Interpreting the Response of Forest Stock Volume with Dual Polarization SAR Images in Boreal Coniferous Planted Forest in the Non-Growing Season
<p>The location of the study area and maps of ground samples.</p> "> Figure 2
<p>The distribution of sorted FSV; (<b>a</b>) is for Chinese pine and (<b>b</b>) is for Larch.</p> "> Figure 3
<p>Framework for mapping FSV with dual polarization SAR data. (A + G:ALOS-2 + GF-3; A + S:ALOS-2 + Sentinel-1; A + S + G:ALOS-2 + Sentinel-1 + GF-3).</p> "> Figure 4
<p>The scatterplot of backscattering energy with multi-bands and polarization modes; (<b>a</b>,<b>b</b>) are for planted Chinese pine, (<b>c</b>,<b>d</b>) are for planted Larch.</p> "> Figure 5
<p>The features with sensitivity ranking within the top 10 of planted Chinese pine and Larch in different sensors.</p> "> Figure 6
<p>The scatter plots of estimating FSV using the models with the highest accuracy of results from each type of data; the red dashed line is the fitted line, and the color of the points is determined by the residual between the predicted and ground-measured FSV.</p> "> Figure 7
<p>The scatter plots of estimating FSV based on combined-bands SAR data for two tree species.</p> "> Figure 8
<p>Spatial distribution of predicted FSVs obtained from ALOS-2+Sentinel-1+GF-3 in Chinese pine and Larch. (<b>a</b>) is from a machine learning model with SVR for Chinese pine; (<b>b</b>) is from a machine learning model with KNN for Larch.</p> "> Figure 9
<p>The result of mapping FSV using single band SAR images and combined SAR images. (<b>a</b>) is for Chinese pine forests and (<b>b</b>) is for Larch forests.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studying Area
2.2. Ground Data
2.3. Dual Polarization SAR Images and DEM
2.4. Dual Polarization SAR Image Pre-Processing
2.5. Feature Extraction
2.6. Feature Selection and Models
2.7. Accuracy Evaluation
3. Results
3.1. The Sensitivity between Features and Forest FSV
3.2. The Results of Estimated FSV Using Single Dual Polarization SAR Images
3.3. The Results of Estimated FSV Using Combined Images of Different Strategies
4. Discussion
4.1. Polarization Response of Deciduous and Evergreen Coniferous Forests
4.2. Combined Effects of Multi-Bands Dual Polarization SAR Images
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ye, Z.; Long, J.; Zheng, H.; Liu, Z.; Zhang, T.; Wang, Q. Mapping Growing Stem Volume Using Dual-Polarization GaoFen-3 SAR Images in Evergreen Coniferous Forests. Remote Sens. 2023, 15, 2253. [Google Scholar] [CrossRef]
- Tang, C.; Ye, Z.; Long, J.; Liu, Z.; Zhang, T.; Xu, X.; Lin, H. Mapping forest and site quality of planted Chinese fir forest using sentinel images. Front. Plant Sci. 2022, 13, 949598. [Google Scholar] [CrossRef] [PubMed]
- Timothy, D.; Onisimo, M.; Cletah, S.; Adelabu, S.; Tsitsi, B. Remote sensing of aboveground forest biomass: A review. Trop. Ecol. 2016, 57, 125–132. [Google Scholar]
- Li, X.; Lin, H.; Long, J.; Xu, X. Mapping the growing stem volume of the coniferous plantations in north China using multispectral data from integrated gf-2 and sentinel-2 images and an optimized feature variable selection method. Remote Sens. 2021, 13, 2740. [Google Scholar] [CrossRef]
- Patenaude, G.; Milne, R.; Dawson, T.P. Synthesis of remote sensing approaches for forest carbon estimation: Reporting to the Kyoto Protocol. Environ. Sci. Policy 2005, 8, 161–178. [Google Scholar] [CrossRef]
