Influence of Selected Factors of Vibratory Work Hardening Machining on the Properties of CuZn30 Brass
<p>Microphotographs of brass (CuZn30) after plastic working, annealing and vibratory work hardening.</p> "> Figure 2
<p>Location of test points (systems in the adopted plan).</p> "> Figure 3
<p>Isometric views of the measured surfaces: (<b>a</b>) after softening heat treatment; (<b>b</b>) after 87 min of vibration hardening treatment.</p> "> Figure 4
<p>Pareto chart for vibration machining (<b>a</b>) HV; (<b>b</b>) S<sub>a</sub>.</p> "> Figure 5
<p>Residual analysis for the HV model of vibratory work hardening machining (<b>a</b>) normal plot of residuals; (<b>b</b>) residuals relative to predicted values; (<b>c</b>) residuals relative to the order of the experiment performed.</p> "> Figure 6
<p>Residual analysis for the S<sub>a</sub> model of vibratory work hardening machining (<b>a</b>) normal plot of residuals; (<b>b</b>) residuals relative to predicted values; (<b>c</b>) residuals relative to the order of the experiment performed.</p> "> Figure 7
<p>Plots of the experimental value and model RSM: (<b>a</b>) S<sub>a</sub>; (<b>b</b>) HV<sub>0.02</sub>.</p> "> Figure 8
<p>Estimated hardness changes as a function of frequency and time of vibratory work hardening machining.</p> "> Figure 9
<p>Estimated S<sub>a</sub> changes as a function of frequency and time of vibratory work hardening machining.</p> "> Figure 10
<p>Estimated S<sub>p</sub> changes as a function of frequency and time of vibratory work hardening machining.</p> "> Figure 11
<p>Estimated S<sub>z</sub> changes as a function of frequency and time of vibratory work hardening machining.</p> "> Figure 12
<p>Estimated S<sub>ku</sub> changes as a function of frequency and time of vibratory work hardening machining.</p> "> Figure 13
<p>Estimated S<sub>sk</sub> changes as a function of frequency and time of vibratory work hardening machining.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
- -
- processing time, t, which took on the values of 3, 15, 45, 75, and 87 min, which correspond to the code values: −1.414; −1; 0; 1; and 1.414 vibration frequency, f, of the working tank, which took on the values of 30.6, 33.3, 40, 46.7, and 49.4 Hz, which correspond to the code values: −1.414; −1; 0; 1; and 1.414.
3. Results and Discussion
4. Conclusions
- Based on this research, the following conclusions can be drawn:
- Vibratory work hardening machining causes the strengthening of the microstructure. This is manifested by an increase in the hardness of the samples without treatment, which were characterized by a hardness of approx. 70 HV0.02 and, after 87 min of treatment, approx. 120 HV0.02.
- Frequency has a much greater effect on the surface hardness than the time of vibration treatment does.
- Vibratory work hardening machining (using metal ball media) causes a decrease in the arithmetic mean surface roughness, Sa, from 0.65 µm to 0.17 µm.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Woźniak, K. Obróbka Powierzchni w Wygładzarkach Pojemnikowych; WNT: Warszawa, Polish, 2017. (In Polish) [Google Scholar]
- Domblesky, J.; Evans, R.; Cariapa, V. Material removal model for vibratory finishing. Int. J. Prod. Res. 2004, 42, 1029–1041. [Google Scholar] [CrossRef]
- Bankowski, D.; Spadlo, S. Investigations of influence of vibration smoothing conditions of geometrical structure on machined surfaces. In Proceedings of the 4th International Conference Recent Trends in Structural Materials, Pilsen, Czech Republic, 9–11 November 2016; Volume 179. [Google Scholar] [CrossRef]
- Mediratta, R.; Ahluwalia, K.; Yeo, S.H. State-of-the-art on vibratory finishing in the aviation industry: An industrial and academic perspective. Int. J. Adv. Manuf. Technol. 2016, 85, 415–429. [Google Scholar] [CrossRef]
- Bańkowski, D.; Krajcarz, D.; Piotr Młynarczyk, P. Deburring and Smoothing the Edges Using Vibro-abrasive Machining. Procedia Eng. 2017, 192, 28–33. [Google Scholar]
- Bańkowski, D.; Spadło, S. Influence of the smoothing conditions in vibro-abrasive for technically dry friction the parts made of steel X160CRMOV121. In Proceedings of the 25th International Conference on Metallurgy and Materials METAL, Brno, Czech, 25–27 May 2016; pp. p 1019–1024. [Google Scholar]
- Bańkowski, D.; Spadło, S. The Influence of Abrasive Paste on the Effects of Vibratory Machining of Brass. Arch. Foundry Eng. 2019, 4, 5–10. [Google Scholar] [CrossRef]
- Vibratory Machinig. Available online: https://pl.wikipedia.org/wiki/Obr%C3%B3bka_wibro%C5%9Bcierna (accessed on 27 August 2024).
