Advanced Characterization of Solid-State Battery Materials Using Neutron Scattering Techniques †
<p>(<b>a</b>) Neutron diffraction patterns of a LiNiO<sub>2</sub> | | graphite full cell during the first cycle [<a href="#B37-materials-17-06209" class="html-bibr">37</a>]. (<b>b</b>) Voltage profile as a function of time. Evolution of the (<b>c</b>) LiNiO2 and (<b>d</b>) graphite Bragg peaks, (<b>e</b>) lattice parameters, and (<b>f</b>) unit cell volume during cycling as a function of Li concentration in Li<sub>x</sub>NiO<sub>2</sub>. Reprinted with permission from [<a href="#B37-materials-17-06209" class="html-bibr">37</a>]. Copyright 2021 John Wiley and Sons.</p> "> Figure 2
<p>(<b>a</b>) Real space information that can be obtained from <span class="html-italic">G</span>(<span class="html-italic">r</span>) [<a href="#B47-materials-17-06209" class="html-bibr">47</a>]. (<b>b</b>) Comparison of the atomic structure of graphdiyne to <span class="html-italic">G</span>(<span class="html-italic">r</span>) showing how the peaks are a real-space representation of atomic distances compared to an atom located at the origin [<a href="#B47-materials-17-06209" class="html-bibr">47</a>,<a href="#B48-materials-17-06209" class="html-bibr">48</a>]. Reprinted with permission from [<a href="#B47-materials-17-06209" class="html-bibr">47</a>]. Copyright 2016 Springer Nature. Reprinted with permission from [<a href="#B48-materials-17-06209" class="html-bibr">48</a>]. Copyright 2018 John Wiley and Sons.</p> "> Figure 3
<p>(<b>a</b>) <span class="html-italic">G</span>(<span class="html-italic">r</span>) for annealed (A48 and A 240) and non-annealed (FC and SC) LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> samples [<a href="#B50-materials-17-06209" class="html-bibr">50</a>]. The local structure is virtually identical for all 4 samples, but differences are observed at longer length scales corresponding to varying degrees of disorder. (<b>b</b>) Potential local vs. long-range ordering of the Ni/Mn sites to produce either an ordered or disordered global structure. Reprinted with permission from [<a href="#B50-materials-17-06209" class="html-bibr">50</a>]. Copyright 2016 American Chemical Society.</p> "> Figure 4
<p>(<b>a</b>) Simulated crystal structure of Li<sub>2.94</sub>PO<sub>3.5</sub>N<sub>0.31</sub> generated from ab initio molecular dynamics. O, N, Li, and P atoms are colored red, blue, green, and gray, respectively [<a href="#B54-materials-17-06209" class="html-bibr">54</a>]. The apical and double-bridging N configurations are shown. (<b>b</b>) Comparison of the experimental and simulated PDF. Reprinted with permission from [<a href="#B54-materials-17-06209" class="html-bibr">54</a>]. Copyright 2018 American Chemical Society.</p> "> Figure 5
<p>(<b>a</b>) SANS curves normalized by <span class="html-italic">Q<sup>p</sup></span> for the pristine LiC<sub>x</sub>-air system to highlight changes in the intergrain nanopores [<a href="#B62-materials-17-06209" class="html-bibr">62</a>]. (<b>b</b>) SANS curves for graphite, LiC<sub>6</sub>. And LiC<sub>6</sub> + dEC. Inset has the scattering law exponents, showing that the SEI roughens the graphite surfaces. Reprinted with permission from [<a href="#B62-materials-17-06209" class="html-bibr">62</a>]. Copyright 2015 American Chemical Society.</p> "> Figure 6
<p>(<b>a</b>) Schematic view of the cell used for in operando SANS measurements [<a href="#B64-materials-17-06209" class="html-bibr">64</a>]. (<b>b</b>) Scattering length densities for the cell components and major SEI components (electrolyte reduction products). Dashed lines represent the contrast difference between the two electrolytes. SANS intensity as a function of first discharge time, momentum transfer, and cell voltage for (<b>c</b>) 1 M LiTFSi/PC and (<b>d</b>) 4 M LiTFSi/PC electrolyte solutions. Reprinted with permission from [<a href="#B64-materials-17-06209" class="html-bibr">64</a>]. Copyright 2019 RSC.</p> "> Figure 7
<p>Scattering length density as a function of distance from the substrate [<a href="#B72-materials-17-06209" class="html-bibr">72</a>]. Reprinted with permission from [<a href="#B72-materials-17-06209" class="html-bibr">72</a>]. Copyright 2021 IOP.</p> "> Figure 8
<p>(<b>a</b>) Neutron reflectometry data for a NiO/LiPON solid-state battery for the (blue) initial pristine state, (red) after Li plating, and (cyan) after Li stripping [<a href="#B73-materials-17-06209" class="html-bibr">73</a>]. The data are plotted as <span class="html-italic">RQ</span><sup>4</sup> to enhance the profile features. The black lines are a fit to a multi-layer thin film structure. (<b>b</b>) Scattering length density profiles (SLD) calculated from fits to the reflectivity data with a diagram showing the thickness of the different layers. Reprinted with permission from [<a href="#B73-materials-17-06209" class="html-bibr">73</a>]. Copyright 2023 American Chemical Society.</p> "> Figure 9
<p>Evolution of the Li distribution in the battery at a series of charge/discharge stages. High attenuation due to the presence of <sup>6</sup>Li is colored white. Dendrite formation is observed during charging and disappears upon discharge [<a href="#B86-materials-17-06209" class="html-bibr">86</a>]. Reprinted with permission from [<a href="#B86-materials-17-06209" class="html-bibr">86</a>]. Copyright 2019 American Chemical Society.</p> "> Figure 10