- Nuthammachot, N.; Askar, A.; Stratoulias, D.; Wicaksono, P. Combined use of Sentinel-1 and Sentinel-2 data for improving above-ground biomass estimation. Geocarto Int. 2022, 37, 366–376. [Google Scholar] [CrossRef]
- Jiang, F.; Kutia, M.; Sarkissian, A.J.; Lin, H.; Long, J.; Sun, H.; Wang, G. Estimating the growing stem volume of coniferous plantations based on random forest using an optimized variable selection method. Sensors 2020, 20, 7248. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, L. Estimating forest aboveground biomass by combining optical and SAR data: A case study in genhe 2016, inner Mongolia, China. Sensors 2016, 16, 834. [Google Scholar] [CrossRef]
- Huang, X.; Ziniti, B.; Torbick, N.; Ducey, M.J. Assessment of forest above ground biomass estimation using multi-temporal C-band Sentinel-1 and Polarimetric L-band PALSAR-2 data. Remote Sens. 2018, 10, 1424. [Google Scholar] [CrossRef]
- Berninger, A.; Lohberger, S.; Stängel, M.; Siegert, F. SAR-based estimation of above-ground biomass and its changes in tropical forests of Kalimantan using L-and C-band. Remote Sens. 2018, 10, 831. [Google Scholar] [CrossRef]
- Thumaty, K.C.; Fararoda, R.; Middinti, S.; Gopalakrishnan, R.; Jha, C.S.; Dadhwal, V.K. Estimation of above ground biomass for central Indian deciduous forests using ALOS PALSAR L-band data. J. Indian Soc. Remote Sens. 2016, 44, 31–39. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, W.; Marino, A.; Zeng, P.; Ji, Y.; Zhao, H.; Huang, G.; Wang, M. Forest total and component biomass retrieval via GA-SVR algorithm and quad-polarimetric SAR data. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103275. [Google Scholar] [CrossRef]
- Kumar, S.; Garg, R.D.; Govil, H.; Kushwaha, S.P.S. PolSAR-decomposition-based extended water cloud modeling for forest aboveground biomass estimation. Remote Sens. 2019, 11, 2287. [Google Scholar] [CrossRef]
- Long, J.; Lin, H.; Wang, G.; Sun, H.; Yan, E. Mapping growing stem volume of Chinese fir plantation using a saturation-based multivariate method and quad-polarimetric SAR images. Remote Sens. 2019, 11, 1872. [Google Scholar] [CrossRef]
- Santoro, M.; Cartus, O. Research pathways of forest above-ground biomass estimation based on SAR backscatter and interferometric SAR observations. Remote Sens. 2018, 10, 608. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Melack, J.M.; Dobson, M.C. The use of imaging radars for ecological applications—A review. Remote Sens. Environ. 1997, 59, 141–156. [Google Scholar] [CrossRef]
- Robinson, C.; Saatchi, S.; Neumann, M.; Gillespie, T. Impacts of spatial variability on aboveground biomass estimation from L-band radar in a temperate forest. Remote Sens. 2013, 5, 1001–1023. [Google Scholar] [CrossRef]
- Ranson, K.J.; Sun, G. Mapping biomass of a northern forest using multifrequency SAR data. IEEE Trans. Geosci. Remote Sens. 1994, 32, 388–396. [Google Scholar] [CrossRef]
- Santoro, M.; Beer, C.; Cartus, O.; Schmullius, C.; Shvidenko, A.; McCallum, I.; Wegmüller, U.; Wiesmann, A. Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements. Remote Sens. Environ. 2011, 115, 490–507. [Google Scholar] [CrossRef]
- Le Toan, T.; Beaudoin, A.; Riom, J.; Guyon, D. Relating Forest Biomass to SAR Data. IEEE Trans. Geosci. Remote Sens. 1992, 30, 403–411. [Google Scholar] [CrossRef]
- van Zyl, J.J. Unsupervised classification of scattering behavior using radar polarimetry data. IEEE Trans. Geosci. Remote Sens. 1989, 27, 36–45. [Google Scholar] [CrossRef]
