Fabrication and Characterization of Submicron-Scale Bovine Hydroxyapatite: A Top-Down Approach for a Natural Biomaterial
"> Figure 1
<p>Relative compressive strength of BHA and HA. Each bar shows the mean ± <span class="html-italic">SD</span> ratio. * <span class="html-italic">p</span> < 0.05 based on the unpaired <span class="html-italic">t</span>-test.</p> "> Figure 2
<p>SEM images and particle size distribution of unmilled BHA (<b>A</b>–<b>D</b>), BHA milled for 3 h (<b>E</b>–<b>H</b>), BHA milled for 6 h (<b>I</b>–<b>L</b>), and BHA milled for 9 h (<b>M</b>–<b>P</b>). (<b>A</b>,<b>E</b>,<b>I</b>,<b>M</b>) Images show total magnification of 1000×. (<b>B</b>,<b>F</b>,<b>J</b>,<b>N</b>) Images show total magnification of 5000×. (<b>C</b>,<b>G</b>,<b>K</b>,<b>O</b>) Images show total magnification of 15,000×. (<b>D</b>,<b>H</b>,<b>L</b>,<b>P</b>) Graphs show the corresponding particle size distributions.</p> "> Figure 3
<p>FTIR spectra of unmilled and milled BHA.</p> "> Figure 4
<p>XRD spectra of unmilled and milled BHA.</p> "> Figure 5
<p>The hydrodynamic particle size of milled and unmilled BHA. Each bar shows the mean ± <span class="html-italic">SD</span> value. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 based on a one-way ANOVA test.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction of Bovine Hydroxyapatite
2.2. Fabrication of Submicron-Scale BHA Using High-Energy Dry Milling
2.3. Material Characterization
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Worm, P.V.; Finger, G.; Ludwig do Nascimento, T.; Rynkowski, C.B.; Collares, M.V.M. The impact of cranioplasty on the patients’ quality of life. J. Cranio-Maxillofac. Surg. 2019, 47, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Gani, M.A.; Nurhan, A.D.; Budiatin, A.S.; Siswodihardjo, S.; Khotib, J. Predicting the molecular mechanism of glucosamine in accelerating bone defect repair by stimulating osteogenic proteins. J. Basic Clin. Physiol. Pharmacol. 2021, 32, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Khotib, J.; Utami, N.W.; Gani, M.A.; Ardianto, C. The change of proinflammatory cytokine tumor necrosis factor α level in the use of meloxicam in rat model of osteoarthritis. J. Basic Clin. Physiol. Pharmacol. 2019, 30, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.A.; Kaartinen, M.T. Mesenchymal Stem Cell-based Bone Tissue Engineering. Int. Dent. J. Stud. Res. 2013, 1, 24–35. [Google Scholar]
- Ha, S.W.; Park, J.; Habib, M.M.; Beck, G.R. Nano-Hydroxyapatite Stimulation of Gene Expression Requires Fgf Receptor, Phosphate Transporter, and Erk1/2 Signaling. ACS Appl. Mater. Interfaces 2017, 9, 39185–39196. [Google Scholar] [CrossRef]
- Da Silva Brum, I.; de Carvalho, J.J.; da Silva Pires, J.L.; de Carvalho, M.A.A.; dos Santos, L.B.F.; Elias, C.N. Nanosized hydroxyapatite and β-tricalcium phosphate composite: Physico-chemical, cytotoxicity, morphological properties and in vivo trial. Sci. Rep. 2019, 9, 19602. [Google Scholar] [CrossRef]
- Chen, F.; Wang, M.; Wang, J.; Chen, X.; Li, X.; Xiao, Y.; Zhang, X. Effects of hydroxyapatite surface nano/micro-structure on osteoclast formation and activity. J. Mater. Chem. B 2019, 7, 7574–7587. [Google Scholar] [CrossRef]
- Vishwakarma, V.; Samal, S.S.; Manoharan, N. Safety and Risk Associated with Nanoparticles—A Review. J. Miner. Mater. Charact. Eng. 2010, 09, 455–459. [Google Scholar] [CrossRef]
