A Review on Metallurgical Issues in the Production and Welding Processes of Clad Steels
<p>Hot rolling process of two sets of base steel (grey) and cladding layer (green) separated by an interposed layer (yellow): (<b>a</b>) assembling of the “sandwich”-type composition; (<b>b</b>) preheating; (<b>c</b>) hot rolling; (<b>d</b>) final annealing of the clad plates.</p> "> Figure 2
<p>Results of electron probe micro-analyser measurements across the interface SUS304/Q235: (<b>a</b>) Cr, Fe, Ni and Mn; (<b>b</b>) carbon. Reproduced from [<a href="#B5-materials-17-04420" class="html-bibr">5</a>].</p> "> Figure 3
<p>Clad plate interface: (<b>a</b>) Q235 carbon steel side; (<b>b</b>) SUS304 austenitic steel side. Reproduced from [<a href="#B5-materials-17-04420" class="html-bibr">5</a>].</p> "> Figure 4
<p>Vickers microhardness profile along a transversal line across the interface, from the Q235 carbon steel side (on the left) to the SUS 304 austenitic steel side (on the right), for three different rolling temperatures. Reproduced from [<a href="#B15-materials-17-04420" class="html-bibr">15</a>] with permission from Elsevier.</p> "> Figure 5
<p>Sensitization to the intergranular corrosion of the carburized zone near the interface of carbon steel/austenitic steel (the higher magnification in the box shows the effect of corrosion immediately close to the cladding line). Reproduced from [<a href="#B18-materials-17-04420" class="html-bibr">18</a>].</p> "> Figure 6
<p>Sketch of the experimental setups for explosive welding: (<b>a</b>) inclined; (<b>b</b>) parallel. Reproduced from [<a href="#B23-materials-17-04420" class="html-bibr">23</a>].</p> "> Figure 7
<p>Triclad joint: (<b>a</b>) AA5083 Al alloy; (<b>b</b>) AA1050 Al interlayer; (<b>c</b>) ASTM A516 Gr 55 structural steel.</p> "> Figure 8
<p>Micrographs of the weld interface: (<b>a</b>) AA6082 AA1050 interface; (<b>b</b>) AA1050/carbon steel interface. Reproduced from [<a href="#B27-materials-17-04420" class="html-bibr">27</a>].</p> "> Figure 9
<p>Weld overlay of carbon steel plates: (<b>a</b>) conventional processing using wire or powder as feedstock; (<b>b</b>) modified processing using a scrap plate as feedstock. Reproduced from [<a href="#B53-materials-17-04420" class="html-bibr">53</a>].</p> "> Figure 10
<p>Geometries of two adjacent tracks for different values of FPP: (<b>a</b>) narrow track and insufficient overlapping; (<b>b</b>) optimization of tracks by defocused laser beam; (<b>c</b>) highly defocused laser beam; (<b>d</b>) optimal tracks obtained with laser beam oscillations. Reproduced from [<a href="#B53-materials-17-04420" class="html-bibr">53</a>].</p> "> Figure 11
<p>Welding sequences for two butt-positioned plates (Q235 base steel and AISI 304 cladding layer): (<b>a</b>) carbon steel backing welding and carbon steel covering welding; (<b>b</b>) cleaning the stainless steel cladding; (<b>c</b>) stainless steel covering welding. Reproduced from [<a href="#B60-materials-17-04420" class="html-bibr">60</a>] with permission from Taylor & Francis Ltd.</p> "> Figure 12
<p>Preparation of the butt-positioned plates: (<b>a</b>) interposed consumable inserts for LBW; (<b>b</b>) chamfered V-groove for the hybrid LBW–GMAW combination [<a href="#B65-materials-17-04420" class="html-bibr">65</a>].</p> "> Figure 13
<p>Setup of the hybrid LBW–GMAW process. Reproduced from [<a href="#B66-materials-17-04420" class="html-bibr">66</a>] with permission from Springer Nature.</p> "> Figure 14
<p>Schaeffler diagram with the representative points of the carbon steel substrate, AISI 316 filler (plate or wire) and clad layer (resulting from a mass balance for a carbon steel dilution d<sub>M</sub> = 17%). The experimental compositions of the clad layer, obtained with SEM-EDS measurements, for CMT and the laser beam process are given too. Reproduced from [<a href="#B53-materials-17-04420" class="html-bibr">53</a>].</p> "> Figure 15
<p>Fe–Cr-Ni pseudo-binary diagram (70% of iron) with indication of the FA mode composition range. Reproduced from [<a href="#B82-materials-17-04420" class="html-bibr">82</a>].</p> "> Figure 16
<p>Detail of a fused zone (Cr<sub>eq</sub>/Ni<sub>eq</sub> = 1.63) with indication by the white arrows of the skeletal and lathy residual ferrite. Reproduced from [<a href="#B94-materials-17-04420" class="html-bibr">94</a>].</p> "> Figure 17
<p>Vickers microhardness profile along a transversal line across the interface, from BM (on the left) to FM (on the right). Reproduced from [<a href="#B99-materials-17-04420" class="html-bibr">99</a>].</p> "> Figure 18
<p>Precipitation curves of Cr<sub>23</sub>C<sub>6</sub> carbide as a function of carbon content. The dashed red line indicates how the precipitation kinetics become faster as the carbon content increases. Reproduced from [<a href="#B101-materials-17-04420" class="html-bibr">101</a>].</p> "> Figure 19
<p>Schematic representation of welded microstructures and their metallurgical zones, divided according to the peak temperature. Images of the generated microstructure are displayed accordingly. Reproduced from [<a href="#B45-materials-17-04420" class="html-bibr">45</a>].</p> ">
Abstract
:1. Introduction
2. Metallurgy of As-Produced Clad Steel Plates
2.1. Hot Rolled Clad Steel Plates
- Preheating of the assembled pack, with a slow increase from room temperature up to 1230 °C, maintained for 5 h;
- Hot rolling between 1230 and 850 °C, followed by air cooling;
- Disassembling of the rolled pack;
- Final annealing in the range 920–950 °C, followed by air cooling.
