Optimization Design of the Bending-Vibration Resistance of Magnetorheological Elastomer Carbon Fibre Reinforced Polymer Sandwich Sheets
<p>A model for analysis of bending and vibration parameters of the MECFRPSSs: (<b>a</b>) coordinate and dimension, (<b>b</b>) deformation with three-point bending forces, and (<b>c</b>) dynamic response with a pulse load.</p> "> Figure 2
<p>Deformation map of the MECFRPSS structure subjected to three-point bending forces when the concentrated line force was 20N.</p> "> Figure 3
<p>A flowchart of the ABC algorithm.</p> "> Figure 4
<p>A surface colormap of an estimation function with <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>,</mo> <mo> </mo> <mo> </mo> <mi>y</mi> <mo>∈</mo> <mo stretchy="false">[</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mn>2</mn> <mo stretchy="false">]</mo> </mrow> </semantics></math>.</p> "> Figure 5
<p>Objective function values calculated for the minimum optimization of <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> with different iteration numbers.</p> "> Figure 6
<p>The calculated results of the MECFRPSS structure with different iteration numbers related to (<b>a</b>) bending and (<b>b</b>) vibration resistances.</p> "> Figure 7
<p>Pareto-optimal front when the two-objective optimization of the MECFRPSS structure is considered.</p> "> Figure 8
<p>Pareto-optimal solutions when the multi-objective optimization of the MECFRPSS structure is considered.</p> ">
Abstract
:1. Introduction
2. Analysis of Bending and Vibration Resistances
2.1. Model Description
- (1)
- There is no slippage between the layers of the MECFRPSS structure since each layer is securely bound;
- (2)
- The internal magnetic field only affects the MRE materials and the magnetic field effect in the z direction is ignored because thin copper wire layers are adopted in the MECFRPSS structure;
- (3)
- The heating effect of the magnetic field is ignored because the related current is small;
- (4)
- The bending deflection of the MECFRPSS structure is supposed to be elastic, i.e., the structure can be recovered as the bending force is removed;
- (5)
- When the bending problem is solved, the change of material parameters of MRE affected by the inside magnetic field is ignored due to its weak influence on static bearing stiffness.
2.2. Material Properties of MRE Core
2.3. Analysis of Bending Resistance
2.4. Analysis of Vibration Resistance
2.5. Validation of Theoretical Model
3. Optimal Design Formulation
3.1. Optimization Model
3.2. Optimization Algorithm
3.3. Validation of Optimal Algorithm
4. Optimization Analysis
4.1. Single-Objective Optimization
4.2. Two-Objective Optimization
4.3. Multi-Objective Optimization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hegde, S.; Shenoy, B.S.; Chethan, K.N. Review on carbon fiber reinforced polymer (CFRP) and their mechanical performance. Mater. Today 2019, 19, 658–662. [Google Scholar] [CrossRef]
- Proença, M.; Garrido, M.; Correia, J.; Gomes, M. Fire resistance behaviour of GFRP-polyurethane composite sandwich panels for building floors. Compos. Part B-Eng. 2021, 224, 109171. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, W.; Li, B.; Zhu, J.; Wang, C.; Song, G.; Wu, G.; Yang, X.; Huang, Y.; Ma, L. Recent advances of interphases in carbon fiber-reinforced polymer composites: A review. Compos. B Eng. 2022, 233, 109639. [Google Scholar] [CrossRef]
