Acetic Acid and Ammonium Persulfate Pre-Treated Copper Foil for the Improvement of Graphene Quality, Sensitivity and Specificity of Hall Effect Label-Free DNA Hybridization Detection
<p>(<b>a</b>) Graphene transfer process; (<b>b</b>) Hall effect device fabrication process; (<b>c</b>) DNA hybridization on graphene.</p> "> Figure 2
<p>SEM of (<b>a</b>) pristine copper foil without pre-treatment; (<b>b</b>) copper foil treated with AP solution; (<b>c</b>) copper foil treated with AA solution; (<b>d</b>) graphene grown on pristine copper foil without pre-treatment; (<b>e</b>) graphene grown on copper foil treated with AP solution; (<b>f</b>) graphene grown on copper foil treated with AA solution.</p> "> Figure 3
<p>Surface etching process of copper foils by (<b>a</b>) AP; (<b>b</b>) AA.</p> "> Figure 4
<p>The AFM of (<b>a</b>) and (<b>d</b>) graphene grown on pristine copper foil; (<b>b</b>) and (<b>e</b>) graphene grown on copper foil pre-treated by AP; (<b>c</b>) and (<b>f</b>) graphene grown on copper foil pre-treated by AA; (<b>g</b>) and (<b>j</b>) pristine copper foil; (<b>h</b>) and (<b>k</b>) copper foil pre-treated by AP; (<b>i</b>) and (<b>l</b>) copper foil pre-treated by AA.</p> "> Figure 5
<p>Raman shift of the three kind of graphene on SiO<sub>2</sub>/Si substrate.</p> "> Figure 6
<p>XPS of (<b>a</b>) graphene grown on copper foil pre-treated by AA; (<b>b</b>) graphene grown on copper foil pre-treated by AP; (<b>c</b>) graphene grown on pristine copper foil.</p> "> Figure 7
<p>Electrical performances of the three kind of graphene: (<b>a</b>) carrier concentration; (<b>b</b>) sheet resistance; (<b>c</b>) mobility.</p> "> Figure 8
<p>Electrical performance of graphene modified by probe DNA: (<b>a</b>) mobility; (<b>b</b>) carrier concentration.</p> "> Figure 9
<p>The electrical performance of three kinds graphene-based biosensors for the detection of target DNA: (<b>a</b>) carrier concentration; (<b>b</b>) mobility; (<b>c</b>) sheet resistance.</p> "> Figure 10
<p>The variation of (<b>a</b>) carrier concentration; (<b>b</b>) carrier mobility and (<b>c</b>) sheet resistance of graphene-based Hall effect devices as a function of added concentrations of target and one-base mismatched DNA, respectively, based on AA graphene; (<b>d</b>) structure of electric double layer.</p> "> Figure 11
<p>(<b>a</b>) The variation of carrier concentration of three kinds of graphene-based Hall effect devices as a function of added concentrations of target DNA; (<b>b</b>) the mechanism of higher sensitivity based on graphene with cleaner surface.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. AA and PA Pretreatment of Copper Foil
2.3. Growth of Graphene
2.4. Characterization of Graphene
2.5. Immobilization of DNA on Graphene
3. Results and Discussions
3.1. Fabrication of Graphene Hall Effect Biosensor
3.2. Characterization of Copper Foils and Graphene
3.3. Analysis of DNA Hybridization
3.4. High Specificity for the AA Graphene Biosensors
3.5. Sensing Performance Comparison
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.; Geim, A.K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Muller, M.B.; Gilmore, K.J.; Wallace, G.G.; Li, D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 2008, 20, 3557–3561. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neri, G.; Micale, N.; Scala, A.; Fazio, E.; Mazzaglia, A.; Mineo, P.G.; Montesi, M.; Panseri, S.; Tampieri, A.; Grassi, G.; et al. Silibinin-conjugated graphene nanoplatform: Synthesis, characterization and biological evaluation. FlatChem 2016, 1, 34–41. [Google Scholar] [CrossRef]
- Wang, K.F.; Liu, J.M.; Ren, Z.F. Multiferroicity: The coupling between magnetic and polarization orders. Adv. Phys. 2009, 58, 321–448. [Google Scholar] [CrossRef]