<p>Neutron tomography for solid-state sulfur cathodes. (<b>a</b>) 3D reconstruction of the discharged (Li in cathode) and charged states, along with the difference showing the location of the mobile Li shown in green. Neutron imaging slices of 39 μm thick slices of the cathode showing the lithium distribution for the (<b>b</b>) discharged and (<b>c</b>) charged states [<a href="#B93-materials-17-06209" class="html-bibr">93</a>]. Reprinted with permission from [<a href="#B93-materials-17-06209" class="html-bibr">93</a>]. Copyright 2023 John Wiley and Sons. (<b>d</b>) Total attenuation change for the discharged (orange) and recharged (blue) states. The difference (green) shows the mobile Li.</p> "> Figure 11
<p>(<b>a</b>) X-ray and (<b>b</b>) neutron imaging of commercial Li/MnO<sub>2</sub> cells that contain a wound electrode/separator/current collector assembly. The X-ray images are sensitive to the highly attenuating Ni current collectors, while the neutron technique is sensitive to the Li distributions and electrolyte. Cracks and delamination can be observed by X-rays in the cathode as the cell expands upon lithium insertion. Different colored arrows highlight regions of interest with features explained in the correspondingly colored text boxes. Virtual unfolding of the separator/electrode assemblies using (<b>c</b>) X-rays and (<b>d</b>) neutrons [<a href="#B88-materials-17-06209" class="html-bibr">88</a>]. Reprinted with permission from [<a href="#B88-materials-17-06209" class="html-bibr">88</a>]. Copyright 2020 Springer Nature.</p> "> Figure 12
<p>(<b>a</b>) INS spectra of Li<sub>3</sub>InCl<sub>6</sub> measured at 5 K at the VISION spectrometer [<a href="#B100-materials-17-06209" class="html-bibr">100</a>]. (<b>b</b>) INS spectra for EC, LiC<sub>6</sub>, LiC<sub>6</sub> + EC/DMC, and washed LiC<sub>6</sub> + EC/DMC [<a href="#B62-materials-17-06209" class="html-bibr">62</a>]. The asterisks (*) correspond to EC peaks, while daggers (†) are associated with PEO-type peaks. Reprinted with permission from [<a href="#B62-materials-17-06209" class="html-bibr">62</a>]. Copyright 2015 American Chemical Society.</p> "> Figure 13
<p>INS phonon density of states for (<b>a</b>) Li<sub>3</sub>PO<sub>4</sub>, (<b>b</b>) Li<sub>3</sub>PS<sub>4</sub>, (<b>c</b>) Li<sub>3.4</sub>Ge<sub>0.4</sub>P<sub>0.6</sub>O<sub>4</sub>, and (<b>d</b>) Li<sub>3.25</sub>Ge<sub>0.25</sub>P<sub>0.75</sub>S<sub>4</sub>. The top line are the experimental data collected at 100 K, the bottom line is calculated computationally at 0 K, and the shaded region is the Li phonon contributions. (<b>e</b>) A comparison of the oxidation voltage as a function of anion phonon band center [<a href="#B99-materials-17-06209" class="html-bibr">99</a>]. Reprinted with permission from [<a href="#B99-materials-17-06209" class="html-bibr">99</a>]. Copyright 2018 RSC.</p> "> Figure 14
<p>(<b>a</b>) Structural features of NaPS<sub>4</sub> [<a href="#B133-materials-17-06209" class="html-bibr">133</a>], (<b>b</b>) ionic conductivity of NaPS<sub>4</sub> in both the β and γ phases [<a href="#B133-materials-17-06209" class="html-bibr">133</a>], (<b>c</b>) elastic scan of Na<sub>3</sub>PS<sub>4</sub>, and (<b>d</b>) QENS spectra of Na<sub>3</sub>PS<sub>4</sub> at temperatures from 100 to 690 °C illustrating different dynamical behavior for three different structural phases [<a href="#B135-materials-17-06209" class="html-bibr">135</a>]. (<b>a</b>,<b>b</b>) Reprinted with permission from [<a href="#B133-materials-17-06209" class="html-bibr">133</a>]. Copyright 2019 American Chemical Society.</p> ">
Abstract
:1. Introduction
2. Structure
Neutron Diffraction and Pair Distribution Function Analysis
3. In Situ/Operando Investigations of Interfaces and Bulk Components
3.1. Small-Angle Neutron Scattering
3.2. Neutron Reflectometry
3.3. Neutron Imaging
4. Dynamics
4.1. Inelastic Neutron Scattering
4.2. Quasielastic Neutron Scattering
5. Future Outlook and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.G.; Son, B.; Mukherjee, S.; Schuppert, N.; Bates, A.; Kwon, O.; Choi, M.J.; Chung, H.Y.; Park, S. A Review of Lithium and Non-Lithium Based Solid State Batteries. J. Power Sources 2015, 282, 299–322. [Google Scholar] [CrossRef]
- Kalnaus, S.; Dudney, N.J.; Westover, A.S.; Herbert, E.; Hackney, S. Solid-State Batteries: The Critical Role of Mechanics. Science 2023, 381, eabg5998. [Google Scholar] [CrossRef] [PubMed]
- Dudney, N.J.; West, W.C.; Nanda, J. Handbook of Solid State Batteries, 2nd ed.; Materials and Energy; WORLD SCIENTIFIC: Singapore, 2015; Volume 6. [Google Scholar] [CrossRef]
- Tian, Y.; Zeng, G.; Rutt, A.; Shi, T.; Kim, H.; Wang, J.; Koettgen, J.; Sun, Y.; Ouyang, B.; Chen, T.; et al. Promises and Challenges of Next-Generation “Beyond Li-Ion” Batteries for Electric Vehicles and Grid Decarbonization. Chem. Rev. 2021, 121, 1623–1669. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H. Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chem. Rev. 2020, 120, 6820–6877. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Y.; Bo, S.-H.; Kim, J.C.; Miara, L.J.; Ceder, G. Understanding Interface Stability in Solid-State Batteries. Nat. Rev. Mater. 2019, 5, 105–126. [Google Scholar] [CrossRef]