- Nikbakt, S.; Kamarian, S.; Shakeri, M. A review on optimization of composite structures Part I: Laminated composites. Compos. Struct. 2018, 195, 158–185. [Google Scholar] [CrossRef]
- Li, H.; Gao, Z.J.; Zhao, J.; Ma, H.; Han, Q.K.; Liu, J.G. Vibration suppression effect of porous graphene platelet coating on fiber reinforced polymer composite plate with viscoelastic damping boundary conditions resting on viscoelastic foundation. Eng. Struct. 2021, 237, 112167. [Google Scholar] [CrossRef]
- Ahmed, O.; Wang, X.; Tran, M.-V.; Ismadi, M.-Z. Advancements in fiber-reinforced polymer composite materials damage detection methods: Towards achieving energy-efficient SHM systems. Compos. B Eng. 2021, 223, 109136. [Google Scholar] [CrossRef]
- Lee, K.H.; Park, J.E.; Kim, Y.K. Design of a stiffness variable flexible coupling using magnetorheological elastomer for torsional vibration reduction. J. Intel. Mat. Syst. Str. 2019, 30, 2212–2221. [Google Scholar] [CrossRef]
- Li, H.; Wang, W.Y.; Wang, X.T.; Han, Q.K.; Liu, J.G.; Qin, Z.Y.; Xiong, J.; Guan, Z.W. A nonlinear analytical model of composite plate structure with an MRE function layer considering internal magnetic and temperature fields. Compos. Sci. Technol. 2020, 200, 108445. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.T.; Hu, X.Y.; Xiong, J.; Han, Q.K.; Wang, X.P.; Guan, Z.W. Vibration and damping study of multifunctional grille composite sandwich plates with an IMAS design approach. Compos. B Eng. 2021, 223, 109078. [Google Scholar] [CrossRef]
- Li, H.; Wang, W.Y.; Wang, Q.S.; Han, Q.K.; Liu, J.G.; Qin, Z.Y.; Xiong, J.; Wang, X.P. Static and dynamic performances of sandwich plates with magnetorheological elastomer core: Theoretical and experimental studies. J. Sandw. Struct. Mater. 2022, 24, 1556–1579. [Google Scholar] [CrossRef]
- Sun, Q.; Zhou, J.X.; Zhang, L. An adaptive beam model and dynamic characteristics of magnetorheological materials. J. Sound Vib. 2003, 261, 465–481. [Google Scholar] [CrossRef]
- Ramesh, B.V.; Vasudevan, R.; Kumar, N.B. Vibration analysis of a laminated composite magnetorheological elastomer sandwich beam. Appl. Mech. Mater. 2014, 592–594, 2097–2101. [Google Scholar] [CrossRef]
- Aguib, S.; Nour, A.; Zahloul, H.; Bossis, G.; Chevalier, Y.; Lançon, P. Dynamic behavior analysis of a magnetorheological elastomer sandwich plate. Int. J. Mech. Sci. 2014, 87, 118–136. [Google Scholar] [CrossRef]
- Babu, V.R.; Vasudevan, R. Dynamic analysis of tapered laminated composite magnetorheological elastomer (MRE) sandwich plates. Smart Mater. Struct. 2016, 25, 035006. [Google Scholar] [CrossRef]
- Kozlowska, J.; Boczkowska, A.; Czulak, A.; Przybyszewski, B.; Holeczek, K.; Stanik, R.; Gude, M. Novel MRE/CFRP sandwich structures for adaptive vibration control. Smart Mater. Struct. 2016, 25, 035025. [Google Scholar] [CrossRef] [Green Version]
- Aguib, S.; Nour, A.; Benkoussas, B.; Tawfiq, I.; Djedid, T.; Chikh, N. Numerical simulation of the nonlinear static behavior of composite sandwich beams with a magnetorheological elastomer core. Compos. Struct. 2016, 139, 111–119. [Google Scholar] [CrossRef]
- Settet, A.T.; Aguib, S.; Nour, A.; Zerrouni, N. Study and analysis of the magneto-mechanical behavior of smart composite sandwich beam in elastomer. Mechanika 2019, 25, 320–325. [Google Scholar]