- Pourmand, A.; Abdollahi, M. Current opinion on nanotoxicology. DARU J. Pharm. Sci. 2012, 20, 2–4. [Google Scholar] [CrossRef] [Green Version]
- Khang, D.; Choi, J.; Im, Y.M.; Kim, Y.J.; Jang, J.H.; Kang, S.S.; Nam, T.H.; Song, J.; Park, J.W. Role of subnano-, nano- and submicron-surface features on osteoblast differentiation of bone marrow mesenchymal stem cells. Biomaterials 2012, 33, 5997–6007. [Google Scholar] [CrossRef]
- Duan, R.; Barbieri, D.; Luo, X.; Weng, J.; de Bruijn, J.D.; Yuan, H. Submicron-surface structured tricalcium phosphate ceramic enhances the bone regeneration in canine spine environment. J. Orthop. Res. 2016, 34, 1865–1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabzi, M.; Far, S.M.; Dezfuli, S.M. Characterization of bioactivity behavior and corrosion responses of hydroxyapatite-ZnO nanostructured coating deposited on NiTi shape memory alloy. Ceram. Int. 2018, 44, 21395–21405. [Google Scholar] [CrossRef]
- DileepKumar, V.G.; Sridhar, M.S.; Aramwit, P.; Krut’ko, V.K.; Musskaya, O.N.; Glazov, I.E.; Reddy, N. A review on the synthesis and properties of hydroxyapatite for biomedical applications. J. Biomater. Sci. Polym. Ed. 2022, 33, 229–261. [Google Scholar] [CrossRef] [PubMed]
- Antoniac, I. Bioceramics and Biocomposites: From Research to Clinical Practice; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Antoniac, I.V. Handbook of bioceramics and biocomposites. Handb. Bioceram. Biocomposites 2016, 1–1386. [Google Scholar] [CrossRef]
- Khotib, J.; Gani, M.A.; Budiatin, A.S.; Lestari, M.L.A.D.; Rahadiansyah, E.; Ardianto, C. Signaling Pathway and Transcriptional Regulation in Osteoblasts during Bone Healing: Direct Involvement of Hydroxyapatite as a Biomaterial. Pharmaceuticals 2021, 14, 615. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.; Akhtar, N.; Rahman, S.; Jamil, H.M.; Asaduzzaman, S.M. Extraction of Hydroxyapatite from Bovine and Human Cortical Bone by Thermal Decomposition and Effect of Gamma Radiation: A Comparative Study. Int. J. Complement. Altern. Med. 2017, 8, 263. [Google Scholar] [CrossRef] [Green Version]
- Budiatin, A.S.; Samirah; Gani, M.A.; Nilamsari, W.P.; Ardianto, C.; Khotib, J. The characterization of bovine bone-derived hydroxyapatite isolated using novel non-hazardous method. J. Biomim. Biomater. Biomed. Eng. 2020, 45, 49–56. [Google Scholar] [CrossRef]
- Budiatin, A.S.; Gani, M.A.; Ardianto, C.; Samirah; Pattah, S.Y.D.; Mubarokah, F.; Khotib, J. The impact of glutaraldehyde on the characteristics of bovine hydroxyapatite-gelatin based bone scaffold as gentamicin delivery system. J. Basic Clin. Physiol. Pharmacol. 2021, 32, 687–691. [Google Scholar] [CrossRef]
- Germaini, M.-M.; Detsch, R.; Grünewald, A.; Magnaudeix, A.; Lalloue, F.; Boccaccini, A.R.; Champion, E. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration This. Biomed. Mater. 2017, 12, 035008. [Google Scholar] [CrossRef]
- Budiatin, A.S.; Gani, M.A.; Samirah; Ardianto, C.; Raharjanti, A.M.; Septiani, I.; Putri, N.P.K.P.; Khotib, J. Bovine Hydroxyapatite-Based Bone Scaffold with Gentamicin Accelerates Vascularization and Remodeling of Bone Defect. Int. J. Biomater. 2021, 2021, 5560891. [Google Scholar] [CrossRef]
- Sabzi, M.; Mousavi Anijdan, S.H.; Ghobeiti-Hasab, M.; Fatemi-Mehr, M. Sintering variables optimization, microstructural evolution and physical properties enhancement of nano-WC ceramics. J. Alloys Compd. 2018, 766, 672–677. [Google Scholar] [CrossRef]