- Janek, J.; Zeier, W.G. Challenges in Speeding up Solid-State Battery Development. Nat. Energy 2023, 8, 230–240. [Google Scholar] [CrossRef]
- Atkins, D.; Capria, E.; Edström, K.; Famprikis, T.; Grimaud, A.; Jacquet, Q.; Johnson, M.; Matic, A.; Norby, P.; Reichert, H.; et al. Accelerating Battery Characterization Using Neutron and Synchrotron Techniques: Toward a Multi-Modal and Multi-Scale Standardized Experimental Workflow. Adv. Energy Mater. 2022, 12, 2102694. [Google Scholar] [CrossRef]
- Wang, H.; Ning, D.; Wang, L.; Li, H.; Li, Q.; Ge, M.; Zou, J.; Chen, S.; Shao, H.; Lai, Y.; et al. In Operando Neutron Scattering Multiple-Scale Studies of Lithium-Ion Batteries. Small 2022, 18, 2107491. [Google Scholar] [CrossRef]
- Zhu, H.; Huang, Y.; Zhu, H.; Wang, L.; Lan, S.; Xia, X.; Liu, Q. In Situ Probing Multiple-Scale Structures of Energy Materials for Li-Ion Batteries. Small Methods 2020, 4, 1900223. [Google Scholar] [CrossRef]
- Wang, S.; Shi, H.; Wang, D.; Xia, Y.; Yin, Y.; Liang, S.; Hu, Y.; Shao, R.; Wu, X.; Xu, Z. Neutron-Based Characterization: A Rising Star in Illuminating Rechargeable Lithium Metal Batteries. Nano Energy 2024, 122, 109337. [Google Scholar] [CrossRef]
- Pérez, G.E.; Brittain, J.M.; McClelland, I.; Hull, S.; Jones, M.O.; Playford, H.Y.; Cussen, S.A.; Baker, P.J.; Reynolds, E.M. Neutron and Muon Characterisation Techniques for Battery Materials. J. Mater. Chem. A 2023, 11, 10493–10531. [Google Scholar] [CrossRef]
- Abitonze, M.; Yu, X.; Diko, C.S.; Zhu, Y.; Yang, Y. Applications of In Situ Neutron-Based Techniques in Solid-State Lithium Batteries. Batteries 2022, 8, 255. [Google Scholar] [CrossRef]
- Shah, A.R.; Shutt, R.R.C.; Smith, K.; Hack, J.; Neville, T.P.; Headen, T.F.; Brett, D.J.L.; Howard, C.A.; Miller, T.S.; Cullen, P.L. Neutron Studies of Na-Ion Battery Materials. J. Phys. Mater. 2021, 4, 042008. [Google Scholar] [CrossRef]
- Zhao, E.; Zhang, Z.-G.; Li, X.; He, L.; Yu, X.; Li, H.; Wang, F. Neutron-Based Characterization Techniques for Lithium-Ion Battery Research. Chin. Phys. B 2020, 29, 018201. [Google Scholar] [CrossRef]
- Xu, C.; Dai, Q.; Gaines, L.; Hu, M.; Tukker, A.; Steubing, B. Future Material Demand for Automotive Lithium-Based Batteries. Commun. Mater. 2020, 1, 99. [Google Scholar] [CrossRef]
- Biemolt, J.; Jungbacker, P.; Van Teijlingen, T.; Yan, N.; Rothenberg, G. Beyond Lithium-Based Batteries. Materials 2020, 13, 425. [Google Scholar] [CrossRef] [PubMed]
- Boaretto, N.; Garbayo, I.; Valiyaveettil-SobhanRaj, S.; Quintela, A.; Li, C.; Casas-Cabanas, M.; Aguesse, F. Lithium Solid-State Batteries: State-of-the-Art and Challenges for Materials, Interfaces and Processing. J. Power Sources 2021, 502, 229919. [Google Scholar] [CrossRef]
- Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117, 10403–10473. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.-D.; Park, J.-H.; Shin, H.-J.; Jeong, J.; Kim, J.T.; Nam, K.-W.; Jung, H.-G.; Chung, K.Y. A Review of Challenges and Issues Concerning Interfaces for All-Solid-State Batteries. Energy Storage Mater. 2020, 25, 224–250. [Google Scholar] [CrossRef]
- Sivia, D.S. Elementary Scattering Theory: For X-Ray and Neutron Users; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Schober, H. An Introduction to the Theory of Nuclear Neutron Scattering in Condensed Matter. J. Neutron Res. 2014, 17, 109–357. [Google Scholar] [CrossRef]
- Langel, W. Introduction to Neutron Scattering. ChemTexts 2023, 9, 12. [Google Scholar] [CrossRef]
- Lyons, M.J. Neutron Scattering Methods and Studies; Chemical Engineering Methods and Technology; Nova Science Publishers, Incorporated: Hauppauge, NY, USA, 2011. [Google Scholar]
- Blondeau, L.; Surblé, S.; Foy, E.; Khodja, H.; Belin, S.; Gauthier, M. Are Operando Measurements of Rechargeable Batteries Always Reliable? An Example of Beam Effect with a Mg Battery. Anal. Chem. 2022, 94, 9683–9689. [Google Scholar] [CrossRef]
- Shipitsyn, V.; Jayakumar, R.; Zuo, W.; Sun, B.; Ma, L. Understanding High-Voltage Behavior of Sodium-Ion Battery Cathode Materials Using Synchrotron X-Ray and Neutron Techniques: A Review. Batteries 2023, 9, 461. [Google Scholar] [CrossRef]
- Ren, Y.; Zuo, X. Synchrotron X-Ray and Neutron Diffraction, Total Scattering, and Small-Angle Scattering Techniques for Rechargeable Battery Research. Small Methods 2018, 2, 1800064. [Google Scholar] [CrossRef]
- Ziesche, R.F.; Kardjilov, N.; Kockelmann, W.; Brett, D.J.L.; Shearing, P.R. Neutron Imaging of Lithium Batteries. Joule 2022, 6, 35–52. [Google Scholar] [CrossRef]
- Cao, D.; Zhang, Y.; Ji, T.; Zhu, H. In Operando Neutron Imaging Characterizations of All-Solid-State Batteries. MRS Bull. 2023, 48, 1257–1268. [Google Scholar] [CrossRef]
- Gao, L.; Han, S.; Ni, H.; Zhu, J.; Wang, L.; Gao, S.; Wang, Y.; Huang, D.; Zhao, Y.; Zou, R. Application of Neutron Imaging in Observing Various States of Matter inside Lithium Batteries. Natl. Sci. Rev. 2023, 10, nwad238. [Google Scholar] [CrossRef] [PubMed]
- Dixit, M.B.; Park, J.-S.; Kenesei, P.; Almer, J.; Hatzell, K.B. Status and Prospect of in Situ and Operando Characterization of Solid-State Batteries. Energy Environ. Sci. 2021, 14, 4672–4711. [Google Scholar] [CrossRef]
- Ding, J.; Ji, D.; Yue, Y.; Smedskjaer, M.M. Amorphous Materials for Lithium-Ion and Post-Lithium-Ion Batteries. Small 2024, 20, 2304270. [Google Scholar] [CrossRef]