2.2. Explosion-Welded Clad Steel Plates
2.3. Weld Overlaid Clad Steel Plates
3. Fusion Welding of Clad Steel
3.1. Arc Welding Processes (Hybrid Multi-Passes)
3.2. Laser and Hybrid Laser/Arc Processes
4. Discussion
5. Conclusions and Future Directions
- Dilution between the filler and base metal at the level of the base and clad steel, as well as dilution between the deposited layers in multi-pass welding;
- Unexpected composition of the welds;
- Solidification in non-optimal mode to ensure crack-free welds;
- Carbide enrichment in the ferritic phase, followed by martensitic transformation during cooling;
- Carbide precipitation in the austenitic phase, followed by local hardening and sensitization to intergranular corrosion as a function of the time permanence within the critical interval of temperature.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Sun, X.; Jiang, Y.; Chang, X.; Yonglei, X. Review on the application of stainless-clad bimetallic steel in the marine environment. Anti-Corros. Methods Mater. 2024, 71, 132–142. [Google Scholar] [CrossRef]
- Liu, B.X.; Wang, S.; Fang, W.; Yin, F.X.; Chen, C.X. Meso and microscale clad interface characteristics of hot-rolled stainless steel clad plate. Mater. Charact. 2019, 148, 17–25. [Google Scholar] [CrossRef]
- Campanella, D.; Buffa, G.; Fratini, L. A two steps Lagrangian–Eulerian numerical model for the simulation of explosive welding of three dissimilar materials joints. CIRP J. Manuf. Sci. Technol. 2021, 35, 541–549. [Google Scholar] [CrossRef]
- Dhib, Z.; Guermazi, N.; Ktari, A.; Gasperini, M.; Haddar, N. Mechanical bonding properties and interfacial morphologies of austenitic stainless steel clad plates. Mater. Sci. Eng. A 2017, 696, 374–386. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Zhang, B.; Zhang, Q. Microstructure characterization and mechanical properties of stainless steel clad plate. Materials 2019, 12, 509. [Google Scholar] [CrossRef]
- Zhu, M.; Wu, W.; Qian, W.; Xia, L.; Zhang, Y.; Wang, B. A brief review on welding of stainless steel clad plates: Issues and future perspectives. Int. J. Adv. Manuf. Technol. 2021, 115, 49–59. [Google Scholar] [CrossRef]
- Gou, N.N.; Zhang, J.X.; Zhang, L.J.; Li, Z.G.; Bi, Z.Y. Single pass fiber laser butt welding of explosively welded 2205/X65 bimetallic sheets and study on the properties of the welded joint. Int. J. Adv. Manuf. Technol. 2016, 86, 2539–2549. [Google Scholar] [CrossRef]
- Jiang, J.; Ding, H.; Lu, Z.; Xie, G. Interfacial microstructure and mechanical properties of stainless steel clad plate prepared by vacuum hot rolling. J. Iron Steel Res. Int. 2018, 25, 732–738. [Google Scholar] [CrossRef]
- Jin, H.R.; Wei, R.; Wang, Y.H.; Yi, Y.L.; Jia, C.Z.; Zhao, D.X. Vacuum hot rolling preparation of stainless steel clad plate and its numerical simulation. Strength Mater. 2022, 54, 144–153. [Google Scholar] [CrossRef]
- Dhib, Z.; Guermazi, N.; Gasperini, M.; Haddar, N. Cladding of low-carbon steel to austenitic stainless steel by hot-roll bonding: Microstructure and mechanical properties before and after welding. Mater. Sci. Eng. A 2016, 656, 130–141. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Zhang, B.; Zhang, Q. Interfacial fracture behavior of a stainless/carbon steel bimetal plate in a uniaxial tension test. Results Phys. 2019, 14, 102470. [Google Scholar] [CrossRef]
- Zhu, Z.; He, Y.; Zhang, X.; Liu, H.; Li, X. Effect of interface oxides on shear properties of hot-rolled stainless steel clad plate. Mater. Sci. Eng. A 2016, 669, 344–349. [Google Scholar] [CrossRef]
- Jing, Y.; Qin, Y.; Zang, X.; Shang, Q.; Song, H. A novel reduction-bonding process to fabricate stainless steel clad plate. J. Alloys Compd. 2014, 617, 688–698. [Google Scholar] [CrossRef]