- Mujahid, M.; Sarfraz, S.; Amin, S. On the formation of hydroxyapatite nano crystals prepared using cationic surfactant. Mater. Res. 2015, 18, 468–472. [Google Scholar] [CrossRef] [Green Version]
- Ruksudjarit, A.; Pengpat, K.; Rujijanagul, G.; Tunkasiri, T. Synthesis and characterization of nanocrystalline hydroxyapatite from natural bovine bone. Curr. Appl. Phys. 2008, 8, 270–272. [Google Scholar] [CrossRef]
- Janovszky, D. Influence of the oxide and ethanol surface layer on phase transformation of Al-based nanocomposite powders under high-energy milling. Materials 2019, 12, 1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, C.J.; Leal Neto, R.M.; Gonçalves, V.S.; Carvalho, L.L.; Ambrozio Filho, F. An investigation of the use of stearic acid as a process control agent in high energy ball milling of Nb-Al and Ni-Al powder mixtures. Mater. Sci. Forum 2003, 416–418, 144–149. [Google Scholar] [CrossRef]
- Aminatun; Supardi, A.; Nisa, Z.I.; Hikmawati, D. Siswanto Synthesis of Nanohydroxyapatite from Cuttlefish Bone (Sepia sp.) Using Milling Method. Int. J. Biomater. 2019, 2019, 1831208. [Google Scholar] [CrossRef]
- Yazdani, N.; Toroghinejad, M.R.; Shabani, A.; Cavaliere, P. Effects of process control agent amount, milling time, and annealing heat treatment on the microstructure of alcrcufeni high-entropy alloy synthesized through mechanical alloying. Metals 2021, 11, 1493. [Google Scholar] [CrossRef]
- Matuła, I.; Zubko, M.; Dercz, G. Role of Sn as a process control agent on mechanical alloying behavior of nanocrystalline titanium based powders. Materials 2020, 13, 2110. [Google Scholar] [CrossRef]
- Gopalan, A.; Lee, J.-C.; Saianand, G.; Lee, K.; Chun, W.; Hou, Y.; Kannan, V.; Park, S.; Kim, W. Cost-Effective Production of TiO2 with 90-Fold Enhanced Photocatalytic Activity Via Facile Sequential Calcination and Ball Milling Post-Treatment Strategy. Materials 2020, 13, 5072. [Google Scholar] [CrossRef]
- Biyik, S.; Aydin, M. The effect of milling speed on particle size and morphology of Cu25W composite powder. Acta Phys. Pol. A 2015, 127, 1255–1260. [Google Scholar] [CrossRef]
- Hussain, I.; Lee, J.E.; Jeon, S.E.; Cho, H.J.; Huh, S.H.; Koo, B.H.; Lee, C.G. Effect of milling speed on the structural and magnetic properties of Ni70Mn30 alloy prepared by Planetary Ball Mill method. Korean J. Mater. Res. 2018, 28, 539–543. [Google Scholar] [CrossRef]
- Slota, D.; Gląb, M.; Tyliszczak, B.; Dogulas, T.E.L.; Rudnicka, K.; Miernik, K.; Urbaniak, M.M.; Rusek-Wala, P.; Sobczak-upiec, A. Composites based on hydroxyapatite and whey protein isolate for applications in bone regeneration. Materials 2021, 14, 2317. [Google Scholar] [CrossRef]
- Procopio, A.; Malucelli, E.; Pacureanu, A.; Cappadone, C.; Farruggia, G.; Sargenti, A.; Castiglioni, S.; Altamura, D.; Sorrentino, A.; Giannini, C.; et al. Chemical Fingerprint of Zn–Hydroxyapatite in the Early Stages of Osteogenic Differentiation. ACS Cent. Sci. 2019, 5, 1449–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michelot, A.; Sarda, S.; Audin, C.; Deydier, E.; Manoury, E.; Poli, R.; Rey, C. Spectroscopic characterisation of hydroxyapatite and nanocrystalline apatite with grafted aminopropyltriethoxysilane: Nature of silane–surface interaction. J. Mater. Sci. 2015, 50, 5746–5757. [Google Scholar] [CrossRef] [Green Version]