- Marciniak, M.; Stefko, A.; Szyrle, W. Podstawy Obróbki w Wygładzarkach Pojemnikowych; WNT: Warszawa, Polish, 1893. (In Polish) [Google Scholar]
- Bańkowski, D.; Spadło, S. Influence of Cold Work on the Efficiency of Vibratory Machining. Arch. Foundry Eng. 2024, 24, 5–10. [Google Scholar] [CrossRef]
- Stańczyk, M.; Figlus, T. The Effect of Selected Parameters of Vibro-Abrasive Processing on the Surface Quality of Products Made of 6082 Aluminium Alloy. Materials 2019, 12, 4117. [Google Scholar] [CrossRef]
- Przybyłowicz, K. Iron Alloys Engineering; Wyd. Politechniki Świętokrzyskiej w Kielcach: Kielce, Polish, 2008. (In Polish) [Google Scholar]
- Trieu, Q.-H.; Luyen, T.-T.; Nguyen, D.-T.; Bui, N.-T. A Study on Yield Criteria Influence on Anisotropic Behavior and Fracture Prediction in Deep Drawing SECC Steel Cylindrical Cups. Materials 2024, 17, 2872. [Google Scholar] [CrossRef]
- Ayadi, S.; Hadji, A.; Kaleli, E.H. Effect of Heat Treatment Temperature on the Microstructure, Wear and Friction of Ni–Nb–V Alloyed Manganese Steel. Int. J. Met. 2024. [Google Scholar] [CrossRef]
- Higuera-Cobos, O.-F.; Cely-Bautista, M.-M.; Muñoz-Bolaños, J.-A. Effect of Heat Treatment on the Microstructural Heterogeneity and Abrasive Wear Behavior of ASTM A128 Grade C Steel. Materials 2024, 17, 2884. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, Z.; Zhang, H.; Wei, H.; Chen, Z.; Xue, W.; Liu, Z. The Influence of Heat Treatment on the Microstructure and Properties of a Cu-Bearing Ultra-Low Carbon Steel. Materials 2024, 17, 3031. [Google Scholar] [CrossRef]
- Lingnau, L.A.; Heermant, J.; Otto, J.L.; Donnerbauer, K.; Sauer, L.M.; Lücker, L.; Macias Barrientos, M.; Walther, F. Separation of Damage Mechanisms in Full Forward Rod Extruded Case-Hardening Steel 16MnCrS5 Using 3D Image Segmentation. Materials 2024, 17, 3023. [Google Scholar] [CrossRef] [PubMed]
- Brass CuZn30. Available online: https://pl.int-metal.com/c26000-cuzn30-brass-strip.html (accessed on 27 August 2024).
- Brass CuZn30. Available online: https://emetal.eu/mosiadz/mosiadz-ISO_-CuZn30-EN_-CW505L-DIN_-CuZn30-wnr_-2.0265-PN_-M70 (accessed on 27 August 2024).
- Brass CuZn30. Available online: http://metale-kolorowe.eu/mosiadz-cuzn30/ (accessed on 27 August 2024).
- Broniewski, W.; Pełczyński, T. O zgniocie, odpuszczaniu i wyżarzaniu mosiądzów. Prace Zakładu Metal. Politechniki Warsz. 1934, 4, 17–45. [Google Scholar]
- Matuszak, J.; Zaleski, K.; Skoczylas, A.; Ciecieląg, K.; Kęcik, K. Wpływ półlosowego i regularnego śrutowania na wybrane właściwości warstwy powierzchniowej stopu aluminium. Materials 2021, 14, 7920. [Google Scholar]
- Yang, Z.; Zheng, J.; Zhan, K.; Jiang, C.; Ji, V. Surface characteristic and wear resistance of S960 high-strength steel after shot peening combing with ultrasonic sprayed graphene oxide coating. J. Mater. Res. Technol. 2022, 18, 978–989. [Google Scholar] [CrossRef]
- Kalisz, J.; Żak, K.; Wojciechowski, S.; Gupta, M.K.; Krolczyk, G.M. Aspekty technologiczne i tribologiczne procesu frezowania-nagniatania powierzchni złożonych. Tribol. Int. 2021, 155, 106770. [Google Scholar] [CrossRef]
- Korzynski, M.; Dudek, K.; Korzynska, K. Wpływ polerowania diamentem ślizgowym na warstwę powierzchniową trzonków zaworów i trwałość pary ciernej trzonek-uszczelka grafitowa. Appl. Sci. 2023, 13, 6392. [Google Scholar] [CrossRef]