- Yu, T.; Jing, Y.; Yan, X.; Li, W.; Pang, Q.; Jin, G. Microstructures and properties of roll-bonded stainless/medium carbon steel clad plates. J. Mater. Process. Technol. 2019, 266, 264–273. [Google Scholar] [CrossRef]
- Chen, C.X.; Liu, M.Y.; Liu, B.X.; Yin, F.X.; Dong, Y.C.; Zhang, X.; Zhang, F.Y.; Zhang, Y.G. Tensile shear sample design and interfacial shear strength of stainless steel clad plate. Fusion Eng. Des. 2017, 125, 431–441. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, Z.; Liu, X.; Sun, J.; Wang, W. Enhanced interfacial strength and ductility of stainless steel/carbon steel laminated composite by heterogenous lamella structure. J. Mater. Res. Technol. 2022, 18, 4846–4858. [Google Scholar] [CrossRef]
- Dai, P.; Li, S.; Wu, L.; Wang, Y.; Feng, G.; Deng, D. A new numerical model to predict welding-induced sensitization in SUS304 austenitic stainless steel joint. J. Mater. Res. Technol. 2022, 17, 234–243. [Google Scholar] [CrossRef]
- Giudice, F.; Missori, S.; Murdolo, F.; Sili, A. Metallurgical characterization of the interfaces in steel plates clad with austenitic steel or high Ni alloys by hot rolling. Metals 2020, 10, 286. [Google Scholar] [CrossRef]
- ASTM A262-15; Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels. ASTM International: West Conshohocken, PA, USA, 2021.
- Liu, B.X.; Yin, F.X.; Dai, X.L.; He, J.N.; Fang, W.; Chen, C.X.; Dong, Y.C. The tensile behaviors and fracture characteristics of stainless steel clad plates with different interfacial status. Mater. Sci. Eng. A 2017, 679, 172–182. [Google Scholar] [CrossRef]
- Li, Q.; Chen, W.; Du, J.; Lu, M.; Wang, Z.; Huang, Y. Microstructure and coordination mechanism of interface of stainless steel/carbon steel cladding plate prepared by vacuum diffusion bonding. Mater. Sci. Eng. A 2022, 829, 142178. [Google Scholar] [CrossRef]
- Song, H.; Shin, H.; Shin, Y. Heat-treatment of clad steel plate for application of hull structure. Ocean Eng. 2016, 122, 278–287. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y. High-velocity impact welding process: A review. Metals 2019, 9, 144. [Google Scholar] [CrossRef]
- Sherpa, B.B.; Rani, R. Advancements in explosive welding process for bimetallic material joining: A review. J. Alloys Met. Syst. 2024, 6, 100078. [Google Scholar] [CrossRef]
- Kaur, J.; Mangla, V.; Singh, J.; Kumar, S.; Srivastava, N. Cladding of stainless steel (SS304) on aluminium alloy (AA1100) by explosive welding. Mater. Today Proc. 2018, 5, 19136–19139. [Google Scholar] [CrossRef]
- Meco, S.; Ganguly, S.; Williams, S.; McPherson, N. Design of laser welding applied to T joints between steel and aluminium. J. Mater. Process. Technol. 2019, 268, 132–139. [Google Scholar] [CrossRef]
- Carvalho, G.H.S.F.L.; Galvão, I.; Mendes, R.; Leal, R.M.; Loureiro, A. Aluminum-to-steel cladding by explosive welding. Metals 2020, 10, 1062. [Google Scholar] [CrossRef]
- Carvalho, G.H.S.F.L.; Galvão, I.; Mendes, R.; Leal, R.M.; Loureiro, A. Formation of intermetallic structures at the interface of steel-to-aluminium explosive welds. Mater. Charact. 2018, 142, 432–442. [Google Scholar] [CrossRef]
- Yang, M.; Ma, H.; Shen, Z.; Sun, Y. Study on explosive welding for manufacturing meshing bonding interface of CuCrZr to 316L stainless steel. Fusion Eng. Des. 2019, 143, 106–114. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, J.; Zhou, X.; Xue, X.; Li, H. Post-fire constitutive model on explosively welded stainless-clad bimetallic steel after cold-forming process. J. Constr. Steel Res. 2023, 209, 108038. [Google Scholar] [CrossRef]
- Carvalho, G.H.S.F.L.; Galvão, I.; Mendes, R.; Leal, R.M.; Loureiro, A. The role of physical properties in explosive welding of copper to stainless steel. Def. Technol. 2023, 22, 88–98. [Google Scholar] [CrossRef]