- Dong, X.; Shi, Y.; Huang, W.; Chen, P.; Li, L.J. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-Grown graphene sheets. Adv. Mater. 2010, 22, 1649–1653. [Google Scholar] [CrossRef]
- Zheng, C.; Huang, L.; Zhang, H.; Sun, Z.Y.; Zhang, Z.; Zhang, G.J. Fabrication of ultrasensitive field-effect transistor DNA biosensors by a directional transfer technique based on CVD-grown graphene. ACS Appl. Mater. Inter. 2015, 7, 16953–16959. [Google Scholar] [CrossRef]
- Peng, H.-P.; Hu, Y.; Liu, P.; Deng, Y.-N.; Wang, P.; Chen, W.; Liu, A.-L.; Chen, Y.-Z.; Lin, X. Label-free electrochemical DNA biosensor for rapid detection of mutidrug resistance gene based on Au nanoparticles/toluidine blue–graphene oxide nanocomposites. Sens. Actuators B Chem. 2015, 207, 269–276. [Google Scholar] [CrossRef]
- Sandhu, A.; Kumagai, Y.; Lapicki, A.; Sakamoto, S.; Abe, M.; Handa, H. High efficiency Hall effect micro-biosensor platform for detection of magnetically labeled biomolecules. Biosens. Bioelectron. 2007, 22, 2115–2120. [Google Scholar] [CrossRef]
- Henriksen, A.D.; Dalslet, B.T.; Skieller, D.H.; Lee, K.H.; Okkels, F.; Hansen, M.F. Planar Hall effect bridge magnetic field sensors. Appl. Phys. Lett. 2010, 97, 013507. [Google Scholar] [CrossRef]
- Mihajlovića, G.; Xiong, P.; Molnár, S.V. Detection of single magnetic bead for biological applications using an InAs quantum-well micro-Hall sensor. Appl. Phys. Lett. 2005, 87, 112502. [Google Scholar] [CrossRef]
- Yuan, W.J.; Shi, G.Q. Graphene-based gas sensors. J. Mater. Chem. A 2013, 1, 10078–10091. [Google Scholar] [CrossRef]
- Bae, S.H.; Lee, Y.B.; Sharma, B.K.; Lee, H.J.; Kim, J.H.; Ahn, J.H. Graphene-based transparent strain sensor. Carbon 2013, 51, 236–242. [Google Scholar] [CrossRef]
- Ji, Q.M.; Honma, I.; Paek, S.M.; Akada, M.; Hill, J.P.; Vinu, A.; Ariga, K. Layer-by-Layer films of graphene and ionic liquids for highly selective gas sensing. Angew. Chem. Int. Ed. 2010, 49, 9737–9739. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, G.K.; Ding, X.L.; Chen, Y.H.; Gou, Y.P.; Lu, Y. A “turn-on” fluorescent sensor for detection of Pb2+ based on graphene oxide and G-quadruplex DNA. Phys. Chem. Chem. Phys. 2013, 15, 12800–12804. [Google Scholar] [CrossRef] [PubMed]
- Azzouzi, S.; Rotariu, L.; Benito, A.M.; Maser, W.K.; Ali, M.B.; Bala, C. A novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide for sensitive detection of L-lactate tumor biomarker. Biosens. Bioelectron. 2015, 69, 280–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z.Q.; Deng, H.M.; Shen, W.; Ren, Y.Q. A Label-Free Biosensor for electrochemical detection of femtomolar microRNAs. Anal. Chem. 2013, 85, 1624–1630. [Google Scholar] [CrossRef]
- Baaske, M.D.; Foreman, M.R.; Vollmer, F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol. 2014, 9, 933–939. [Google Scholar] [CrossRef]
- Limaj, O.; Etezadi, D.; Wittenberg, N.J.; Rodrigo, D.; Yoo, D.; Oh, S.H.; Altug, H. Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes. Nano Lett. 2016, 16, 1502–1508. [Google Scholar] [CrossRef]
- Xiang, M.H.; Liu, J.W.; Li, N.; Tang, H.; Yua, R.Q.; Jiang, J.H. A fluorescent graphitic carbon nitride nanosheet biosensor for highly sensitive, label-free detection of alkaline phosphatase. Nanoscale 2016, 8, 4727–4732. [Google Scholar] [CrossRef]
- Dong, W.K.; Akogun, S.F.; Zhang, Y.; Sun, Y.X.; Dong, X.Y. A reversible “turn-on” fluorescent sensor for selective detection of Zn2+. Sens. Actuators B Chem. 2017, 238, 723–734. [Google Scholar] [CrossRef]
- Bollella, P.; Fusco, G.; Tortolini, C.; Sanzò, G.; Favero, G.; Gorton, L.; Antiochia, R. Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection. Biosens. Bioelectron. 2017, 89, 152–166. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Shen, Z.G. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700–11715. [Google Scholar] [CrossRef]