- Walczak, M.; Szala, M.; Okuniewski, W. Ocena odporności korozyjnej i twardości stali X5CrNi18-10 poddanej obróbce strumieniowo-ściernej. Materials 2022, 15, 9000. [Google Scholar] [CrossRef]
- Bańkowski, D.; Młynarczyk, P.; Depczyński, W.; Bolanowski, K. The Effect of Work Hardening on the Structure and Hardness of Hadfield Steel. Arch. Foundry Eng. 2024, 24, 14–20. [Google Scholar] [CrossRef]
- Bechcinski, G.; Kepczak, N.; Pawlowski, W.; Stachurski, W.; Byczkowska, P. Oblique Vibratory Surface Grinding—Experimental Study. Materials 2023, 16, 5819. [Google Scholar] [CrossRef]
- Liu, Y.G.; Li, M.Q.; Liu, H.J. Nanostructure and surface roughness in the processed surface layer of Ti-6Al-4V via shot peening. Mater. Charact. 2017, 123, 83–90. [Google Scholar] [CrossRef]
- Shi, H.; Liu, D.; Pan, Y.; Zhao, W.; Zhang, X.; Ma, A.; Liu, B.; Hu, Y.; Wang, W. Effect of Shot Peening and Vibration Finishing on the Fatigue Behavior of TC17 Titanium Alloy at Room and High Temperature. Int. J. Fatigue 2021, 151, 106391. [Google Scholar] [CrossRef]
- Matuszak, J. Analysis of Geometric Surface Structure and Surface Layer Microhardness of Ti6Al4V Titanium Alloy after Vibratory Shot Peening. Materials 2023, 16, 6983. [Google Scholar] [CrossRef] [PubMed]
- Radziejewska, J.; Marczak, M.; Maj, P.; Głowacki, D. The Influence of Vibro-Assisted Abrasive Processing on the Surface Roughness and Sub-Surface Microstructure of Inconel 939 Specimen Made by LPBF. Materials 2023, 16, 7429. [Google Scholar] [CrossRef] [PubMed]
- Bańkowski, D.; Młynarczyk, P.; Hlaváčová, I.M. Temperature Measurement during Abrasive Water Jet Machining (AWJM). Materials 2022, 15, 7082. [Google Scholar] [CrossRef]
- Konhol, J. Wprowadzenie do Praktycznego Planowania Eksperymentu; StatSoft Polska: Kraków, Polish, 2008; pp. 43–58. [Google Scholar]
- Niemczewska-Wójcik, M.; Mańkowska-Snopczyńska, A.; Piekoszewski, W. Wpływ ukształtowania struktury geometrycznej powierzchni stopu tytanu na charakterystyki tribologiczne polimeru. Tribologia 2014, 6, 97–112. [Google Scholar]
- Janecki, D.; Stępień, K.; Adamczak, S. Problems of measurement of barrel- and saddle-shaped elements using the radial method. Measurement 2010, 43, 659–663. [Google Scholar] [CrossRef]
- Bańkowski, D.; Młynarczyk, P. Influence of EDM Process Parameters on the Surface Finish of Alnico Alloys. Materials 2022, 15, 7277. [Google Scholar] [CrossRef]
- Oniszczuk-Świercz, D.; Świercz, R.; Michna, Š. Evaluation of Prediction Models of the Microwire EDM Process of Inconel 718 Using ANN and RSM Methods. Materials 2022, 15, 8317. [Google Scholar] [CrossRef]
- How Can You Produce High Quality Edge and Activity. Available online: https://www.linkedin.com/posts/davidson-finishing_how-can-you-produce-high-quality-edge-and-activity-6794385734783524864-IDyf (accessed on 10 January 2022).
- Response_Surface_Methodology. Available online: https://charlesreid1.com/wiki/Response_Surface_Methodology (accessed on 15 January 2024).
- Test Fishera-Snedecora. Available online: https://manuals.pqstat.pl/statpqpl:porown2grpl:parpl:snedecpl (accessed on 15 January 2024).
- Test_Fishera. Available online: https://mfiles.pl/pl/index.php/Test_Fishera (accessed on 15 March 2024).