- Chowdhury, T.A.; Thiel, C.; Schmullius, C.; Stelmaszczuk-Górska, M. Polarimetric parameters for growing stock volume estimation using ALOS PALSAR L-Band data over siberian forests. Remote Sens. 2013, 5, 5725–5756. [Google Scholar] [CrossRef]
- Pulliainen, J.T.; Kurvonen, L.; Hallikainen, M.T. Multitemporal behavior of L- and C-band SAR observations of boreal forests. IEEE Trans. Geosci. Remote Sens. 1999, 37, 927–937. [Google Scholar] [CrossRef]
- Askne, J.I.H.; Fransson, J.E.S.; Santoro, M.; Soja, M.J.; Ulander, L.M.H. Model-based biomass estimation of a hemi-boreal forest from multitemporal tanDEM-X acquisitions. Remote Sens. 2013, 5, 5574–5597. [Google Scholar] [CrossRef]
- Sai Bharadwaj, P.; Kumar, S.; Kushwaha, S.P.S.; Bijker, W. Polarimetric scattering model for estimation of above ground biomass of multilayer vegetation using ALOS-PALSAR quad-pol data. Phys. Chem. Earth 2015, 83–84, 187–195. [Google Scholar] [CrossRef]
- Ningthoujam, R.K.; Joshi, P.K.; Roy, P.S. Retrieval of forest biomass for tropical deciduous mixed forest using ALOS PALSAR mosaic imagery and field plot data. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 206–216. [Google Scholar] [CrossRef]
- Gao, T.; Zhu, J.J.; Yan, Q.L.; Deng, S.Q.; Zheng, X.; Zhang, J.X.; Shang, G.D. Mapping growing stock volume and biomass carbon storage of Larch plantations in Northeast China with L-band ALOS PALSAR backscatter mosaics. Int. J. Remote Sens. 2018, 39, 7978–7997. [Google Scholar] [CrossRef]
- Laurin, G.V.; Balling, J.; Corona, P.; Mattioli, W.; Papale, D.; Puletti, N.; Rizzo, M.; Truckenbrodt, J.; Urban, M. Above-ground biomass prediction by Sentinel-1 multitemporal data in central Italy with integration of ALOS-2 and Sentinel-2 data. J. Appl. Remote Sens. 2018, 12, 016008. [Google Scholar] [CrossRef]
- Santi, E.; Paloscia, S.; Pettinato, S.; Fontanelli, G.; Mura, M.; Zolli, C.; Maselli, F.; Chiesi, M.; Bottai, L.; Chirici, G. The potential of multifrequency SAR images for estimating forest biomass in Mediterranean areas. Remote Sens. Environ. 2017, 200, 63–73. [Google Scholar] [CrossRef]
- Cartus, O.; Santoro, M.; Wegmüller, U.; Rommen, B. Estimating total aboveground, stem and branch biomass using multi-frequency SAR. In Proceedings of the 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Brugge, Belgium, 27–29 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Dobson, M.; Ulaby, F.; Pierce, L.; Sharik, T.; Bergen, K.; Kellndorfer, J.; Kendra, J.; Li, E.; Lin, Y.; Nashashibi, A.; et al. Estimation of forest biophysical characteristics in Northern Michigan with SIR-C/X-SAR. IEEE Trans. Geosci. Remote Sens. 1995, 33, 877–895. [Google Scholar] [CrossRef]
- Ranson, K.J.; Sun, G. Effects of environmental conditions on boreal forest classification and biomass estimates with SAR. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1242–1252. [Google Scholar] [CrossRef]
- Yu, Y.; Saatchi, S. Sensitivity of L-band SAR backscatter to aboveground biomass of global forests. Remote Sens. 2016, 8, 522. [Google Scholar] [CrossRef]
- Castro-Filho, C.A.P.; Bias, E. Comparison between Quantitative and Qualitative Theme-Feature Forest Biomass Estimation Models built over SAR Data. Int. Ournal Adv. Eng. Res. Sci. 2021, 8, 367. [Google Scholar] [CrossRef]