- Eloy, F.D.S.; Gomes, G.F.; Ancelotti, A.C.; da Cunha, S.S.; Bombard, A.J.F.; Junqueira, D.M. Experimental dynamic analysis of composite sandwich beams with magnetorheological honeycomb core. Eng. Struct. 2018, 176, 231–242. [Google Scholar] [CrossRef]
- Eloy, F.; Gomes, G.F.; Ancelotti, A.C.; da Cunha, S.S., Jr.; Bombard, A.J.; Junqueira, D.M. A numerical-experimental dynamic analysis of composite sandwich beam with magnetorheological elastomer honeycomb core. Compos. Struct. 2019, 209, 242–257. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, G.; Chen, M.; Ye, T.; Yang, C.; Yin, Y. Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core. Compos. Struct. 2020, 244, 112298. [Google Scholar] [CrossRef]
- Garbowski, T.; Gajewski, T.; Grabski, J.K. Role of transverse shear modulus in the performance of corrugated materials. Materials 2020, 13, 3791. [Google Scholar] [CrossRef] [PubMed]
- Garbowski, T.; Gajewski, T.; Grabski, J.K. Torsional and transversal stiffness of orthotropic sandwich panels. Materials 2020, 13, 5016. [Google Scholar] [CrossRef]
- Staszak, N.; Gajewski, T.; Garbowski, T. Shell-to-Beam Numerical Homogenization of 3D Thin-Walled Perforated Beams. Materials 2022, 15, 1827. [Google Scholar] [CrossRef] [PubMed]
- Theulen, J.C.M.; Peijs, A. Optimization of the bending stiffness and strength of composite sandwich panels. Compos. Struct. 1991, 17, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Deng, Z.C.; Lu, T.J. Design optimization of truss-cored sandwiches with homogenization. Int. J. Solids Struct. 2006, 43, 7891–7918. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, G.; Wang, C.H.; You, M. Optimum design of composite sandwich structures subjected to combined torsion and bending loads. Appl. Compos. Mater. 2012, 19, 315–331. [Google Scholar] [CrossRef]
- Catapano, A.; Montemurro, M. A multi-scale approach for the optimum design of sandwich plates with honeycomb core Part II: The optimization strategy. Compos. Struct. 2014, 118, 677–690. [Google Scholar] [CrossRef] [Green Version]
- Hao, J.; Wu, X.; Oporto, G.; Liu, W.; Wang, J. Structural analysis and strength-to-weight optimization of wood-based sandwich composite with honeycomb core under three-point flexural test. Eur. J. Wood Wood Prod. 2020, 78, 1195–1207. [Google Scholar] [CrossRef]
- Uzay, C.; Acer, D.C.; Geren, N. A method for the optimal design of low-density polymer foam core sandwiches using FEA and multi objective optimization of design variables. J. Polym. Eng. 2022, 42, 75–84. [Google Scholar] [CrossRef]
- Karakaya, S.; Soykasap, O. Natural frequency and buckling optimization of laminated hybrid composite plates using genetic algorithm and simulated annealing. Struct. Multidiscipl. Optim. 2011, 43, 61–72. [Google Scholar] [CrossRef]
- Honda, S.; Narita, Y. Vibration design of laminated fibrous composite plates with local anisotropy induced by short fibers and curvilinear fibers. Compos. Struct. 2011, 93, 902–910. [Google Scholar] [CrossRef] [Green Version]
- Madeira, J.; Araújo, A.; Soares, C.M.; Ferreira, A. Multiobjective design of viscoelastic laminated composite sandwich panels. Compos. B Eng. 2015, 77, 391–401. [Google Scholar] [CrossRef]