- Ayele, B.S.; Mebratie, B.A.; Meku, A.A. Investigation of the effect of explosive welding parameters on aluminum–steel bimetals: A numerical approach. J. Mater. Civil Eng. 2023, 35, 11. [Google Scholar] [CrossRef]
- Carvalho, G.H.S.F.L.; Galvão, I.; Mendes, R.; Leal, R.M.; Loureiro, A. Microstructure and mechanical behaviour of aluminium-carbon steel and aluminium-stainless steel clads produced with an aluminium interlayer. Mater. Charact. 2019, 155, 109819. [Google Scholar] [CrossRef]
- Palaci, Y.; Olgun, M. Influences of heat treatment on mechanical behavior and microstructure of the explosively welded D grade steel/En Aw 5083 aluminium joint. Arch. Metall. Mater. 2021, 66, 373–380. [Google Scholar] [CrossRef]
- Liu, W.; Ma, J.; Atabaki, M.M.M.; Kovacevic, R. Joining of advanced high-strength steel to AA 6061 alloy by using Fe/Al structural transition joint. Mater. Des. 2015, 68, 146–157. [Google Scholar] [CrossRef]
- Costanza, G.; Crupi, V.; Guglielmino, E.; Sili, A.; Tata, M.E. Metallurgical characterization of an explosion welded aluminum/steel joint. Metall. Ital. 2016, 11, 17–22. [Google Scholar]
- Lee, T.; Zhang, S.; Vivek, A.; Daehn, G.; Kinsey, B. Wave formation in impact welding: Study of the Cu–Ti system. CIRP Ann.–Manuf. Techn. 2019, 68, 261–264. [Google Scholar] [CrossRef]
- Gonçalves e Silva, R.H.; Riffel, K.C.; da Paixão Carvalho, L.; Kejelin, N.Z. Double-sided welding as an alternative for joining internally clad pipes. J. Pipeline Syst. Eng. Pract. 2020, 11, 04020012. [Google Scholar] [CrossRef]
- Norsok Standard M-001; Materials Selection, Edition 5. Standards Norway: Lysaker, Norway, 2014.
- Volpi, A.; Serra, G. Weld overlay of highly corrosion resistant nickel chromium molybdenum alloys, UNS N06059, on low alloy equipment operating at high temperature. In Proceedings of the ASME 2018 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries ETAM 2018, Seattle, WA, USA, 3–5 April 2018. [Google Scholar] [CrossRef]
- Saha, M.K.; Hazra, R.; Mondal, A.; Das, S. Effect of heat input on geometry of austenitic stainless steel weld bead on low carbon steel. J. Inst. Eng. India Ser. C 2019, 100, 607–615. [Google Scholar] [CrossRef]
- Aslam, M.; Sahoo, C.K. Numerical and experimental investigation for the cladding of AISI 304 stainless steel on mild steel substrate using Gas Metal Arc Welding. CIRP J. Manuf. Sci. Technol. 2022, 37, 378–387. [Google Scholar] [CrossRef]
- Singhal, T.S.; Jain, J.K. GMAW cladding on metals to impart anti-corrosiveness: Machine, processes and materials. Mater. Today Proc. 2020, 26, 2432–2441. [Google Scholar] [CrossRef]
- Sowrirajan, M.; Koshy Mathews, P.; Vijayan, S.; Amaladasan, Y. Effect of weld dilution on post-weld thermal conductivity of austenitic stainless steel clad layers. Mater. Res. Express 2018, 5, 096512. [Google Scholar] [CrossRef]
- Sartori Moreno, J.; Faria Conde, F.; Alves Correa, C.; Barbosa, L.H.; Pereira da Silva, E.; Avila, J.; Buzolin, R.H.; Cavalcanti Pinto, H. Pulsed FCAW of martensitic stainless clads onto mild steel: Microstructure, hardness, and residual stresses. Materials 2022, 15, 2715. [Google Scholar] [CrossRef] [PubMed]
- Cattivelli, A.; Roy, M.J.; Burke, M.G.; Dhers, J.; Lee, T.L.; Francis, J.A. Internal stresses in a clad pressure vessel steel during post weld heat treatment and their relevance to underclad cracking. Int. J. Pres. Ves. Pip. 2021, 193, 104448. [Google Scholar] [CrossRef]
- Matias, J.V.S.; Lourenço, M.J.C.; Jorge, J.C.F.; de Souza, L.F.G.; Farneze, H.N.; Mendes, M.C.; da Silva, C.L.A.; Araújo, L.S. Behavior of a superaustenitic stainless steel weld cladding deposited by the gas metal arc welding process. Mater. Today Commun. 2023, 34, 104978. [Google Scholar] [CrossRef]