- Patel, P.; Srivastava, H.S.; Panigrahy, S.; Parihar, J.S. Comparative evaluation of the sensitivity of multi-polarized multi-frequency SAR backscatter to plant density. Int. J. Remote Sens. 2006, 27, 293–305. [Google Scholar] [CrossRef]
- Tanase, M.A.; Santoro, M.; De La Riva, J.; Prez-Cabello, F.; Le Toan, T. Sensitivity of X-, C-, and L-band SAR backscatter to burn severity in Mediterranean pine forests. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3663–3675. [Google Scholar] [CrossRef]
- Nizalapur, V.; Jha, C.S.; Madugundu, R. Estimation of above ground biomass in Indian tropical forested area using multi-frequency DLR-ESAR data. Int. J. Geomat. Geosci. 2010, 1, 167. [Google Scholar]
- Rahman, M.M.; Sumantyo, J.T.S. Mapping tropical forest cover and deforestation using synthetic aperture radar (SAR) images. Appl. Geomat. 2010, 2, 113–121. [Google Scholar] [CrossRef]
- Imhoff, M.L. Radar backscatter and biomass saturation: Ramifications for global biomass inventory. IEEE Trans. Geosci. Remote Sens. 1995, 33, 511–518. [Google Scholar] [CrossRef]
- Roy, S.; Mudi, S.; Das, P.; Ghosh, S.; Shit, P.K.; Bhunia, G.S.; Kim, J. Estimating Above Ground Biomass (AGB) and Tree Density using Sentinel-1 Data. In Spatial Modeling in Forest Resources Management: Rural Livelihood and Sustainable Development; Springer: Berlin/Heidelberg, Germany, 2021; pp. 259–280. [Google Scholar]
- Argamosa, R.J.L.; Blanco, A.C.; Baloloy, A.B.; Candido, C.G.; Dumalag, J.B.L.C.; Dimapilis, L.L.C.; Paringit, E.C. Modelling above Ground Biomass of Mangrove Forest Using Sentinel-1 Imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 13–20. [Google Scholar] [CrossRef]
- Mitchard, E.T.A.; Saatchi, S.S.; Woodhouse, I.H.; Nangendo, G.; Ribeiro, N.S.; Williams, M.; Ryan, C.M.; Lewis, S.L.; Feldpausch, T.R.; Meir, P. Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes. Geophys. Res. Lett. 2009, 36, L23401. [Google Scholar] [CrossRef]
- Qazi, W.A.; Gilani, H. Exploring the use of spaceborne SAR for above ground biomass measurements in the Hindu Kush Himalayan region and Pakistan. In Multi-Scale for Biomass Assesses Monit Hindu Kush Himal Reg a Geospatial Perspect; International Centre for Integrated Mountain Development: Kathmandu, Nepal, 2015; p. 102. [Google Scholar]
- Saatchi, S.; Moghaddam, M. Estimation of crown and stem water content and biomass of boreal forest using polarimetric SAR imagery. IEEE Trans. Geosci. Remote Sens. 2000, 38, 697–709. [Google Scholar] [CrossRef]
- Santos, J.R.; Lacruz, M.S.P.; Araujo, L.S.; Keil, M. Savanna and tropical rainforest biomass estimation and spatialization using JERS-1 data. Int. J. Remote Sens. 2002, 23, 1217–1229. [Google Scholar] [CrossRef]
- Mitchard, E.T.A.; Saatchi, S.S.; Lewis, S.L.; Feldpausch, T.R.; Woodhouse, I.H.; Sonké, B.; Rowland, C.; Meir, P. Measuring biomass changes due to woody encroachment and deforestation/degradation in a forest-savanna boundary region of central Africa using multi-temporal L-band radar backscatter. Remote Sens. Environ. 2009; in press. [Google Scholar] [CrossRef]
- Lucas, R.; Milne, A.; Cronin, N.; Witte, C.; Denham, R. The potential of synthetic aperture radar (SAR) for quantifying the bio-mass of Australia’s woodlands. Rangeland J. 2000, 22, 124–140. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Ren, C.; Zhang, B.; Wang, Z. Assessment of multi-wavelength SAR and multispectral instrument data for forest aboveground biomass mapping using random forest kriging. For. Ecol. Manag. 2019, 447, 12–25. [Google Scholar] [CrossRef]