- Xiong, F.; Tao, H.; Yue, Y. Role of Amorphous Phases in Enhancing Performances of Electrode Materials for Alkali Ion Batteries. Front. Mater. 2020, 6, 328. [Google Scholar] [CrossRef]
- Cullity, B.D.; Stock, S.R. Elements of X-Ray Diffraction, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Egami, T.; Billinge, S.J.L. Underneath the Bragg Peaks: Structural Analysis of Complex Materials, 2nd ed.; Pergamon materials series; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Calder, S.; An, K.; Boehler, R.; Dela Cruz, C.R.; Frontzek, M.D.; Guthrie, M.; Haberl, B.; Huq, A.; Kimber, S.A.J.; Liu, J.; et al. A Suite-Level Review of the Neutron Powder Diffraction Instruments at Oak Ridge National Laboratory. Rev. Sci. Instrum. 2018, 89, 092701. [Google Scholar] [CrossRef] [PubMed]
- Chien, P.; Wu, X.; Song, B.; Yang, Z.; Waters, C.K.; Everett, M.S.; Lin, F.; Du, Z.; Liu, J. New Insights into Structural Evolution of LiNiO2 Revealed by Operando Neutron Diffraction. Batter. Supercaps 2021, 4, 1656. [Google Scholar] [CrossRef]
- Luo, Y.; Gao, X.; Dong, M.; Zeng, T.; Chen, Z.; Yang, M.; Huang, Z.; Wang, R.; Pan, F.; Xiao, Y. Exploring the Structural Properties of Cathode and Anode Materials in Li-Ion Battery via Neutron Diffraction Technique. Chin. J. Struct. Chem. 2023, 42, 100032. [Google Scholar] [CrossRef]
- Wu, X.; Song, B.; Chien, P.; Everett, S.M.; Zhao, K.; Liu, J.; Du, Z. Structural Evolution and Transition Dynamics in Lithium Ion Battery under Fast Charging: An Operando Neutron Diffraction Investigation. Adv. Sci. 2021, 8, 2102318. [Google Scholar] [CrossRef]
- Wang, C.; Wang, R.; Huang, Z.; Chu, M.; Ji, W.; Chen, Z.; Zhang, T.; Zhai, J.; Lu, H.; Deng, S.; et al. Unveiling the Migration Behavior of Lithium Ions in NCM/Graphite Full Cell via in Operando Neutron Diffraction. Energy Storage Mater. 2022, 44, 1–9. [Google Scholar] [CrossRef]
- Liang, G.; Didier, C.; Guo, Z.; Pang, W.K.; Peterson, V.K. Understanding Rechargeable Battery Function Using In Operando Neutron Powder Diffraction. Adv. Mater. 2020, 32, 1904528. [Google Scholar] [CrossRef] [PubMed]
- Taminato, S.; Yonemura, M.; Shiotani, S.; Kamiyama, T.; Torii, S.; Nagao, M.; Ishikawa, Y.; Mori, K.; Fukunaga, T.; Onodera, Y.; et al. Real-Time Observations of Lithium Battery Reactions—Operando Neutron Diffraction Analysis during Practical Operation. Sci. Rep. 2016, 6, 28843. [Google Scholar] [CrossRef]
- Liu, H.; Fell, C.R.; An, K.; Cai, L.; Meng, Y.S. In-Situ Neutron Diffraction Study of the xLi2MnO3·(1 − x)LiMO2 (x = 0, 0.5; M = Ni, Mn, Co) Layered Oxide Compounds during Electrochemical Cycling. J. Power Sources 2013, 240, 772–778. [Google Scholar] [CrossRef]
- Vitoux, L.; Reichardt, M.; Sallard, S.; Novák, P.; Sheptyakov, D.; Villevieille, C. A Cylindrical Cell for Operando Neutron Diffraction of Li-Ion Battery Electrode Materials. Front. Energy Res. 2018, 6, 76. [Google Scholar] [CrossRef]
- Rosciano, F.; Holzapfel, M.; Scheifele, W.; Novák, P. A Novel Electrochemical Cell for in Situ Neutron Diffraction Studies of Electrode Materials for Lithium-Ion Batteries. J. Appl. Crystallogr. 2008, 41, 690–694. [Google Scholar] [CrossRef]
- Didier, C.; Guo, Z.; Song, B.; Huq, A.; Peterson, V.K. In Situ and In Operando Neutron Diffraction of Transition Metal Oxides for Electrochemical Storage. In Transition Metal Oxides for Electrochemical Energy Storage; Nanda, J., Augustyn, V., Eds.; Wiley: Hoboken, NJ, USA, 2022; pp. 319–341. [Google Scholar] [CrossRef]
- Chapman, K.W. Emerging Operando and x-Ray Pair Distribution Function Methods for Energy Materials Development. MRS Bull. 2016, 41, 231–240. [Google Scholar] [CrossRef]
- Shang, H.; Zuo, Z.; Zheng, H.; Li, K.; Tu, Z.; Yi, Y.; Liu, H.; Li, Y.; Li, Y. N-Doped Graphdiyne for High-Performance Electrochemical Electrodes. Nano Energy 2018, 44, 144–154. [Google Scholar] [CrossRef]
- Wang, X.; Tan, S.; Yang, X.-Q.; Hu, E. Pair Distribution Function Analysis: Fundamentals and Application to Battery Materials. Chin. Phys. B 2020, 29, 028802. [Google Scholar] [CrossRef]
- Liu, J.; Huq, A.; Moorhead-Rosenberg, Z.; Manthiram, A.; Page, K. Nanoscale Ni/Mn Ordering in the High Voltage Spinel Cathode LiNi0.5 Mn1.5 O4. Chem. Mater. 2016, 28, 6817–6821. [Google Scholar] [CrossRef]
- Key, B.; Morcrette, M.; Tarascon, J.-M.; Grey, C.P. Pair Distribution Function Analysis and Solid State NMR Studies of Silicon Electrodes for Lithium Ion Batteries: Understanding the (De)Lithiation Mechanisms. J. Am. Chem. Soc. 2011, 133, 503–512. [Google Scholar] [CrossRef]
- Bates, J. Electrical Properties of Amorphous Lithium Electrolyte Thin Films. Solid State Ion. 1992, 53–56, 647–654. [Google Scholar] [CrossRef]
- Yu, X.; Bates, J.B.; Jellison, G.E.; Hart, F.X. A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorus Oxynitride. J. Electrochem. Soc. 1997, 144, 524–532. [Google Scholar] [CrossRef]
- Lacivita, V.; Westover, A.S.; Kercher, A.; Phillip, N.D.; Yang, G.; Veith, G.; Ceder, G.; Dudney, N.J. Resolving the Amorphous Structure of Lithium Phosphorus Oxynitride (Lipon). J. Am. Chem. Soc. 2018, 140, 11029–11038. [Google Scholar] [CrossRef]
- Hamley, I.W. Small-Angle Scattering: Theory, Instrumentation, Data, and Applications; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Zhou, X.-L.; Chen, S.-H. Theoretical Foundation of X-Ray and Neutron Reflectometry. Phys. Rep. 1995, 257, 223–348. [Google Scholar] [CrossRef]