- Alfouneh, M.; Ji, J.C.; Luo, Q.T. Optimal design of multi-cellular cores for sandwich panels under harmonic excitation. Compos. Struct. 2020, 248, 112507. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Yue, Z.-S.; Yu, R.-P.; Zhang, Q.-C.; Du, S.-F.; Yang, Z.-K.; Han, B.; Lu, T.J. Optimal design of metallic corrugated sandwich panels with polyurea-metal laminate face sheets for simultaneous vibration attenuation and structural stiffness. Compos. Struct. 2021, 256, 112994. [Google Scholar] [CrossRef]
- Njim, E.K.; Bakhy, S.H.; Al-Waily, M. Optimization design of vibration characterizations for functionally graded porous metal sandwich plate structure. Mater. Today 2021, 235, 022641. [Google Scholar]
- Tu, T.M.; Quoc, T.H. Finite element modeling for bending and vibration analysis of laminated and sandwich composite plates based on higher-order theory. Comput. Mater. Sci. 2010, 49, S390–S394. [Google Scholar] [CrossRef]
- Cui, X.Y.; Liu, G.R.; Li, G.Y. Bending and vibration responses of laminated composite plates using an edge-based smoothing technique. Eng. Anal. Bound. Elem. 2011, 35, 818–826. [Google Scholar] [CrossRef]
- Natarajan, S.; Manickam, G. Bending and vibration of functionally graded material sandwich plates using an accurate theory. Finite Elem. Anal. Des. 2012, 57, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Kapuria, S.; Nath, J.K. On the accuracy of recent global–local theories for bending and vibration of laminated plates. Compos. Struct. 2013, 95, 163–172. [Google Scholar] [CrossRef]
- Khiloun, M.; Bousahla, A.A.; Kaci, A.; Bessaim, A.; Tounsi, A.; Mahmoud, S.R. Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT. Eng. Comput. 2020, 36, 807–821. [Google Scholar] [CrossRef]
- Urban, F.; Bo, A.; Middendorf, P. Development and validation of a method for linear-viscoelastic characterization of the dynamic complex modulus of short-fiber reinforced plastics using flexural resonances. Polym. Test 2021, 94, 107055. [Google Scholar] [CrossRef]
- Li, H.; Lv, H.Y.; Sun, H.; Qin, Z.Y.; Xiong, J.; Han, Q.K.; Liu, J.G.; Wang, X.P. Nonlinear vibrations of fiber-reinforced composite cylindrical shells with bolt tube boundary conditions. J. Sound Vib. 2021, 496, 115935. [Google Scholar] [CrossRef]
- Jolly, M.R.; Carlson, J.D.; Munoz, B.C. A model of the behaviour of magnetorheological materials. Smart Mater. Struct. 1996, 5, 607–614. [Google Scholar] [CrossRef]
- Li, H.; Wu, T.F.; Gao, Z.J.; Wang, X.T.; Ma, H.; Han, Q.K.; Qin, Z.Y. An iterative method for identification of temperature and amplitude dependent material parameters of fiber-reinforced polymer composites. Int. J. Mech. Sci. 2020, 184, 105818. [Google Scholar] [CrossRef]
- Ali, A.; Salem, A.M.H.; Muthalif, A.G.A.; Bin Ramli, R.; Julai, S. Development of a performance-enhanced hybrid magnetorheological elastomer-fluid for semi-active vibration isolation: Static and dynamic experimental characterization. Materials 2022, 15, 3238. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.L.; Xiao, Z.Y.; Wang, X.P.; Xiong, J.; Zhou, J.; Guan, Z.W. Development of an integrated model for prediction of impact and vibration response of hybrid fiber metal laminates with a viscoelastic layer. Int. J. Mech. Sci. 2021, 197, 106298. [Google Scholar] [CrossRef]