- Hao, Y.; Li, J.; Li, X.; Liu, W.; Cao, G.; Li, C.; Liu, Z. Influences of cooling rates on solidification and segregation characteristics of Fe-Cr-Ni-Mo-N super austenitic stainless steel. J. Mater. Process. Technol. 2020, 275, 116326. [Google Scholar] [CrossRef]
- Matias, J.V.S.; Lourenco, M.J.C.; Jorge, J.C.F.; de Souza, L.F.G.; Farneze, H.N.; Mendes, M.C.; Araujo, L.S. Microstructure and corrosion properties of the AISI 904L weld cladding obtained by the electro slag process. J. Mater. Res. Technol. 2021, 15, 5151–5164. [Google Scholar] [CrossRef]
- Costa, J.F.M.; Lacerda, P.L.; Magalhães, H.A.Y.; Jorge, J.C.F.; de Souza, L.F.G.; Mendes, M.C.; Araújo, L.S.; Farneze, H.N. Inconel 625 weld claddings obtained by the GMAW-RE with rotating electrode. Int. J. Adv. Manuf. Technol. 2024, 132, 5647–5661. [Google Scholar] [CrossRef]
- Ungethüm, T.; Spaniol, E.; Hertel, M.; Füssel, U. Analysis of metal transfer and weld geometry in hot-wire GTAW with indirect resistive heating. Weld. World 2020, 64, 2109–2117. [Google Scholar] [CrossRef]
- Rodrigo Stohler Gonzaga, R.S.; Farias, F.W.C.; da Cruz Payão Filho, J. Microstructural characterization of the transition zone between a C–Mn steel pipe and a 70%Ni30%Cu alloy cladding welded by HW-GTAW. Int. J. Pres. Ves. Pip. 2021, 192, 104433. [Google Scholar] [CrossRef]
- Bunaziv, I.; Ren, X.; Hagen, A.B.; Hovig, E.W.; Jevremovic, I.; Dahl, S.G. Laser beam remelting of stainless steel plate for cladding and comparison with conventional CMT process. Int. J. Adv. Manuf. Technol. 2023, 127, 911–934. [Google Scholar] [CrossRef]
- Li, C.; Zhu, J.; Cai, Z.; Mei, L.; Jiao, X.; Du, X.; Wang, K. Microstructure and corrosion resistance of under water laser cladded duplex stainless steel coating after underwater laser remelting processing. Materials 2021, 14, 4965. [Google Scholar] [CrossRef]
- Wang, Z.D.; Sun, G.F.; Chen, M.Z. Investigation of the underwater laser directed energy deposition technique for the on-site repair of HSLA-100 steel with excellent performance. Addit. Manuf. 2021, 39, 101884. [Google Scholar] [CrossRef]
- Sun, G.; Wang, Z.; Lu, Y.; Chen, M.; Yang, K.; Ni, Z. Underwater laser welding/cladding for high-performance repair of marine metal materials: A review. Chin. J. Mech. Eng. 2022, 35, 5. [Google Scholar] [CrossRef]
- Ghorbel, R.; Ktari, A.; Haddar, N. Microstructure and mechanical property assessment of stainless steel–clad plate joint made by hybrid SMAW-GTAW multi-pass welding process. Weld. World 2022, 66, 1593–1608. [Google Scholar] [CrossRef]
- Ghorbel, R.; Ktari, A.; Haddar, N. On the origin of the local hardening zone on welded stainless clad steel plates. Fusion Sci. Technol. 2022, 78, 503–511. [Google Scholar] [CrossRef]
- Ghorbel, R.; Ktari, A.; Haddar, N. Experimental analysis of temperature field and distortions in multi-pass welding of stainless cladded steel. Int. J. Adv. Manuf. Technol. 2021, 113, 3525–3542. [Google Scholar] [CrossRef]
- An, Q.; Fan, K.Y.; Ge, Y.F.; Liu, B.X.; Liu, Y.C.; Wang, S.; Chen, C.X.; Ji, P.G.; Yin, F.X. Microstructure and mechanical properties of stainless steel clad plate joints produced by TIG and MAG hybrid welding. J. Adhes. Sci. Technol. 2020, 34, 670–685. [Google Scholar] [CrossRef]
- Yu, W.X.; Liu, B.X.; Chen, C.X.; Liu, M.Y.; Zhang, X.; Fang, W.; Ji, P.G.; He, J.N.; Yin, F.X. Microstructure and mechanical properties of stainless steel clad plate welding joints by different welding processes. Sci. Technol. Weld. Join. 2020, 25, 571–580. [Google Scholar] [CrossRef]
- Li, C.; Qin, G.; Tang, Y.; Zhang, B.; Lin, S.; Geng, P. Microstructures and mechanical properties of stainless steel clad plate joint with diverse filler metals. J. Mater. Res. Technol. 2020, 9, 2522–2534. [Google Scholar] [CrossRef]