- Rupani, A.; Hidalgo-Bastida, L.A.; Rutten, F.; Dent, A.; Turner, I.; Cartmell, S. Osteoblast activity on carbonated hydroxyapatite. J. Biomed. Mater. Res. Part A 2012, 100, 1089–1096. [Google Scholar] [CrossRef]
- Xu, A.; Zhou, C.; Qi, W.; He, F. Comparison Study of Three Hydroxyapatite-Based Bone Substitutes in a Calvarial Defect Model in Rabbits. Int. J. Oral Maxillofac. Implants 2019, 34, 434–442. [Google Scholar] [CrossRef]
- Lambert, F.; Bacevic, M.; Layrolle, P.; Schüpbach, P.; Drion, P.; Rompen, E. Impact of biomaterial microtopography on bone regeneration: Comparison of three hydroxyapatites. Clin. Oral Implants Res. 2017, 28, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Liu, Y.; Yu, L.; Cai, Q. Correction: Investigation of phase composition and nanoscale microstructure of high-energy ball-milled mgcu sample. Nanoscale Res. Lett. 2013, 8, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, R.A. Biological apatite vs hydroxyapatite at the atomic level. Clin. Orthop. Relat. Res. 1975, 113, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, A.; Fang, Y.; Hooper, T.J.N.; Kelly, N.L.; Gupta, D.; Balani, K.; Manna, I.; Baikie, T.; Bishop, P.T.; White, T.J.; et al. Crystal chemistry and antibacterial properties of cupriferous hydroxyapatite. Materials 2019, 12, 1814. [Google Scholar] [CrossRef] [Green Version]
- Eliaz, N.; Metoki, N. Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials 2017, 10, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, J.; Kim, J.H.; Shim, J.H.; Hwang, N.S.; Heo, C.Y. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater. Res. 2019, 23, 18–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonjour, J.P. Calcium and phosphate: A duet of ions playing for bone health. J. Am. Coll. Nutr. 2011, 30, 438S–448S. [Google Scholar] [CrossRef] [PubMed]
Material | Calcium (Ca) | Phosphorus (P) | Ca/P Ratio | ||
---|---|---|---|---|---|
Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | ||
BHA | 68.01 | 62.16 | 31.99 | 37.84 | 1.64 |
BHA milled 3 h | 68.43 | 62.62 | 31.57 | 37.38 | 1.68 |
BHA milled 6 h | 65.70 | 59.69 | 34.30 | 40.21 | 1.48 |
BHA milled 9 h | 65.95 | 59.95 | 34.05 | 40.05 | 1.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gani, M.A.; Budiatin, A.S.; Lestari, M.L.A.D.; Rantam, F.A.; Ardianto, C.; Khotib, J. Fabrication and Characterization of Submicron-Scale Bovine Hydroxyapatite: A Top-Down Approach for a Natural Biomaterial. Materials 2022, 15, 2324. https://doi.org/10.3390/ma15062324
Gani MA, Budiatin AS, Lestari MLAD, Rantam FA, Ardianto C, Khotib J. Fabrication and Characterization of Submicron-Scale Bovine Hydroxyapatite: A Top-Down Approach for a Natural Biomaterial. Materials. 2022; 15(6):2324. https://doi.org/10.3390/ma15062324
Chicago/Turabian StyleGani, Maria Apriliani, Aniek Setiya Budiatin, Maria Lucia Ardhani Dwi Lestari, Fedik Abdul Rantam, Chrismawan Ardianto, and Junaidi Khotib. 2022. "Fabrication and Characterization of Submicron-Scale Bovine Hydroxyapatite: A Top-Down Approach for a Natural Biomaterial" Materials 15, no. 6: 2324. https://doi.org/10.3390/ma15062324
APA StyleGani, M. A., Budiatin, A. S., Lestari, M. L. A. D., Rantam, F. A., Ardianto, C., & Khotib, J. (2022). Fabrication and Characterization of Submicron-Scale Bovine Hydroxyapatite: A Top-Down Approach for a Natural Biomaterial. Materials, 15(6), 2324. https://doi.org/10.3390/ma15062324