- Shcherbakov, V.P.; Tsyganov, I.B.; Dmitriev, O.Y.; Polyakova, T.I. Theoretical principles of experimental determination of fibre flexural rigidity. Fibre. Chem. 2007, 39, 285–288. [Google Scholar] [CrossRef]
- Li, H.; Xue, P.C.; Guan, Z.W.; Han, Q.K.; Wen, B.C. A new nonlinear vibration model of fiber-reinforced composite thin plate with amplitude-dependent property. Nonlinear. Dyn. 2018, 94, 2219–2241. [Google Scholar] [CrossRef]
- Ramian, A.; Jafari-Talookolaei, R.-A.; Valvo, P.S.; Abedi, M. Free vibration analysis of a laminated composite sandwich plate with compressible core placed at the bottom of a tank filled with fluid. Structures 2021, 29, 1259–1273. [Google Scholar] [CrossRef]
- Shahgholian-Ghahfarokhi, D.; Rahimi, G.; Liaghat, G.; Degenhardt, R.; Franzoni, F. Buckling prediction of composite lattice sandwich cylinders (CLSC) through the vibration correlation technique (VCT): Numerical assessment with experimental and analytical verification. Compos. Part B-Eng. 2020, 199, 108252. [Google Scholar] [CrossRef]
- Khan, S.U.; Li, C.Y.; Siddiqui, N.A.; Kim, J.-K. Vibration damping characteristics of carbon fiber reinforced composites containing multi walled carbon nanotubes. Compos. Sci. Technol. 2011, 71, 1486–1494. [Google Scholar] [CrossRef]
- Mukherjee, S.; Jafarali, P.; Prathap, G. A variational basis for error analysis in finite element elastodynamic problems. J. Sound Vib. 2005, 285, 615–635. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Z.; Liu, R.; Yan, X. Inverse identification of the frequency-dependent mechanical parameters of a viscoelastic core layer based on the vibration response. J. Appl. Sci. 2017, 7, 455. [Google Scholar] [CrossRef]
- Apalak, M.K.; Karaboga, D.; Akay, B. The artificial bee colony algorithm in layer optimization for the maximum fundamental frequency of symmetrical laminated composite plates. Eng. Optimiz. 2014, 46, 420–437. [Google Scholar] [CrossRef]
- Aslan, S. A comparative study between artificial bee colony (ABC) algorithm and its variants on big data optimization. Memet. Comput. 2020, 12, 129–150. [Google Scholar] [CrossRef]
- Li, G.Q.; Niu, P.F.; Xiao, X.J. A Development and investigation of efficient artificial bee colony algorithm for numerical function optimization. Appl. Soft Comput. 2012, 12, 320–332. [Google Scholar] [CrossRef]
- Madeira, J.; Araújo, A.; Soares, C.M. Multiobjective optimization for vibration reduction in composite plate structures using constrained layer damping. Comput. Struct. 2020, 232, 105810. [Google Scholar] [CrossRef]
Type | Value /mm | Type | Value /GPa | Type | Value/GPa | Type | Value | Type | Value/kg/m3 |
---|---|---|---|---|---|---|---|---|---|
200 | 115 | 7.8 | 0.15 | 1370 | |||||
80 | 163 | 7.1 | 0.15 | ||||||
0.60 | 72 | 47.5 | 0.15 | ||||||
0.30 | 7.8 | 4.5 | 0.15 | 3300 | |||||
2.00 | 9.5 | 2.8 | 0.32 | ||||||
0.31 | 143 | 0.35 |
Type | Value | Type | Value | Type | Value | Type | Value |
---|---|---|---|---|---|---|---|
2.564 101 | 1.838 | 8.508 10−1 | 1.769 10−1 | ||||
1.284 10−1 | 3.163 | 8.508 10−1 | 1.769 10−1 | ||||
5.196 | 2.305 | 7.217 10−1 | 3.269 10−1 | ||||
8.807 10−4 | 2.926 10−1 | 2.454 10−8 | 3.365 10−1 |
Magnetic Induction Intensity/mT | Mode | Present/N/m | Ref. [10]/N/m | Relative Deviation/% |
---|---|---|---|---|
0 | 1st | 5322 | 5150 | 3.3 |
2nd | 27,820 | 27,760 | 0.2 | |
16 | 1st | 6279 | 6220 | 0.9 |
2nd | 30,420 | 29,670 | 2.5 | |