- Bezerra de Mello Picchi, I.; Lima dos Santos, M.; Bezerra de Santana, T.H.; Costa de Santana, R.A.; Torres López, E.A.; de Albuquerque Vicente, A.; de Abreu Santos, T.F. Microstructure characterization of the weld cladding of clad steel plate A516 GR.70—AISI 904L by electroslag strip cladding using Inconel 625 strip. Weld. World 2023, 67, 2571–2587. [Google Scholar] [CrossRef]
- Ban, H.; Yang, X.; Shi, Y.; Chung, K.-F.; Hu, Y.-F. Micro-macro properties of stainless-clad bimetallic steel welded connections with different configurations. J. Constr. Steel Res. 2024, 217, 108637. [Google Scholar] [CrossRef]
- Missori, S.; Sili, A. Prediction of weld metal microstructure in laser beam welded clad steel. Metallurgist 2018, 62, 84–92. [Google Scholar] [CrossRef]
- Meng, Y.; Kang, K.; Gao, M.; Zeng, X. Relationship between corrosion resistance and microstructure characteristic of single-pass laser-arc hybrid welded stainless clad steel plate. Metall. Mater. Trans. A 2019, 50A, 2817–2825. [Google Scholar] [CrossRef]
- Brunner-Schwer, C.; Üstündag, Ö.; Bakir, N.; Gumenyuk, A.; Rethmeier, M. Process advantages of laser hybrid welding compared to conventional arc-based welding processes for joining thick steel structures of wind tower. IOP Conf. Ser. Mater. Sci. Eng. 2023, 1296, 012028. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, G.; Chi, J.; Bi, J.; Yuan, X.; Li, W.; Zhang, L. Effect of process parameters on the formability, microstructure, and mechanical properties of laser-arc hybrid welding of Q355B steel. Materials 2023, 16, 4253. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yang, L.; Wang, D.; Zhang, F.; Liu, C.; Huang, G. Effect of welding stability on process porosity in laser arc hybrid welding of dissimilar steel. Optik 2022, 271, 170165. [Google Scholar] [CrossRef]
- Hao, K.; Gao, Z.; Huang, J.; Xu, L.; Liu, Y.; Han, Y.; Zhao, L.; Ren, W. Comparisons of laser and laser-arc hybrid welded carbon steel with beam oscillation. Opt. Laser Technol. 2023, 157, 108787. [Google Scholar] [CrossRef]
- DuPont, J.N. Dilution in fusion welding. In Metals Handbook, 1st ed.; Lienert, T.J., Babu, S.S., Siewert, T.A., Acoff, V.L., Eds.; ASM: Materials Park, OH, USA, 2011; Volume 06A, pp. 115–121. [Google Scholar]
- Costa, J.F.M.; Jorge, J.C.F.; de Souza, L.F.G.; Mendes, M.C.; Farneze, H.N.; Magalhães, H.A.Y. Microstructural evaluation of Inconel 625 weld cladding deposited by the GMAW and GMAW with rotating electrode processes. Tecnol. Metal. Mater. Min. 2024, 21, e2848. [Google Scholar] [CrossRef]
- Bellamkonda, P.N.; Dwivedy, M.; Addanki, R. Cold metal transfer technology—A review of recent research developments. Results Eng. 2024, 23, 102423. [Google Scholar] [CrossRef]
- Lippold, J.C.; Kotecki, D.J. Welding Metallurgy and Weldability of Stainless Steels; Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 141–229. [Google Scholar]
- Großwendt, F.; Becker, L.; Röttger, A.; Chehreh, A.B.; Strauch, A.L.; Uhlenwinkel, V.; Lentz, J.; Walther, F.; Fechte-Heinen, R.; Weber, S.; et al. Impact of the allowed compositional range of additively manufactured 316L stainless steel on processability and material properties. Materials 2021, 14, 4074. [Google Scholar] [CrossRef]
- Nedjad, S.H.; Yildizb, M.; Saboorie, A. Solidification behaviour of austenitic stainless steels during welding and directed energy deposition. Sci. Technol. Weld. Join. 2023, 28, 1–17. [Google Scholar] [CrossRef]
- Fu, J.W.; Yang, Y.S.; Guo, J.J.; Ma, J.C.; Tong, W.H. Microstructure evolution in AISI 304 stainless steel during near rapid directional solidification. Mater. Sci. Technol. 2009, 25, 1013–1016. [Google Scholar] [CrossRef]
- Vashishtha, H.; Taiwade, R.V.; Sharma, S.; Patil, A.P. Effect of welding processes on microstructural and mechanical properties of dissimilar weldments between conventional austenitic and high nitrogen austenitic stainless steels. J. Manuf. Process. 2017, 25, 49–59. [Google Scholar] [CrossRef]