- Mitchell, A.L.; Tapley, I.; Milne, A.K.; Williams, M.L.; Zhou, Z.-S.; Lehmann, E.; Caccetta, P.; Lowell, K.; Held, A. C-and L-band SAR interoperability: Filling the gaps in continuous forest cover mapping in Tasmania. Remote Sens. Environ. 2014, 155, 58–68. [Google Scholar] [CrossRef]
- Balzter, H.; Rowland, C.; Saich, P. Forest canopy height and carbon estimation at Monks Wood National Nature Reserve, UK, using dual-wavelength SAR interferometry. Remote Sens. Environ. 2007, 108, 224–239. [Google Scholar] [CrossRef]
- Stelmaszczuk-Górska, M.; Thiel, C.; Schmullius, C. Retrieval of aboveground biomass using multi-frequency SAR. Environ. Res. Lett. 2016, 2, 045032. [Google Scholar]
- Sivasankar, T.; Lone, J.M.; Sarma, K.K.; Qadir, A.; Raju, P.L.N. The potential of multi-frequency multipolarized ALOS-2/PALSAR-2 and Sentinel-1 SAR data for aboveground forest biomass estimation. Int. J. Eng. Technol. 2018, 10, 797–802. [Google Scholar] [CrossRef]
- Englhart, S.; Keuck, V.; Siegert, F. Aboveground biomass retrieval in tropical forests—The potential of combined X-and L-band SAR data use. Remote Sens. Environ. 2011, 115, 1260–1271. [Google Scholar] [CrossRef]
- Cartus, O.; Santoro, M. Exploring combinations of multi-temporal and multi-frequency radar backscatter observations to estimate above-ground biomass of tropical forest. Remote Sens. Environ. 2019, 232, 111313. [Google Scholar] [CrossRef]
- Joshi, N.; Mitchard, E.T.; Brolly, M.; Schumacher, J.; Fernández-Landa, A.; Johannsen, V.K.; Marchamalo, M.; Fensholt, R. Understanding ‘saturation’of radar signals over forests. Sci. Rep. 2017, 7, 3505. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, O.; Aziz, H.K.; Rahman, K.A. Remotely sensed L-Band SAR data for tropical forest biomass estimation. J. Trop. For. Sci. 2011, 23, 318–327. [Google Scholar]
- Yu, H.; Zhang, Z. The performance of relative height metrics for estimation of forest above-ground biomass using L-and X-bands TomoSAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1857–1871. [Google Scholar] [CrossRef]
Tree Species | Volume Formula | Note |
---|---|---|
Chinese pine | V: Volume D: Diameter H: Height | |
Larch |
Number | Band | Acquired Time | Sensors | Polarization Modes | Incidence Angle | Resolution |
---|---|---|---|---|---|---|
1 | C-band | 2017.03.18 | GF-3 | HH and HV | 38.57° | 2.25 m × 3.12 m |
2 | C-band | 2017.03.04 | Sentinel-1 | VV and VH | 39.50° | 2.32 m × 13.89 m |
3 | L-band | 2017.03.09 | ALOS-2 | HH and HV | 31.41° | 4.29 m × 3.09 m |
Number | Feature | Note | Number | Feature | Note |
---|---|---|---|---|---|
1 | HH (geo), VV (geo) | 12 | X8 | σHV/(σHH + σHV), σVH/(σVV + σVH) | |
2 | HV (geo), VH (geo) | 13 | X9 | (σHH)2, (σVV)2 | |
3 | σHH, σVV | dB | 14 | X10 | (σHV)2, (σVH)2 |
4 | σHV, σVH | dB | 15 | X11 | (X1)2 |
5 | X1 | σHH + σHV, σVV + σVH | 16 | X12 | (X2)2 |
6 | X2 | σHH-σHV, σVV-σVH | 17 | X13 | (X3)2 |
7 | X3 | σHH/σHV, σVV/σVH | 18 | X14 | (X4)2 |
8 | X4 | σHV/σHH, σVH/σVV | 19 | X15 | (X5)2 |
9 | X5 | σHH*σHV, σVV × σVH | 20 | X16 | (X6)2 |
10 | X6 | (σHH-σHV)/(σHH + σHV), (σVV-σVH)/(σVV + σVH) | 21 | X17 | (X7)2 |
11 | X7 | σHH/(σHH + σHV), σVV/(σVV + σVH) | 22 | X18 | (X8)2 |
Data | Models | Chinese Pine | Larch | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE (m3/ha) | rRMSE (%) | R2 | Features Number | Average rRMSE (%) | RMSE (m3/ha) | rRMSE (%) | R2 | Features Number | Average rRMSE (%) | ||