- Shinde, D.B.; Brenker, J.; Easton, C.D.; Tabor, R.F.; Neild, A.; Majumder, M. Shear assisted electrochemical exfoliation of graphite to graphene. Langmuir 2016, 32, 3552–3559. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Dorizon, H.S.; Youssoufi, H.K. Direct electrochemical DNA biosensor based on reduced graphene oxide and metalloporphyrin nanocomposite. Biosens. Bioelectron. 2017, 251, 40–48. [Google Scholar] [CrossRef]
- Maleh, H.K.; Bananezhad, A.; Ganjali, M.R.; Norouzi, P.; Sadrnia, A. Surface amplification of pencil graphite electrode with polypyrrole and reduced graphene oxide for fabrication of a guanine/adenine DNA based electrochemical biosensors for determination of didanosine anticancer drug. Appl. Surf. Sci. 2018, 441, 55–60. [Google Scholar] [CrossRef]
- Deng, B.; Liu, Z.F.; Peng, H.L. Toward mass production of CVD graphene films. Adv. Mater. 2019, 31, 1800996. [Google Scholar] [CrossRef]
- Wang, H.P.; Yu, G. Direct CVD graphene growth on semiconductors and dielectrics for transfer-free device fabrication. Adv. Mater. 2016, 28, 4956–4975. [Google Scholar] [CrossRef]
- Di Gaspare, L.; Scaparro, A.; Fanfoni, M.; Fazi, L.; Sgarlata, A.; Notargiacomo, A.; Miseikis, V.; Coletti, C.; De Seta, M. Early stage of CVD graphene synthesis on Ge (001) substrate. Carbon 2018, 134, 183–188. [Google Scholar] [CrossRef]
- Chandrashekar, B.N.; Deng, B.; Shankaregowda, S.A.; Chen, Y.; Tan, C.; Zhang, H.; Peng, H.; Liu, Z. Roll-to-Roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Adv. Mater. 2015, 27, 5210–5216. [Google Scholar] [CrossRef]
- Song, R.L.; Liu, P.; Zhang, K.; Liu, X.K.; Chen, X.H. Effect of copper foil surface morphology on the quality of graphene grown by CVD. Chin. J. Mater. Res. 2016, 30, 255–262. [Google Scholar]
- Zhang, B.; Lee, W.H.; Piner, R.; Kholmanov, I.; Wu, Y.; Li, H.; Ji, H.; Ruoff, R.S. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. ACS Nano 2012, 6, 2471–2476. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Lu, Y.; Singer, D.W.; Berck, M.E.; Somers, L.A.; Goldsmith, B.R.; Johnson, A.T.C. Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmosphere pressure. Chem. Mater. 2012, 23, 1441–1447. [Google Scholar] [CrossRef]
- Kim, M.S.; Woo, J.M.; Geum, D.M.; Rani, J.R.; Jang, J.H. Effect of copper surface pre-treatment on the properties of CVD grown graphene. AIP Adv. 2014, 4, 127107. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Hwang, W.T.; Song, Y.; Kim, J.K.; Kim, Y.; Hihath, J.; Chung, S.; Lee, T. Highly uniform monolayer graphene synthesis via a facile pretreatment of copper catalyst substrates using an ammonium persulfate solution. RSC Adv. 2019, 9, 20871. [Google Scholar] [CrossRef] [Green Version]
- Senyildiz, D.; Ogurtani, O.T.; Bukea, G.C. The effects of acid pretreatment and surface stresses on the evolution of impurity clusters and graphene formation on Cu foil. Appl. Surf. Sci. 2017, 425, 873–878. [Google Scholar] [CrossRef]
- Hsu, A.; Wang, H.; Kim, K.K.; Kong, J.; Palacios, T. Impact of Graphene Interface Quality on Contact Resistance and RF Device Performance. IEEE Electron Device Lett. 2011, 32, 1008–1010. [Google Scholar] [CrossRef]
- Ibrahim, A.; Akhtar, S.; Atieh, M.; Karnik, R.; Laoui, T. Effects of annealing on copper substrate surface morphology and graphene growth by chemical vapor deposition. Carbon 2015, 94, 369–377. [Google Scholar] [CrossRef]
- Elias, D.C.; Nair, R.R.; Mohiuddin, T.M.G.; Morozov, S.V.; Blake, P.; Halsall, M.; Ferrari, A.C.; Boukhvalov, D.W.; Katsnelson, M.I.; Geim, A.K.; et al. Control of graphene’s properties by reversible hydrogenation: Evidence for graphene. Science 2009, 323, 610–613. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.-H.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-Area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [Green Version]