- Alali, M.; Abass, M.H.; Abbas, W.S.; Shehabd, A.A. Effect of nickel powder buffering layer on microstructure and hardness properties of high carbon steel/stainless steel arc stud welding. Mater. Res. 2020, 23, e20190567. [Google Scholar] [CrossRef]
- Tandon, V.; Patil, A.P.; Kowshik, S. Impact of filler electrodes on welding properties of dissimilar welded 316L/201 austenitic stainless steels. Eng. Proc. 2023, 59, 90. [Google Scholar] [CrossRef]
- Khuenkaew, T.; Kanlayasiri, K. Resistance spot welding of SUS316L austenitic/SUS425 ferritic stainless steels: Weldment characteristics, mechanical properties, phase transformation and solidification. Metals 2019, 9, 710. [Google Scholar] [CrossRef]
- Lee, S.H. CMT-based wire arc additive manufacturing using 316L stainless steel: Effect of heat accumulation on the multi-layer deposits. Metals 2020, 10, 278. [Google Scholar] [CrossRef]
- Giudice, F.; Sili, A. Weld metal microstructure prediction in laser beam welding of austenitic stainless steel. Appl. Sci. 2021, 11, 1463. [Google Scholar] [CrossRef]
- Kianersi, D.; Mostafaei, A.; Amadeh, A.A. Resistance spot welding joints of AISI 316L austenitic stainless steel sheets: Phase transformations, mechanical properties and microstructure characterizations. Mater. Des. 2014, 61, 251–263. [Google Scholar] [CrossRef]
- Tandon, V.; Thombre, M.A.; Patil, A.P.; Taiwade, R.V.; Vashishtha, H. Effect of heat input on the microstructural, mechanical, and corrosion properties of dissimilar weldment of conventional austenitic stainless steel and low-nickel stainless steel. Metallogr. Microstruct. Anal. 2020, 9, 668–677. [Google Scholar] [CrossRef]
- Mohammed, G.R.; Ishak, M.; Aqida, S.N.; Abdulhadi, H.A. Effects of heat input on microstructure corrosion and mechanical characteristics of welded austenitic and duplex stainless steels: A review. Metals 2017, 7, 39. [Google Scholar] [CrossRef]
- Zhou, C.; Dia, P.; Wu, H.; He, M.; Liu, X.; Chu, P.K. Effect of the ferrite morphology on hydrogen embrittlement of MAG welded 304 austenitic stainless steel. Appl. Surf. Sci. 2022, 606, 154866. [Google Scholar] [CrossRef]
- Sepe, R.; De Luca, A.; Greco, A.; Armentani, E. Numerical evaluation of temperature fields and residual stresses in butt weld joints and comparison with experimental measurements. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 182–198. [Google Scholar] [CrossRef]
- Kik, T. Heat source models in numerical simulations of laser welding. Materials 2020, 13, 2653. [Google Scholar] [CrossRef]
- Giudice, F.; Missori, S.; Sili, A. Parameterized multipoint-line analytical modeling of a mobile heat source for thermal field prediction in laser beam welding. Int. J. Adv. Manuf. Technol. 2021, 112, 1339–1358. [Google Scholar] [CrossRef]
- Nezamdost, M.R.; Nekouie Esfahani, M.R.; Hashemi, S.H.; Mirbozorgi, S.A. Investigation of temperature and residual stresses field of submerged arc welding by finite element method and experiments. Int. J. Adv. Manuf. Technol. 2016, 87, 615–624. [Google Scholar] [CrossRef]
- Giudice, F.; Sili, A. A theoretical approach to the residual stress assessment based on thermal field evaluation in laser beam welding. Int. J. Adv. Manuf. Technol. 2022, 123, 2793–2808. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Y.; Li, J.; Song, D.; Xu, B.; Chen, X. Ferrite formation and its effect on deformation mechanism of wire arc additive manufactured 308 L stainless steel. J. Nucl. Mater. 2021, 550, 152933. [Google Scholar] [CrossRef]
- Giudice, F.; Missori, S.; Sili, A. Dissimilar welding of thick ferritic/austenitic steels plates using two laser beams in a single pass. J. Manuf. Mater. Process. 2024, 8, 134. [Google Scholar] [CrossRef]