GF-3 | MLR | 87.48 | 34.08 | 0.40 | 6 | 32.61 | 62.92 | 28.34 | 0.35 | 4 | 30.00 |
KNN | 85.50 | 33.31 | 0.43 | 19 | 69.95 | 31.51 | 0.20 | 7 | |||
SVR | 78.51 | 30.58 | 0.51 | 4 | 60.68 | 27.34 | 0.40 | 4 | |||
RF | 83.36 | 32.48 | 0.46 | 12 | 72.79 | 32.80 | 0.14 | 13 | |||
Sentinel-1 | MLR | 97.51 | 37.99 | 0.27 | 5 | 35.23 | 58.40 | 26.31 | 0.44 | 4 | 26.63 |
KNN | 88.98 | 34.66 | 0.38 | 15 | 60.45 | 27.23 | 0.41 | 12 | |||
SVR | 81.11 | 31.60 | 0.49 | 5 | 54.31 | 24.47 | 0.52 | 15 | |||
RF | 94.10 | 36.66 | 0.31 | 11 | 63.24 | 28.49 | 0.35 | 13 | |||
ALOS-2 | MLR | 77.24 | 30.09 | 0.53 | 5 | 31.21 | 67.64 | 30.47 | 0.25 | 2 | 31.06 |
KNN | 83.03 | 32.34 | 0.46 | 8 | 66.70 | 30.05 | 0.28 | 12 | |||
SVR | 75.29 | 29.33 | 0.56 | 7 | 67.68 | 30.58 | 0.25 | 6 | |||
RF | 84.89 | 33.07 | 0.44 | 8 | 73.53 | 33.13 | 0.12 | 13 |
Combined Images | Chinese Pine | Larch | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Model | RMSE (m3/ha) | rRMSE (%) | R2 | Selected Features | Average rRMSE (%) | RMSE (m3/ha) | rRMSE | R2 | Selected Features | Average rRMSE (%) | |
ALOS-2 + GF-3 | MLR | 71.40 | 27.81 | 0.60 | 9 | 28.93 | 60.54 | 27.27 | 0.40 | 4 | 27.68 |
KNN | 72.21 | 28.13 | 0.59 | 21 | 61.36 | 27.65 | 0.39 | 13 | |||
SVR | 72.66 | 28.31 | 0.58 | 8 | 55.20 | 24.87 | 0.50 | 9 | |||
RF | 80.45 | 31.46 | 0.49 | 21 | 68.68 | 30.94 | 0.23 | 13 | |||
ALOS-2 + Sentinel-1 | MLR | 67.64 | 26.35 | 0.64 | 4 | 29.56 | 61.69 | 27.80 | 0.38 | 5 | 26.51 |
KNN | 74.35 | 28.96 | 0.57 | 22 | 57.60 | 25.95 | 0.46 | 12 | |||
SVR | 75.83 | 29.54 | 0.55 | 11 | 60.09 | 27.07 | 0.41 | 14 | |||
RF | 85.67 | 33.37 | 0.43 | 15 | 55.95 | 25.21 | 0.49 | 13 | |||
Sentinel-1 + GF-3 | MLR | 71.06 | 27.68 | 0.61 | 3 | 28.22 | 65.29 | 29.41 | 0.31 | 4 | 26.92 |
KNN | 64.81 | 25.25 | 0.67 | 25 | 55.93 | 25.20 | 0.49 | 20 | |||
SVR | 67.67 | 26.36 | 0.64 | 11 | 54.35 | 24.49 | 0.52 | 11 | |||
RF | 86.17 | 33.57 | 0.42 | 20 | 63.42 | 28.57 | 0.34 | 15 | |||
ALOS-2 + Sentinel-1 + GF-3 | MLR | 70.02 | 27.28 | 0.62 | 5 | 25.60 | 61.83 | 27.86 | 0.38 | 4 | 26.18 |
KNN | 57.59 | 22.43 | 0.74 | 21 | 53.55 | 24.13 | 0.53 | 16 | |||
SVR | 54.67 | 21.30 | 0.77 | 9 | 56.91 | 25.64 | 0.47 | 5 | |||
RF | 80.59 | 31.40 | 0.49 | 18 | 60.15 | 27.10 | 0.41 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Long, J.; Zang, Z.; Lin, H.; Liu, Z.; Zhang, T.; Yang, P. Interpreting the Response of Forest Stock Volume with Dual Polarization SAR Images in Boreal Coniferous Planted Forest in the Non-Growing Season. Forests 2023, 14, 1700. https://doi.org/10.3390/f14091700
Zheng H, Long J, Zang Z, Lin H, Liu Z, Zhang T, Yang P. Interpreting the Response of Forest Stock Volume with Dual Polarization SAR Images in Boreal Coniferous Planted Forest in the Non-Growing Season. Forests. 2023; 14(9):1700. https://doi.org/10.3390/f14091700
Chicago/Turabian StyleZheng, Huanna, Jiangping Long, Zhuo Zang, Hui Lin, Zhaohua Liu, Tingchen Zhang, and Peisong Yang. 2023. "Interpreting the Response of Forest Stock Volume with Dual Polarization SAR Images in Boreal Coniferous Planted Forest in the Non-Growing Season" Forests 14, no. 9: 1700. https://doi.org/10.3390/f14091700
APA StyleZheng, H., Long, J., Zang, Z., Lin, H., Liu, Z., Zhang, T., & Yang, P. (2023). Interpreting the Response of Forest Stock Volume with Dual Polarization SAR Images in Boreal Coniferous Planted Forest in the Non-Growing Season. Forests, 14(9), 1700. https://doi.org/10.3390/f14091700