- Veza, I.; Spraggon, M.; Fattah, I.M.R.; Idris, M. Response surface methodology (RSM) for optimizing engine performance and emissions fueled with biofuel: Review of RSM for sustainability energy transition. Results Eng. 2023, 18, 101213. [Google Scholar] [CrossRef]
- Nowicki, R.; Oniszczuk-Świercz, D.; Świercz, R. Experimental Investigation on the Impact of Graphite Electrodes Grain Size on Technological Parameters and Surface Texture of Hastelloy C-22 after Electrical Discharge Machining with Negative Polarity. Materials 2024, 17, 2257. [Google Scholar] [CrossRef]
- Wang, J.; Sánchez, J.A.; Izquierdo, B.; Ayesta, I. Experimental and Numerical Study of Crater Volume in Wire Electrical Discharge Machining. Materials 2020, 13, 577. [Google Scholar] [CrossRef] [PubMed]
- Wojtatowicz, T. Metody analizy danych doświadczalnych; Politechnika Łódzka: Łódź, Poland, 1998. [Google Scholar]
- Dąbrowski, L.; Świercz, R. Struktura metalograficzna powierzchni po obróbce elektroerozyjnej. Inżynieria Masz. 2011, 16, 16–23. [Google Scholar]
- Polański, Z. Metodyka badań doświadczalnych; Wydawnictwo Politechniki Krakowskiej: Kraków, Poland, 1981. [Google Scholar]
- Dąbrowski, L.; Świercz, R.; Zwora, J. Struktura geometryczna powierzchni po obróbce elektroerozyjnej elektrodą grafitową i miedzianą–porównanie. Inżynieria Masz. 2011, 16, 32–39. [Google Scholar]
No. Point | Cu, wt.% | Zn, wt. % |
---|---|---|
1 | 70.66 | 29.34 |
2 | 70.19 | 29.81 |
3 | 70.65 | 29.35 |
mean | 70.50 | 29.50 |
No. Experiment | t, min | f, Hz | HV0.02 | Sa, µm | Sp, µm | Sz, µm | Ssk | Sku |
---|---|---|---|---|---|---|---|---|
1 | 15 | 33.3 | 88.10 | 0.275 | 3.41 | 6.16 | 0.688 | 14.8 |
2 | 15 | 46.7 | 112.00 | 0.222 | 1.14 | 2.69 | −0.858 | 6.06 |
3 | 75 | 33.3 | 102.90 | 0.232 | 1.62 | 5.51 | −3.24 | 26.4 |
4 | 75 | 46.7 | 123.80 | 0.184 | 1.43 | 2.88 | −0.235 | 4.78 |
5 | 3 | 40 | 77.00 | 0.352 | 1.77 | 6.01 | −1.52 | 11.3 |
6 | 87 | 40 | 98.40 | 0.168 | 1.03 | 2.12 | −0.0779 | 4.07 |
7 | 45 | 30.6 | 90.30 | 0.239 | 1.4 | 3.18 | −0.706 | 5.52 |
8 | 45 | 49.4 | 123.00 | 0.215 | 1.23 | 2.52 | −0.289 | 3.89 |
9 | 45 | 40 | 95.90 | 0.198 | 1.13 | 2.35 | −0.0314 | 3.6 |
Sum of Squares (SS) | Number of Degrees of Freedom | Mean Square | F | P | Influence % | |
---|---|---|---|---|---|---|
Model | 1036.00 | 1 | 1036.00 | 8.19 | 0.021 | |
f | 1036.12 | 1 | 1036.12 | 8.20 | 0.021 | 100 |
Error | 1011.29 | 8 | 126.4 | |||
Total SS | 2047.41 | 9 | R2 = 0.51 | R2-Adj = 0.44 |
Sum of Squares (SS) | Number of Degrees of Freedom | Mean Square | F | P | Influence % | |
---|---|---|---|---|---|---|
Model | 0.0145 | 1 | 0.0145 | 10.55 | 0.012 | |
t | 0.0145 | 1 | 0.0145 | 10.55 | 0.012 | 100 |
Error | 0.011 | 8 | 0.0014 | |||
Total SS | 0.025 | 9 | R2 = 0.57 | R2-Adj = 0.51 |
The Regression Equation | R | R2 | R2-Adj |
---|---|---|---|
0.71 | 0.51 | 0.44 | |
0.75 | 0.57 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bańkowski, D.; Kiljan, A.; Hlaváčová, I.M.; Młynarczyk, P. Influence of Selected Factors of Vibratory Work Hardening Machining on the Properties of CuZn30 Brass. Materials 2024, 17, 5913. https://doi.org/10.3390/ma17235913
Bańkowski D, Kiljan A, Hlaváčová IM, Młynarczyk P. Influence of Selected Factors of Vibratory Work Hardening Machining on the Properties of CuZn30 Brass. Materials. 2024; 17(23):5913. https://doi.org/10.3390/ma17235913
Chicago/Turabian StyleBańkowski, Damian, Anna Kiljan, Irena M. Hlaváčová, and Piotr Młynarczyk. 2024. "Influence of Selected Factors of Vibratory Work Hardening Machining on the Properties of CuZn30 Brass" Materials 17, no. 23: 5913. https://doi.org/10.3390/ma17235913
APA StyleBańkowski, D., Kiljan, A., Hlaváčová, I. M., & Młynarczyk, P. (2024). Influence of Selected Factors of Vibratory Work Hardening Machining on the Properties of CuZn30 Brass. Materials, 17(23), 5913. https://doi.org/10.3390/ma17235913