- Bilheux, H.Z.; McGreevy, R.; Anderson, I.S. Neutron Imaging and Applications: A Reference for the Imaging Community; Neutron Scattering Applications and Techniques; Springer US: Boston, MA, USA, 2009. [Google Scholar] [CrossRef]
- Aswal, D.K. Neutron Imaging: Basics, Techniques and Applications; Springer: Singapore, 2022. [Google Scholar]
- Reynolds, E.M.; Fitzpatrick, J.; Jones, M.O.; Tapia-Ruiz, N.; Playford, H.Y.; Hull, S.; McClelland, I.; Baker, P.J.; Cussen, S.A.; Pérez, G.E. Investigation of Sodium Insertion in Hard Carbon with Operando Small Angle Neutron Scattering. J. Mater. Chem. A 2024, 12, 18469–18475. [Google Scholar] [CrossRef]
- Yerdauletov, M.; Avdeev, M.V.; Tomchuk, A.A.; Napolskiy, F.S.; Djanseitov, D.M.; Krivchenko, V.A. Nanoscale Structure of Positive Electrodes for Lithium-Ion Batteries with Graphene-Based Additives According to Small-Angle Neutron Scattering. J. Surf. Investig. 2023, 17, 460–464. [Google Scholar] [CrossRef]
- Didier, C.; Gilbert, E.P.; Mata, J.; Peterson, V.K. Direct In Situ Determination of the Surface Area and Structure of Deposited Metallic Lithium within Lithium Metal Batteries Using Ultra Small and Small Angle Neutron Scattering. Adv. Energy Mater. 2023, 13, 2301266. [Google Scholar] [CrossRef]
- Sacci, R.L.; Bañuelos, J.L.; Veith, G.M.; Littrell, K.C.; Cheng, Y.Q.; Wildgruber, C.U.; Jones, L.L.; Ramirez-Cuesta, A.J.; Rother, G.; Dudney, N.J. Structure of Spontaneously Formed Solid-Electrolyte Interphase on Lithiated Graphite Determined Using Small-Angle Neutron Scattering. J. Phys. Chem. C 2015, 119, 9816–9823. [Google Scholar] [CrossRef]
- Bridges, C.A.; Sun, X.-G.; Zhao, J.; Paranthaman, M.P.; Dai, S. In Situ Observation of Solid Electrolyte Interphase Formation in Ordered Mesoporous Hard Carbon by Small-Angle Neutron Scattering. J. Phys. Chem. C 2012, 116, 7701–7711. [Google Scholar] [CrossRef]
- Jafta, C.J.; Sun, X.-G.; Veith, G.M.; Jensen, G.V.; Mahurin, S.M.; Paranthaman, M.P.; Dai, S.; Bridges, C.A. Probing Microstructure and Electrolyte Concentration Dependent Cell Chemistry via Operando Small Angle Neutron Scattering. Energy Environ. Sci. 2019, 12, 1866–1877. [Google Scholar] [CrossRef]
- Bridges, C.A.; Sun, X.-G.; Guo, B.; Heller, W.T.; He, L.; Paranthaman, M.P.; Dai, S. Observing Framework Expansion of Ordered Mesoporous Hard Carbon Anodes with Ionic Liquid Electrolytes via in Situ Small-Angle Neutron Scattering. ACS Energy Lett. 2017, 2, 1698–1704. [Google Scholar] [CrossRef]
- Rizell, J.; Zubayer, A.; Sadd, M.; Lundin, F.; Mozhzhukhina, N.; Eriksson, F.; Birch, J.; Vorobiev, A.; Xiong, S.; Matic, A. Neutron Reflectometry Study of Solid Electrolyte Interphase Formation in Highly Concentrated Electrolytes. Small Struct. 2023, 4, 2300119. [Google Scholar] [CrossRef]
- Matsumoto, K.; Inoue, K.; Nakahara, K.; Yuge, R.; Noguchi, T.; Utsugi, K. Suppression of Aluminum Corrosion by Using High Concentration LiTFSI Electrolyte. J. Power Sources 2013, 231, 234–238. [Google Scholar] [CrossRef]
- Fears, T.M.; Doucet, M.; Browning, J.F.; Baldwin, J.K.S.; Winiarz, J.G.; Kaiser, H.; Taub, H.; Sacci, R.L.; Veith, G.M. Evaluating the Solid Electrolyte Interphase Formed on Silicon Electrodes: A Comparison of Ex Situ X-Ray Photoelectron Spectroscopy and in Situ Neutron Reflectometry. Phys. Chem. Chem. Phys. 2016, 18, 13927–13940. [Google Scholar] [CrossRef]
- Veith, G.M.; Doucet, M.; Baldwin, J.K.; Sacci, R.L.; Fears, T.M.; Wang, Y.; Browning, J.F. Direct Determination of Solid-Electrolyte Interphase Thickness and Composition as a Function of State of Charge on a Silicon Anode. J. Phys. Chem. C 2015, 119, 20339–20349. [Google Scholar] [CrossRef]
- Veith, G.M.; Baggetto, L.; Sacci, R.L.; Unocic, R.R.; Tenhaeff, W.E.; Browning, J.F. Direct Measurement of the Chemical Reactivity of Silicon Electrodes with LiPF6-Based Battery Electrolytes. Chem. Commun. 2014, 50, 3081. [Google Scholar] [CrossRef] [PubMed]
- Browning, J.F.; Baggetto, L.; Jungjohann, K.L.; Wang, Y.; Tenhaeff, W.E.; Keum, J.K.; Wood, D.L.; Veith, G.M. In Situ Determination of the Liquid/Solid Interface Thickness and Composition for the Li Ion Cathode LiMn1.5 Ni0.5 O4. ACS Appl. Mater. Interfaces 2014, 6, 18569–18576. [Google Scholar] [CrossRef] [PubMed]
- Veith, G.M.; Browning, K.L.; Doucet, M.; Browning, J.F. Solid Electrolyte Interphase Architecture Determined through In Situ Neutron Scattering. J. Electrochem. Soc. 2021, 168, 060523. [Google Scholar] [CrossRef]
- Browning, K.L.; Westover, A.S.; Browning, J.F.; Doucet, M.; Sacci, R.L.; Veith, G.M. In Situ Measurement of Buried Electrolyte–Electrode Interfaces for Solid State Batteries with Nanometer Level Precision. ACS Energy Lett. 2023, 8, 1985–1991. [Google Scholar] [CrossRef]
- Rus, E.D.; Dura, J.A. In Situ Neutron Reflectometry Study of a Tungsten Oxide/Li-Ion Battery Electrolyte Interface. ACS Appl. Mater. Interfaces 2023, 15, 2832–2842. [Google Scholar] [CrossRef]
- Kawaura, H.; Harada, M.; Kondo, Y.; Mizutani, M.; Takahashi, N.; Yamada, N.L. Effects of Lithium Bis(Oxalate)Borate Electrolyte Additive on the Formation of a Solid Electrolyte Interphase on Amorphous Carbon Electrodes by Operando Time-Slicing Neutron Reflectometry. ACS Appl. Mater. Interfaces 2022, 14, 24526–24535. [Google Scholar] [CrossRef]
