On the Decrease in Transformation Stress in a Bicrystal Cu-Al-Mn Shape-Memory Alloy during Cyclic Compressive Deformation
<p>The digital image correlation (DIC) technique and data-driven identification (DDI) method were employed to measure the strain and stress distributions, respectively, at the surface of the specimen to characterize the cyclic behavior of the superelasticity of the bicrystal Cu-Al-Mn SMAs. The cyclic compression–unloading test was performed under the strain-controlled mode. The strain fields in the area of interest (AOI) can be obtained using the DIC technique. Based on the experimentally determined strain fields, the stress fields in the AOI can be computed using the DDI method. Finally, three parameters (i.e., transformation stress (<math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi mathvariant="normal">s</mi> </msub> </mrow> </semantics></math>), residual strain (<math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mi mathvariant="normal">r</mi> </msub> </mrow> </semantics></math>), and transformation strain (<math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mrow> <mi>tr</mi> </mrow> </msub> </mrow> </semantics></math>)) can be computed from the stress–strain responses.</p> "> Figure 2
<p>(<b>a</b>) Geometry of the bicrystal Cu-Al-Mn SMA. The loading directions of the top and bottom grains are shown in the inverse pole figure. (<b>b</b>) Average stress–strain curves of the top grain (<math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mi mathvariant="normal">t</mi> </msub> </mrow> </semantics></math>), bottom grain (<math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mi mathvariant="normal">b</mi> </msub> </mrow> </semantics></math>), and the entire specimen (<math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mi mathvariant="normal">g</mi> </msub> </mrow> </semantics></math>). The bicrystal sample was loaded to a gauge strain (<math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mi mathvariant="normal">g</mi> </msub> </mrow> </semantics></math>) of 5% during cyclic deformation. Local virtual strain gauges <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mi mathvariant="normal">t</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mi mathvariant="normal">b</mi> </msub> </mrow> </semantics></math> were used to measure the average strains in the top and bottom grains, respectively (inset of (<b>b</b>)).</p> "> Figure 3
<p>Distribution of (<b>a</b>) axial strain fields <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mrow> <mi>yy</mi> </mrow> </msub> </mrow> </semantics></math> during loading toward and unloading away from the gauge strain <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mi mathvariant="normal">g</mi> </msub> </mrow> </semantics></math> of 5% and (<b>b</b>) transformation stress fields <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi mathvariant="normal">s</mi> </msub> </mrow> </semantics></math> in the bicrystal Cu-Al-Mn SMA sample for selected compression–unloading cycles: C1, C10, and C20. Points A, B, and C are probing points for recording the local axial stress–strain responses <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>σ</mi> <mrow> <mi>yy</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>ε</mi> <mrow> <mi>yy</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> as shown in <a href="#materials-14-04439-f004" class="html-fig">Figure 4</a>a. (<b>c</b>) Transformation stress difference <math display="inline"><semantics> <mrow> <mo>∆</mo> <msub> <mi>σ</mi> <mi mathvariant="normal">s</mi> </msub> </mrow> </semantics></math>, which is the difference in transformation stress between cycles 1 and 20, shown in the plot in <a href="#materials-14-04439-f003" class="html-fig">Figure 3</a>b.</p> "> Figure 4
<p>(<b>a</b>) Local axial stress–strain responses (<math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mrow> <mi>yy</mi> </mrow> </msub> <mo>,</mo> <mo> </mo> <msub> <mi>ε</mi> <mrow> <mi>yy</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> recorded by the probing points (according to <a href="#materials-14-04439-f003" class="html-fig">Figure 3</a>b) along the axial centerline for several selected compression–unloading cycles (C1, C5, C10, and C20). The evolution of the (<b>b</b>) transformation stress <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi mathvariant="normal">s</mi> </msub> </mrow> </semantics></math> and (<b>c</b>) residual strain <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mi mathvariant="normal">r</mi> </msub> </mrow> </semantics></math> with respect to the number of cycles. These values are computed from the local axial stress–strain responses shown in (<b>a</b>).</p> "> Figure 5
