79 | Yes | NA | NA | NA |
HN39 | Yes | NA | NA | NA |
Let-7 miRNA ID | Counts | |
---|---|---|
EVs | ECs | |
mml-let-7a-5p | 14,522 | 3313 |
mml-let-7c-5p | 14,406 | 3307 |
mml-let-7f-5p | 5127 | 1578 |
mml-let-7g-5p | 3530 | 5821 |
mml-let-7d | 2865 | 1450 |
mml-let-7b-5p | 2573 | 4148 |
mml-let-7i-5p | 736 | 2892 |
mml-let-7e-5p | 272 | 66 |
miRNA | FC (log2) | p-Value | −log (p-Value) |
---|---|---|---|
mml-miR-376c-3p | 1.311 | 1 × 10−15 | 15.00 |
mml-miR-221-3p | 1.046 | 7.28 × 10−11 | 10.14 |
mml-miR-16-5p | 0.816 | 3.74 × 10−11 | 10.43 |
mml-miR-320b | 0.814 | 1.63 × 10−6 | 5.79 |
mml-miR-320a | 0.813 | 1.61 × 10−6 | 5.79 |
mml-miR-23b-3p | 0.779 | 2.22 × 10−8 | 7.65 |
mml-miR-23a-3p | 0.777 | 2.29 × 10−8 | 7.64 |
mml-miR-22 | 0.691 | 3.92 × 10−5 | 4.41 |
mml-miR-191-5p | 0.519 | 8.4 × 10−6 | 5.08 |
mml-let-7g-5p | 0.423 | 0.004991 | 2.30 |
mml-miR-26b-5p | 0.417 | 0.025055 | 1.60 |
mml-let-7b-5p | 0.336 | 0.022302 | 1.65 |
mml-miR-26a-5p | 0.171 | 0.163452 | 0.79 |
mml-let-7d | 0.112 | 0.509328 | 0.29 |
mml-let-7f-5p | −0.073 | 0.653058 | 0.19 |
mml-let-7a-5p | −0.162 | 0.216372 | 0.66 |
mml-let-7c-5p | −0.162 | 0.216392 | 0.66 |
mml-miR-203 | −1.053 | 0.000208 | 3.68 |
Carrier Type | miRNAs | Regulation | log2 (Fold Change) | p-Value | −log (p-Value) |
---|---|---|---|---|---|
EVs | miR-128a-3p | ||||
SIV (1 MPI) | Down | −1.596 | 0.049 | 1.309 | |
SIV (5 MPI) | Down | −2.970 | 0.0045 | 2.346 | |
miR-378d | |||||
SIV (1 MPI) | Down | −1.918 | 0.0069 | 2.161 | |
SIV (5 MPI) | Down | −3.291 | 0.0003 | 3.523 | |
miR-99a-5p SIV (1 MPI) SIV (5 MPI) | Down Down | −1.663 −2.249 | 0.0145 0.0018 | 1.839 2.745 | |
ECs | miR-656-3p | ||||
SIV (1 MPI) SIV (5 MPI) | Up Up | 2.567 2.723 | 0.019 0.0339 | 1.721 1.470 | |
miR-671-5p | |||||
SIV (1 MPI) SIV (5 MPI) | Up Up | 2.374 2.771 | 0.0461 0.0274 | 1.336 1.562 |
Regulation | log2 (Fold-Change) | p-Value | −log (p-Value) | Citation | |
---|---|---|---|---|---|
miR-128a-3p | |||||
SIV (1 MPI) | Down | −1.596 | 0.049 | 1.309 | This study |
SIV (5 MPI) | Down | −2.970 | 0.0045 | 2.346 | This study |
miR-128b-3p | |||||
SIV (1 MPI) | Down | −1.216 | 0.198 | 0.704 | This study |
SIV (5 MPI) | Down | −2.590 | 0.0368 | 1.434 | This study |
miR-128-3p | |||||
HIV | Down | −3.177 | 0.0076 | 2.119 | Kaddour et al., 2021 |
HIV/Cocaine | Down | −5.603 | 0.0048 | 2.319 | Kaddour et al., 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopcho, S.; McDew-White, M.; Naushad, W.; Mohan, M.; Okeoma, C.M. SIV Infection Regulates Compartmentalization of Circulating Blood Plasma miRNAs within Extracellular Vesicles (EVs) and Extracellular Condensates (ECs) and Decreases EV-Associated miRNA-128. Viruses 2023, 15, 622. https://doi.org/10.3390/v15030622
Kopcho S, McDew-White M, Naushad W, Mohan M, Okeoma CM. SIV Infection Regulates Compartmentalization of Circulating Blood Plasma miRNAs within Extracellular Vesicles (EVs) and Extracellular Condensates (ECs) and Decreases EV-Associated miRNA-128. Viruses. 2023; 15(3):622. https://doi.org/10.3390/v15030622
Chicago/Turabian StyleKopcho, Steven, Marina McDew-White, Wasifa Naushad, Mahesh Mohan, and Chioma M. Okeoma. 2023. "SIV Infection Regulates Compartmentalization of Circulating Blood Plasma miRNAs within Extracellular Vesicles (EVs) and Extracellular Condensates (ECs) and Decreases EV-Associated miRNA-128" Viruses 15, no. 3: 622. https://doi.org/10.3390/v15030622
APA StyleKopcho, S., McDew-White, M., Naushad, W., Mohan, M., & Okeoma, C. M. (2023). SIV Infection Regulates Compartmentalization of Circulating Blood Plasma miRNAs within Extracellular Vesicles (EVs) and Extracellular Condensates (ECs) and Decreases EV-Associated miRNA-128. Viruses, 15(3), 622. https://doi.org/10.3390/v15030622