- Malarda, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Siokoua, A.; Ravani, F.; Karakalos, S.; Franka, O.; Kalbacc, M.; Galiotis, C. Surface refinement and electronic properties of graphene layers grown on copper substrate: An XPS, UPS and EELS study. Appl. Surf. Sci. 2011, 257, 9785–9790. [Google Scholar] [CrossRef]
- Kozbial, A.; Li, Z.; Conaway, C.; McGinley, R.; Dhingra, S.; Vahdat, V.; Zhou, F.; D’Urso, B.; Liu, H.; Li, L. Study on the surface energy of graphene by contact angle measurements. Langmuir 2014, 30, 8598–8606. [Google Scholar] [CrossRef] [PubMed]
- Pauw, V.D. A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. Philips Tech. Rev. 1985, 8, 220–224. [Google Scholar]
- Aramesh, M.; Tran, P.A.; Ostrikov, K.K.; Prawer, S. Conformal Nanocarbon Coating of Alumina Nanocrystals for Biosensing and Bioimaging. Carbon 2017, 122, 422–427. [Google Scholar] [CrossRef]
- Han, X.; Fang, X.; Shi, A.; Wang, J.; Zhang, Y. An electrochemical DNA biosensor based on gold nanorods decorated graphene oxide sheets for sensing platform. Anal. Biochem. 2013, 443, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Wang, S.; Huang, L.; Ning, Y.; Zhang, Z.; Zhang, G.J. Ultrasensitive Label-Free detection of PNA-DNA hybridization by reduced graphene oxide field-effect transistor biosensor. ACS Nano 2014, 8, 2632–2638. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Zhang, Z.; Ding, Y.; Deng, D.; Zhu, X.; Wang, Z. Label-free electrochemical impedance genosensor based on 1-aminopyrene/graphene hybrids. Nanoscale 2013, 5, 5833–5840. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.-J.; Liu, Y.-J.; Wang, H.-B.; Wang, Y.-Y. A sensitive electrochemical DNA biosensor based on silver nanoparticles-polydopamine@graphene composite. Electrochim. Acta 2014, 118, 130–137. [Google Scholar] [CrossRef]
- Ping, J.L.; Vishnubhotla, R.; Vrudhula, A.; Johnson, A.T.C. Scalable production of high-sensitivity, label-free DNA biosensors based on back-gated graphene field effect transistors. ACS Nano 2016, 10, 8700–8704. [Google Scholar] [CrossRef]
Elements | Wt % |
---|---|
Cu | 76.78 |
Si | 6.37 |
Ca | 7.92 |
O | 8.93 |
Materials | Linear Rang | Limited of Detection (pM) | Selectivity | Reference |
---|---|---|---|---|
AuNRs-GO/GCE | 0.01 pM–1 nM | 3.2 × 10−3 | ≈2.3 | [46] |
PNA functionalized | 10 fM–1 nM | 0.1 | ≈2.5 | [47] |
Au NPs/TB-GO | 10 pM–1 nM | 2.9 | ≈2.5 | [8] |
Aminopyrene/Graphene | 1 pM-10 nM | 0.45 | ≈3 | [48] |
Au NPs-decorated CVD graphene- | 10 pM–500 nM | 10 | ≈3 | [6] |
Ag NPs-Pdop@Gr/GCE | 0.1 pM–10 nM | 3.2 × 10−3 | ≈3.8 | [49] |
CVD graphene | 0.1 pM–1 μM | 0.1 | ≈6 | [50] |
AA graphene | 1 pM–100 nM | 1 | ≈14 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, N.; Wang, F.; Ding, H. Acetic Acid and Ammonium Persulfate Pre-Treated Copper Foil for the Improvement of Graphene Quality, Sensitivity and Specificity of Hall Effect Label-Free DNA Hybridization Detection. Materials 2020, 13, 1784. https://doi.org/10.3390/ma13071784
Cui N, Wang F, Ding H. Acetic Acid and Ammonium Persulfate Pre-Treated Copper Foil for the Improvement of Graphene Quality, Sensitivity and Specificity of Hall Effect Label-Free DNA Hybridization Detection. Materials. 2020; 13(7):1784. https://doi.org/10.3390/ma13071784
Chicago/Turabian StyleCui, Naiyuan, Fei Wang, and Hanyuan Ding. 2020. "Acetic Acid and Ammonium Persulfate Pre-Treated Copper Foil for the Improvement of Graphene Quality, Sensitivity and Specificity of Hall Effect Label-Free DNA Hybridization Detection" Materials 13, no. 7: 1784. https://doi.org/10.3390/ma13071784
APA StyleCui, N., Wang, F., & Ding, H. (2020). Acetic Acid and Ammonium Persulfate Pre-Treated Copper Foil for the Improvement of Graphene Quality, Sensitivity and Specificity of Hall Effect Label-Free DNA Hybridization Detection. Materials, 13(7), 1784. https://doi.org/10.3390/ma13071784