[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Exosome-transmitted miR-128-3p increase chemosensitivity of oxaliplatin-resistant colorectal cancer

Mol Cancer. 2019 Mar 19;18(1):43. doi: 10.1186/s12943-019-0981-7.

Abstract

Background: Oxaliplatin resistance is a major challenge for treatment of advanced colorectal cancer (CRC). Both acquisition of epithelial-mesenchymal transition (EMT) and suppressed drug accumulation in cancer cells contributes to development of oxaliplatin resistance. Aberrant expression of small noncoding RNA, miR-128-3p, has been shown to be a key regulator in tumorigenesis and cancer development. However, its roles in the progression of CRC and oxaliplatin-resistance are largely unknown.

Methods: Oxaliplatin-resistant CRC and normal intestinal FHC cells were transfected with a miR-128-3p expression lentivirus. After transfection, FHC-derived exosomes were isolated and co-cultured with CRC cells. miR-128-3p expression in resistant CRC cells, FHC cells, and exosomes was quantified by quantitative real-time PCR (RT-qPCR). The mRNA and protein levels of miR-128-3p target genes in resistant CRC cells were quantified by RT-qPCR and western blot, respectively. The effects of miR-128-3p on CRC cell viability, apoptosis, EMT, motility and drug efflux were evaluated by CCK8, flow cytometry, Transwell and wound healing assays, immunofluorescence, and atomic absorption spectrophotometry. Xenograft models were used to determine whether miR-128-3p loaded exosomes can re-sensitize CRC cells to oxaliplatin in vivo.

Results: In our established stable oxaliplatin-resistant CRC cell lines, in vitro and vivo studies revealed miR-128-3p suppressed EMT and increased intracellular oxaliplatin accumulation. Importantly, our results indicated that lower miR-128-3p expression was associated with poor oxaliplatin response in advanced human CRC patients. Moreover, data showed that miR-128-3p-transfected FHC cells effectively packaged miR-128-3p into secreted exosomes and mediated miR-128-3p delivery to oxaliplatin-resistant cells, improving oxaliplatin response in CRC cells both in vitro and in vivo. In addition, miR-128-3p overexpression up-regulated E-cadherin levels and inhibited oxaliplatin-induced EMT by suppressing Bmi1 expression in resistant cells. Meanwhile, it also decreased oxaliplatin efflux through suppressed expression of the drug transporter MRP5.

Conclusion: Our results demonstrate that miR-128-3p delivery via exosomes represents a novel strategy enhancing chemosensitivity in CRC through negative regulation of Bmi1 and MRP5. Moreover, miR-128-3p may be a promising diagnostic and prognostic marker for oxaliplatin-based chemotherapy.

Keywords: Chemoresistance; Colorectal cancer; Drug efflux; Epithelial-mesenchymal transition; Exosome; miR-218-3p.

Publication types

  • Research Support, Non-U.S. Gov't
  • Retracted Publication

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology
  • Apoptosis
  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism
  • Case-Control Studies
  • Cell Movement
  • Cell Proliferation
  • Colorectal Neoplasms / drug therapy*
  • Colorectal Neoplasms / genetics
  • Colorectal Neoplasms / metabolism
  • Colorectal Neoplasms / pathology
  • Drug Resistance, Neoplasm*
  • Epithelial-Mesenchymal Transition*
  • Exosomes / metabolism*
  • Female
  • Follow-Up Studies
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • MicroRNAs / genetics*
  • Middle Aged
  • Oxaliplatin / pharmacology*
  • Prognosis
  • Survival Rate
  • Tumor Cells, Cultured
  • Xenograft Model Antitumor Assays

Substances

  • Antineoplastic Agents
  • Biomarkers, Tumor
  • MIRN128 microRNA, human
  • MicroRNAs
  • Oxaliplatin