35 | 1st | 6900 | 6590 | 4.7 |
2nd | 31,110 | 30,840 | 0.9 | |
62 | 1st | 7276 | 7321 | 0.6 |
2nd | 31,540 | 32,200 | 2.0 |
Magnetic Induction Intensity/mT | Mode | Present/% | Ref. [10]/% | Relative Deviation/% |
---|---|---|---|---|
0 | 1st | 5.98 | 6.50 | 8.0 |
2nd | 6.67 | 7.27 | 8.3 | |
16 | 1st | 5.99 | 6.53 | 8.3 |
2nd | 7.07 | 7.67 | 7.8 | |
35 | 1st | 6.03 | 6.58 | 8.4 |
2nd | 7.39 | 8.12 | 9.0 | |
62 | 1st | 6.05 | 6.62 | 8.6 |
2nd | 7.76 | 8.47 | 8.4 |
Force/N | Present dmax/mm | ANSYS dmax/mm | Relative Deviation/% | Present /N/m | ANSYS /N/m | Relative Deviation/% |
---|---|---|---|---|---|---|
20 | 0.686 | 0.656 | −4.6 | 29,154.5 | 30,487.8 | 4.4 |
30 | 1.082 | 1.049 | −3.1 | 27,726.4 | 28,598.7 | 3.0 |
40 | 1.536 | 1.487 | −3.3 | 26,041.7 | 26,899.8 | 3.2 |
Iteration Parameter | Value |
---|---|
Size of population | 50~300 |
Maximum iteration number | 50 |
Acceleration coefficient upper bound | 1 |
Abandonment limit parameter | 150 |
Iteration | ϕ1 | hs | Es × 10−5 | ρs |
---|---|---|---|---|
1 | −24,527 | 0.72 | 6.27 | 2.51 |
5 | −24,531 | 0.72 | 6.24 | 2.51 |
10 | −24,635 | 0.74 | 6.16 | 2.51 |
25 | −24,956 | 0.78 | 6.06 | 2.52 |
50 | −25,599 | 0.79 | 5.89 | 2.52 |
Iteration | ϕ3 | hs | Es × 10−5 | ρs |
---|---|---|---|---|
1 | −19,845 | 0.28 | 6.26 | 2.95 |
5 | −20,921 | 0.28 | 6.25 | 2.96 |
10 | −21,802 | 0.29 | 6.17 | 2.95 |
25 | −23,053 | 0.31 | 5.44 | 2.94 |
50 | −23,054 | 0.31 | 5.44 | 2.95 |
Type | hs | Es × 10−5 | ρs | Equivalent Damping Parameter/% | Static Bending Stiffness /N∙m−1 |
---|---|---|---|---|---|
A1 | 0.79 | 5.89 | 2.52 | 3.50 | 2.56 × 104 |
A2 | 0.21 | 38.24 | 2.46 | 5.17 | 0.64 × 104 |
A3 | 0.75 | 38.71 | 2.48 | 4.60 | 2.40 × 104 |
Type | hs | Es × 10−5 | ρs | Equivalent Damping Parameter/% | Equivalent Dynamic Stiffness/N∙m−1 | Static Bending Stiffness/N∙m−1 |
---|---|---|---|---|---|---|
B1 | 0.79 | 5.29 | 2.48 | 3.40 | 1.53 × 104 | 2.56 × 104 |
B2 | 0.21 | 38.24 | 2.64 | 5.17 | 1.90 × 104 | 0.64 × 104 |
B3 | 0.31 | 5.34 | 2.99 | 2.85 | 2.30 × 104 | 0.98 × 104 |
B4 | 0.62 | 14.61 | 2.58 | 4.20 | 1.92 × 104 | 1.97 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Yan, Y.; Wang, W.; Li, Z.; Zhang, Z.; Sun, Z.; Qiao, Z.; Li, J.; Li, H. Optimization Design of the Bending-Vibration Resistance of Magnetorheological Elastomer Carbon Fibre Reinforced Polymer Sandwich Sheets. Materials 2023, 16, 2349. https://doi.org/10.3390/ma16062349
Wang G, Yan Y, Wang W, Li Z, Zhang Z, Sun Z, Qiao Z, Li J, Li H. Optimization Design of the Bending-Vibration Resistance of Magnetorheological Elastomer Carbon Fibre Reinforced Polymer Sandwich Sheets. Materials. 2023; 16(6):2349. https://doi.org/10.3390/ma16062349
Chicago/Turabian StyleWang, Guangbin, Yangyang Yan, Wenyu Wang, Zelin Li, Zhengwei Zhang, Zhanbin Sun, Zhou Qiao, Jinan Li, and Hui Li. 2023. "Optimization Design of the Bending-Vibration Resistance of Magnetorheological Elastomer Carbon Fibre Reinforced Polymer Sandwich Sheets" Materials 16, no. 6: 2349. https://doi.org/10.3390/ma16062349
APA StyleWang, G., Yan, Y., Wang, W., Li, Z., Zhang, Z., Sun, Z., Qiao, Z., Li, J., & Li, H. (2023). Optimization Design of the Bending-Vibration Resistance of Magnetorheological Elastomer Carbon Fibre Reinforced Polymer Sandwich Sheets. Materials, 16(6), 2349. https://doi.org/10.3390/ma16062349