- Coniglio, N.; Cross, C.E. Effect of weld travel speed on solidification cracking behavior. Part 3: Modeling. Int. J. Adv. Manuf. Technol. 2020, 107, 5039–5051. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, S.; Rong, L. Properties of heavy-section AISI 316 stainless steel casting. Metal. Mater. Trans. A 2020, 51, 2998–3008. [Google Scholar] [CrossRef]
- Kejelin, N.Z.; de Almeida Buschinelli, A.J.; Pepe, A.M. Effect of welding parameters on the partially diluted zones formation at dissimilar metal welds. In Proceedings of the 18th International Congress of Mechanical Engineering, Ouro Preto, Brazil, 6–11 November 2005. [Google Scholar]
- Alvarães, C.P.; Madalena, F.C.A.; Souza, L.F.G.; Jorge, J.F.C.; Araujo, L.S.; Mendes, M.C. Performance of the INCONEL 625 alloy weld overlay obtained by FCAW process. Matéria 2019, 24, e-12290. [Google Scholar] [CrossRef]
- Silva, W.C.; Nascimento, R.M.; Nascimento, A.B.G.; Mendes, A.M.; Castro, N.A.; Silva, C.L.M. S Partially diluted zones in dissimilar cladding with AWS ER NiCrMo-3 alloy deposited by the MIG process on ASTM A36 steel: Analysis and characterization by EBSD. Mater. Res. 2024, 27, e20230440. [Google Scholar] [CrossRef]
- Gajjar, P.K.; Khatri, B.C.; Siddhpura, A.M.; Siddhpura, M.A. Sensitization and desensitization (healing) in austenitic stainless steel: A critical review. Trans. Indian Inst. Met. 2022, 75, 1411–1427. [Google Scholar] [CrossRef]
- Bunaziv, I.; Olden, V.; Akselsen, O.M. Metallurgical aspects in the welding of clad pipelines—A global outlook. Appl. Sci. 2019, 9, 3118. [Google Scholar] [CrossRef]
Welding Process | Welding Procedure | Welding Sequence | Filler Geometry | Weld Cross-Section Shape | Dilution Rate |
---|---|---|---|---|---|
Arc welding | Multi-pass | Starting from base metal | Wire | Wide | High |
LBW | Single pass | - | Wire/strip | Narrow | Low |
Hybrid (laser/arc) | Single pass | - | Wire/strip | Very wide at arc side | Low at laser side/high at arc side |
Weld Overlay Process | Dilution (%) [40] | Fe (%)/Cladding Layer Thickness (mm) [72] |
---|---|---|
SAW | 30–70 | - |
GMAW | 13–33 | 13–26.9/3–3.5 |
SMAW | 13–20 | 22–23.4/3–4 |
GTAW | 13–20 | 12.6/- |
GTAW-HW | 10–40 | 6.6–23.7/1.6–3.5 |
CMT | - | 1–4.1/3 |
Solidification Modes | Transformations | Composition Limits (Creq/Nieq) | Microstructures |
---|---|---|---|
Austenitic (A mode) | L → L + γ → γ | <1.25 | Fully austenitic |
Austenitic/ferritic (AF mode) | L → L + γ → L + δ + γ → γ + δ | 1.25–1.48 | Austenitic with ferrite at cell and dendrite boundaries |
Ferritic/austenitic (FA mode) | L → L + δ → L + δ + γ → δ + γ | 1.48–1.95 | Skeletal and/or lathy ferrite from F-A solid-state transformation |
Ferritic (F mode) | L → L + δ → δ + γ 1 | >1.95 | Ferrite matrix and Widmastänstatten austenite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giudice, F.; Missori, S.; Scolaro, C.; Sili, A. A Review on Metallurgical Issues in the Production and Welding Processes of Clad Steels. Materials 2024, 17, 4420. https://doi.org/10.3390/ma17174420
Giudice F, Missori S, Scolaro C, Sili A. A Review on Metallurgical Issues in the Production and Welding Processes of Clad Steels. Materials. 2024; 17(17):4420. https://doi.org/10.3390/ma17174420
Chicago/Turabian StyleGiudice, Fabio, Severino Missori, Cristina Scolaro, and Andrea Sili. 2024. "A Review on Metallurgical Issues in the Production and Welding Processes of Clad Steels" Materials 17, no. 17: 4420. https://doi.org/10.3390/ma17174420
APA StyleGiudice, F., Missori, S., Scolaro, C., & Sili, A. (2024). A Review on Metallurgical Issues in the Production and Welding Processes of Clad Steels. Materials, 17(17), 4420. https://doi.org/10.3390/ma17174420