- Zhou, H.; Izumi, J.; Asano, S.; Ito, K.; Watanabe, K.; Suzuki, K.; Nemoto, F.; Yamada, N.L.; Aso, K.; Oshima, Y.; et al. Fast Lithium Intercalation Mechanism on Surface-Modified Cathodes for Lithium-Ion Batteries. Adv. Energy Mater. 2023, 13, 2302402. [Google Scholar] [CrossRef]
- Owejan, J.E.; Owejan, J.P.; DeCaluwe, S.C.; Dura, J.A. Solid Electrolyte Interphase in Li-Ion Batteries: Evolving Structures Measured In Situ by Neutron Reflectometry. Chem. Mater. 2012, 24, 2133–2140. [Google Scholar] [CrossRef]
- Kosiachkin, Y.N.; Gapon, I.V.; Rulev, A.A.; Ushakova, E.E.; Merkel, D.; Bulavin, L.A.; Avdeev, M.V.; Itkis, D.M. Structural Studies of Electrochemical Interfaces with Liquid Electrolytes Using Neutron Reflectometry: Experimental Aspects. J. Surf. Investig. 2021, 15, 787–792. [Google Scholar] [CrossRef]
- Zhang, Y.; Chandran, K.S.R.; Bilheux, H.Z. Imaging of the Li Spatial Distribution within V2O5 Cathode in a Coin Cell by Neutron Computed Tomography. J. Power Sources 2018, 376, 125–130. [Google Scholar] [CrossRef]
- Nie, Z.; McCormack, P.; Bilheux, H.Z.; Bilheux, J.C.; Robinson, J.P.; Nanda, J.; Koenig, G.M. Probing Lithiation and Delithiation of Thick Sintered Lithium-Ion Battery Electrodes with Neutron Imaging. J. Power Sources 2019, 419, 127–136. [Google Scholar] [CrossRef]
- Nanda, J.; Bilheux, H.; Voisin, S.; Veith, G.M.; Archibald, R.; Walker, L.; Allu, S.; Dudney, N.J.; Pannala, S. Anomalous Discharge Product Distribution in Lithium-Air Cathodes. J. Phys. Chem. C 2012, 116, 8401–8408. [Google Scholar] [CrossRef]
- Owejan, J.P.; Gagliardo, J.J.; Harris, S.J.; Wang, H.; Hussey, D.S.; Jacobson, D.L. Direct Measurement of Lithium Transport in Graphite Electrodes Using Neutrons. Electrochim. Acta 2012, 66, 94–99. [Google Scholar] [CrossRef]
- Butler, L.G.; Schillinger, B.; Ham, K.; Dobbins, T.A.; Liu, P.; Vajo, J.J. Neutron Imaging of a Commercial Li-Ion Battery during Discharge: Application of Monochromatic Imaging and Polychromatic Dynamic Tomography. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 651, 320–328. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Y.; Yang, X.; Santodonato, L.; Bilheux, H.; Zhang, J. Neutron Imaging of Lithium Concentration in LiNi0.33Mn0.33Co0.33O2 Cathode. JNR 2020, 22, 43–48. [Google Scholar] [CrossRef]
- Siegel, J.B.; Lin, X.; Stefanopoulou, A.G.; Hussey, D.S.; Jacobson, D.L.; Gorsich, D. Neutron Imaging of Lithium Concentration in LFP Pouch Cell Battery. J. Electrochem. Soc. 2011, 158, A523. [Google Scholar] [CrossRef]
- Song, B.; Dhiman, I.; Carothers, J.C.; Veith, G.M.; Liu, J.; Bilheux, H.Z.; Huq, A. Dynamic Lithium Distribution upon Dendrite Growth and Shorting Revealed by Operando Neutron Imaging. ACS Energy Lett. 2019, 4, 2402–2408. [Google Scholar] [CrossRef]
- Bradbury, R.; Kardjilov, N.; Dewald, G.F.; Tengattini, A.; Helfen, L.; Zeier, W.G.; Manke, I. Visualizing Lithium Ion Transport in Solid-State Li–S Batteries Using6 Li Contrast Enhanced Neutron Imaging. Adv. Funct. Mater. 2023, 33, 2302619. [Google Scholar] [CrossRef]
- Ziesche, R.F.; Arlt, T.; Finegan, D.P.; Heenan, T.M.M.; Tengattini, A.; Baum, D.; Kardjilov, N.; Markötter, H.; Manke, I.; Kockelmann, W.; et al. 4D Imaging of Lithium-Batteries Using Correlative Neutron and X-Ray Tomography with a Virtual Unrolling Technique. Nat. Commun. 2020, 11, 777. [Google Scholar] [CrossRef]
- Michalak, B.; Sommer, H.; Mannes, D.; Kaestner, A.; Brezesinski, T.; Janek, J. Gas Evolution in Operating Lithium-Ion Batteries Studied In Situ by Neutron Imaging. Sci. Rep. 2015, 5, 15627. [Google Scholar] [CrossRef]
- Nikolic, M.; Cesarini, A.; Billeter, E.; Weyand, F.; Trtik, P.; Strobl, M.; Borgschulte, A. Hydrogen Transport and Evolution in Ni-MH Batteries by Neutron Imaging. Angew. Chem. Int. Ed. 2023, 62, e202307367. [Google Scholar] [CrossRef]
- Carreon Ruiz, E.R.; Lee, J.; Strobl, M.; Stalder, N.; Burca, G.; Gubler, L.; Boillat, P. Revealing the Impact of Temperature in Battery Electrolytes via Wavelength-Resolved Neutron Imaging. Sci. Adv. 2023, 9, eadi0586. [Google Scholar] [CrossRef]
- Carreón Ruiz, E.R.; Stalder, N.; Lee, J.; Gubler, L.; Boillat, P. Prospects of Spectroscopic Neutron Imaging: Optimizing Experimental Setups in Battery Electrolyte Research. Phys. Chem. Chem. Phys. 2023, 25, 24993–25007. [Google Scholar] [CrossRef]
- Bradbury, R.; Dewald, G.F.; Kraft, M.A.; Arlt, T.; Kardjilov, N.; Janek, J.; Manke, I.; Zeier, W.G.; Ohno, S. Visualizing Reaction Fronts and Transport Limitations in Solid-State Li–S Batteries via Operando Neutron Imaging. Adv. Energy Mater. 2023, 13, 2203426. [Google Scholar] [CrossRef]
- Bée, M. Quasielastic Neutron Scattering: Principles and Applications in Solid State Chemistry, Biology and Materials Science; A. Hilger: Bristol, PA, USA, 1988. [Google Scholar]
- Mitchell, P.C.H.; Parker, S.F.; Ramirez-Cuesta, A.J.; Tomkinson, J. Vibrational Spectroscopy with Neutrons: With Applications in Chemistry, Biology, Materials Science and Catalysis; Series on Neutron Techniques and Applications; WORLD SCIENTIFIC: Singapore, 2005; Volume 3. [Google Scholar] [CrossRef]
- Neutron and X-Ray Spectroscopy; Hippert, F., Ed.; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Peng, H.-G.; Tyagi, M.; Page, K.A.; Soles, C.L. Inelastic Neutron Scattering on Polymer Electrolytes for Lithium-Ion Batteries. In ACS Symposium Series; Page, K.A., Soles, C.L., Runt, J., Eds.; American Chemical Society: Washington, DC, USA, 2012; Volume 1096, pp. 67–90. [Google Scholar] [CrossRef]
- Mittal, R.; Chaplot, S.L.; Choudhury, N. (Eds.) Inelastic Neutron Scattering, Lattice Dynamics, Computer Simulation and Thermodynamic Properties. In Thermodynamic Properties of Solids; Wiley: Hoboken, NJ, USA, 2010; pp. 75–121. [Google Scholar] [CrossRef]
- Muy, S.; Bachman, J.C.; Giordano, L.; Chang, H.-H.; Abernathy, D.L.; Bansal, D.; Delaire, O.; Hori, S.; Kanno, R.; Maglia, F.; et al. Tuning Mobility and Stability of Lithium Ion Conductors Based on Lattice Dynamics. Energy Environ. Sci. 2018, 11, 850–859. [Google Scholar] [CrossRef]
- Daemen, L. Lattice Dynamics and Lithium Transport in Li3InCl6. J. Phys. Chem. 2025; in press. [Google Scholar]
- Benedek, P.; Yazdani, N.; Chen, H.; Wenzler, N.; Juranyi, F.; Månsson, M.; Islam, M.S.; Wood, V.C. Surface Phonons of Lithium Ion Battery Active Materials. Sustain. Energy Fuels 2019, 3, 508–513. [Google Scholar] [CrossRef]
- Eklöf-Österberg, C. Structure-Dynamics Relationships in Perovskite Oxyhydrides and Alkali Silanides; Chalmers University of Technology: Göteborg, Sweden, 2019. [Google Scholar]
- Seeger, P.A.; Daemen, L.L.; Larese, J.Z. Resolution of VISION, a Crystal-Analyzer Spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 604, 719–728. [Google Scholar] [CrossRef]
- Hu, Y.-W.; Raistrick, I.D.; Huggins, R.A. Ionic Conductivity of Lithium Orthosilicate—Lithium Phosphate Solid Solutions. J. Electrochem. Soc. 1977, 124, 1240–1242. [Google Scholar] [CrossRef]
- Tachez, M.; Malugani, J.; Mercier, R.; Robert, G. Ionic Conductivity of and Phase Transition in Lithium Thiophosphate Li3PS4. Solid State Ion. 1984, 14, 181–185. [Google Scholar] [CrossRef]
- Hempelmann, R. Quasielastic Neutron Scattering and Solid State Diffusion; Oxford series on neutron scattering in condensed matter; Clarendon: Oxford, UK, 2000. [Google Scholar] [CrossRef]
- Osti, N.C.; Jalarvo, N.; Mamontov, E. Backscattering Silicon Spectrometer (BASIS): Sixteen Years in Advanced Materials Characterization. Mater. Horiz. 2024, 11, 4535–4572. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, M. Proton Dynamics in Oxides: Insight into the Mechanics of Proton Conduction from Quasielastic Neutron Scattering. Phys. Chem. Chem. Phys. 2015, 17, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Novak, E.; Daemen, L.; Ramirez-Cuesta, A.J.; Cheng, Y.; Smith, R.; Egami, T.; Jalarvo, N. Uncovering the Hydride Ion Diffusion Pathway in Barium Hydride via Neutron Spectroscopy. Sci. Rep. 2022, 12, 6194. [Google Scholar] [CrossRef]
- Zhang, Z.; Nazar, L.F. Exploiting the Paddle-Wheel Mechanism for the Design of Fast Ion Conductors. Nat. Rev. Mater. 2022, 7, 389–405. [Google Scholar] [CrossRef]
- Nozaki, H.; Harada, M.; Ohta, S.; Watanabe, I.; Miyake, Y.; Ikedo, Y.; Jalarvo, N.H.; Mamontov, E.; Sugiyama, J. Li Diffusive Behavior of Garnet-Type Oxides Studied by Muon-Spin Relaxation and QENS. Solid State Ion. 2014, 262, 585–588. [Google Scholar] [CrossRef]
- Klenk, M.J.; Boeberitz, S.E.; Dai, J.; Jalarvo, N.H.; Peterson, V.K.; Lai, W. Lithium Self-Diffusion in a Model Lithium Garnet Oxide Li5La3Ta2O12: A Combined Quasi-Elastic Neutron Scattering and Molecular Dynamics Study. Solid State Ion. 2017, 312, 1–7. [Google Scholar] [CrossRef]
- Sacci, R.L.; Lehmann, M.L.; Diallo, S.O.; Cheng, Y.Q.; Daemen, L.L.; Browning, J.F.; Doucet, M.; Dudney, N.J.; Veith, G.M. Lithium Transport in an Amorphous Li x Si Anode Investigated by Quasi-Elastic Neutron Scattering. J. Phys. Chem. C 2017, 121, 11083–11088. [Google Scholar] [CrossRef]
- Heitmann, T.; Hester, G.; Mitra, S.; Calloway, T.; Tyagi, M.S.; Miskowiec, A.; Diallo, S.; Osti, N.; Mamontov, E. Probing Li Ion Dynamics in Amorphous xLi2SO4⋅(1 − x)LiPO3 by Quasielastic Neutron Scattering. Solid State Ion. 2019, 334, 95–98. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.; Hood, Z.D.; Ma, C.; Yu, S.; Sharafi, A.; Wang, H.; An, K.; Sakamoto, J.; Siegel, D.J.; et al. Elucidating the Mobility of H+ and Li+ Ions in (Li6.25−x Hx Al0.25)La3 Zr2 O12 via Correlative Neutron and Electron Spectroscopy. Energy Environ. Sci. 2019, 12, 945–951. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, M.K.; Mittal, R.; Jalarvo, N.H.; Mukhopadhyay, S.; Shukla, R.; Achary, S.N.; Kolesnikov, A.I.; Tyagi, A.K.; Chaplot, S.L. Li-Ion Diffusion Correlations in LiAlGeO4: Quasielastic Neutron Scattering and Ab Initio Simulation. ACS Appl. Energy Mater. 2022, 5, 14119–14126. [Google Scholar] [CrossRef]
- Chi, M.; Liu, X.; Hachtel, J.; Jalarvo, N.H.; Cheng, Y.; Sakamoto, J. Elucidating Ion Transport in Lithium-Ion Conductors by Combining Vibrational Spectroscopy in STEM and Neutron Scattering. Microsc. Microanal. 2018, 24, 1496–1497. [Google Scholar] [CrossRef]
- Chen, Q.; Jalarvo, N.H.; Lai, W. Na Ion Dynamics in P2-Nax [Ni1/3 Ti2/3]O2: A Combination of Quasi-Elastic Neutron Scattering and First-Principles Molecular Dynamics Study. J. Mater. Chem. A 2020, 8, 25290–25297. [Google Scholar] [CrossRef]
- Gupta, M.K.; Mittal, R.; Kumar, S.; Singh, B.; Jalarvo, N.H.; Delaire, O.; Shukla, R.; Achary, S.N.; Kolesnikov, A.I.; Tyagi, A.K.; et al. Stoichiometric Tuning of Lattice Flexibility and Na Diffusion in NaAlSiO4: Quasielastic Neutron Scattering Experiment and Ab Initio Molecular Dynamics Simulations. J. Mater. Chem. A 2021, 9, 16129–16136. [Google Scholar] [CrossRef]
- Gupta, M.K.; Ding, J.; Osti, N.C.; Abernathy, D.L.; Arnold, W.; Wang, H.; Hood, Z.; Delaire, O. Fast Na Diffusion and Anharmonic Phonon Dynamics in Superionic Na3 PS4. Energy Environ. Sci. 2021, 14, 6554–6563. [Google Scholar] [CrossRef]
- Maus, O.; Agne, M.T.; Fuchs, T.; Till, P.S.; Wankmiller, B.; Gerdes, J.M.; Sharma, R.; Heere, M.; Jalarvo, N.; Yaffe, O.; et al. On the Discrepancy between Local and Average Structure in the Fast Na+ Ionic Conductor Na2.9 Sb0.9 W0.1 S4. J. Am. Chem. Soc. 2023, 145, 7147–7158. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, M.K.; Mittal, R.; Sundaramoorthy, S.; Choudhury, A.; Osti, N.C.; Kolesnikov, A.I.; Stone, M.B.; Cheng, Y.; Chaplot, S.L. Topology Driven and Soft Phonon Mode Enabled Na-Ion Diffusion in Quaternary Chalcogenides, Na3 ZnGaX4 (X = S, and Se). J. Mater. Chem. A 2023, 11, 23940–23949. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, C.; Hood, Z.D.; Chi, M.; Liang, C.; Jalarvo, N.H.; Yu, M.; Wang, H. Abnormally Low Activation Energy in Cubic Na3 SbS4 Superionic Conductors. Chem. Mater. 2020, 32, 2264–2271. [Google Scholar] [CrossRef]
- Heere, M.; Hansen, A.-L.; Payandeh, S.; Aslan, N.; Gizer, G.; Sørby, M.H.; Hauback, B.C.; Pistidda, C.; Dornheim, M.; Lohstroh, W. Dynamics of Porous and Amorphous Magnesium Borohydride to Understand Solid State Mg-Ion-Conductors. Sci. Rep. 2020, 10, 9080. [Google Scholar] [CrossRef] [PubMed]
- Rettie, A.J.E.; Ding, J.; Zhou, X.; Johnson, M.J.; Malliakas, C.D.; Osti, N.C.; Chung, D.Y.; Osborn, R.; Delaire, O.; Rosenkranz, S.; et al. A Two-Dimensional Type I Superionic Conductor. Nat. Mater. 2021, 20, 1683–1688. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.K.; Ding, J.; Bansal, D.; Abernathy, D.L.; Ehlers, G.; Osti, N.C.; Zeier, W.G.; Delaire, O. Strongly Anharmonic Phonons and Their Role in Superionic Diffusion and Ultralow Thermal Conductivity of Cu7 PSe6. Adv. Energy Mater. 2022, 12, 2200596. [Google Scholar] [CrossRef]
- Mamontov, E. Fast Oxygen Diffusion in Bismuth Oxide Probed by Quasielastic Neutron Scattering. Solid State Ion. 2016, 296, 158–162. [Google Scholar] [CrossRef]
- Wind, J.; Mole, R.A.; Yu, D.; Ling, C.D. Liquid-like Ionic Diffusion in Solid Bismuth Oxide Revealed by Coherent Quasielastic Neutron Scattering. Chem. Mater. 2017, 29, 7408–7415. [Google Scholar] [CrossRef]
- Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. New, Highly Ion-Conductive Crystals Precipitated from Li2 S–P2 S5 Glasses. Adv. Mater. 2005, 17, 918–921. [Google Scholar] [CrossRef]
- Homma, K.; Yonemura, M.; Kobayashi, T.; Nagao, M.; Hirayama, M.; Kanno, R. Crystal Structure and Phase Transitions of the Lithium Ionic Conductor Li3PS4. Solid State Ion. 2011, 182, 53–58. [Google Scholar] [CrossRef]
- Jansen, M.; Henseler, U. Synthesis, Structure Determination, and Ionic Conductivity of Sodium Tetrathiophosphate. J. Solid State Chem. 1992, 99, 110–119. [Google Scholar] [CrossRef]
- Famprikis, T.; Canepa, P.; Dawson, J.A.; Islam, M.S.; Masquelier, C. Fundamentals of Inorganic Solid-State Electrolytes for Batteries. Nat. Mater. 2019, 18, 1278–1291. [Google Scholar] [CrossRef]
- Famprikis, T.; Dawson, J.A.; Fauth, F.; Clemens, O.; Suard, E.; Fleutot, B.; Courty, M.; Chotard, J.-N.; Islam, M.S.; Masquelier, C. A New Superionic Plastic Polymorph of the Na+ Conductor Na3 PS4. ACS Mater. Lett. 2019, 1, 641–646. [Google Scholar] [CrossRef]
- Wilmer, D.; Feldmann, H.; Combet, J.; Lechner, R.E. Ion Conducting Rotor Phases—New Insights from Quasielastic Neutron Scattering. Phys. B Condens. Matter 2001, 301, 99–104. [Google Scholar] [CrossRef]
- Jalarvo, N.; Osti, N.; Novak, E.; Daemen, L. Sodium Ion Dynamics of High Temperature Phases in Sodium Thiophosphates. J. Phys. Chem. 2025. [Google Scholar]
- Carlile, C.J. An Instrument Suite for the European Spallation Source. Phys. B Condens. Matter 1999, 266, 131–137. [Google Scholar] [CrossRef]
- Finney, J. The Scientific Case for the ESS Project; Study report; European Science Foundation: Strasbourg, France, 1997. [Google Scholar]
- Spallation Neutron Source Second Target Station Conceptual Design Report; Volume 1: Overview, Technical, and Experiment Systems; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2020.
Salt and Potential | aSi (Å) | SEI (Å) |
---|---|---|
In Air | 365.0 ± 0.4 | – |
LiPF6 Open Circuit Voltage | 376.2 ± 1.4 | 110.3 ± 2.9 |
LiPF6 0.06 V | 976.0 ± 11.8 | 167.6 ± 13.3 |
Exchange to LiBF4 0.06 V | 940.1 ± 10.8 | 115.0 ± 5.4 |
LiBF4 1.2 V | 422.5 ± 2.1 | 146.2 ± 3.6 |
LiBF4 0.06 V 2nd Lithiation | 1026.3 ± 7.0 | 206.9 ± 13.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novak, E.; Daemen, L.; Jalarvo, N. Advanced Characterization of Solid-State Battery Materials Using Neutron Scattering Techniques. Materials 2024, 17, 6209. https://doi.org/10.3390/ma17246209
Novak E, Daemen L, Jalarvo N. Advanced Characterization of Solid-State Battery Materials Using Neutron Scattering Techniques. Materials. 2024; 17(24):6209. https://doi.org/10.3390/ma17246209
Chicago/Turabian StyleNovak, Eric, Luke Daemen, and Niina Jalarvo. 2024. "Advanced Characterization of Solid-State Battery Materials Using Neutron Scattering Techniques" Materials 17, no. 24: 6209. https://doi.org/10.3390/ma17246209
APA StyleNovak, E., Daemen, L., & Jalarvo, N. (2024). Advanced Characterization of Solid-State Battery Materials Using Neutron Scattering Techniques. Materials, 17(24), 6209. https://doi.org/10.3390/ma17246209