<p>(<b>a</b>) Thermal analysis of the bottom grain after 20 compression cycles. (<b>b</b>,<b>c</b>) TEM bright field images of the bottom grain, which show the formation of dislocations and residual martensite after cyclic compression, respectively.</p> "> Figure 6
<p>(<b>a</b>) Distribution of horizontal strain fields <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mrow> <mi>xx</mi> </mrow> </msub> </mrow> </semantics></math> during loading toward and unloading away from the gauge strain <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mi mathvariant="normal">g</mi> </msub> </mrow> </semantics></math> of 5% in the bicrystal Cu-Al-Mn SMA sample for selected compression–unloading cycles: C1, C10, and C20. (<b>b</b>) The evolution of average incompatibility strain <math display="inline"><semantics> <mrow> <mo>∆</mo> <msubsup> <mi>ε</mi> <mrow> <mi>xx</mi> </mrow> <mrow> <mi>avg</mi> </mrow> </msubsup> </mrow> </semantics></math> in the regions (R2-R1 and R4-R3) with respect to the number of cycles. These values are computed from the strain fields multiplied by transformation matrix based on the angle between loading direction and normal direction of the grain boundary (inset of (<b>b</b>)).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sutou, Y.; Omori, T.; Kainuma, R.; Ishida, K. Ductile Cu-Al-Mn based shape memory alloys: General properties and applications. Mater. Sci. Technol. 2008, 24, 896–901. [Google Scholar] [CrossRef]
- Sutou, Y.; Omori, T.; Kainuma, R.; Ishida, K. Grain size dependence of pseudoelasticity in polycrystalline Cu–Al–Mn-based shape memory sheets. Acta Mater. 2013, 61, 3842–3850. [Google Scholar] [CrossRef]
- Liu, J.-L.; Huang, H.-Y.; Xie, J.-X. The roles of grain orientation and grain boundary characteristics in the enhanced superelasticity of Cu71.8Al17.8Mn10.4 shape memory alloys. Mater. Des. 2014, 64, 427–433. [Google Scholar] [CrossRef]
- Xie, J.X.; Liu, J.L.; Huang, H.Y. Structure design of high-performance Cu-based shape memory alloys. Rare Met. 2015, 34, 607–624. [Google Scholar] [CrossRef]
- Babacan, N.; Ma, J.; Turkbas, O.S.; Karaman, I.; Kockar, B. The effects of cold rolling and the subsequent heat treatments on the shape memory and the superelasticity characteristics of Cu73Al16Mn11 shape memory alloy. Smart Mater. Struct. 2018, 27, 015028. [Google Scholar] [CrossRef]
- Sutou, Y.; Omori, T.; Yamauchi, K.; Ono, N.; Kainuma, R.; Ishida, K. Effect of grain size and texture on pseudoelasticity in Cu-Al-Mn-based shape memory wire. Acta Mater. 2005, 53, 4121–4133. [Google Scholar] [CrossRef]
- Tuncer, N.; Schuh, C.A. Melt-cast microfibers of Cu-based shape memory alloy adopt a favorable texture for superelasticity. Scr. Mater. 2016, 117, 46–50. [Google Scholar] [CrossRef]
- Sutou, Y.; Omori, T.; Kainuma, R.; Ishida, K.; Ono, N. Enhancement of superelasticity in Cu-Al-Mn-Ni shape-memory alloys by texture control. Metall. Mater. Trans. A 2002, 33, 2817–2824. [Google Scholar] [CrossRef]
- Omori, T.; Kusama, T.; Kawata, S.; Ohnuma, I.; Sutou, Y.; Araki, Y.; Ishida, K.; Kainuma, R. Abnormal grain growth induced by cyclic heat treatment. Science 2013, 341, 1500–1502. [Google Scholar] [CrossRef]
- Kusama, T.; Omori, T.; Saito, T.; Kise, S.; Tanaka, T.; Araki, Y.; Kainuma, R. Ultra-large single crystals by abnormal grain growth. Nat. Commun. 2017, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.-H.; Chen, C.-H. Inhomogeneous martensitic transformation behavior and elastocaloric effect in a bicrystal Cu-Al-Mn shape memory alloy. Mater. Sci. Eng. A 2021, 800, 140386. [Google Scholar] [CrossRef]
- Wu, Y.; Ertekin, E.; Sehitoglu, H. Elastocaloric cooling capacity of shape memory alloys—Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation. Acta Mater. 2017, 135, 158–176. [Google Scholar] [CrossRef]
- Zhang, K.; Kang, G.; Sun, Q. High fatigue life and cooling efficiency of NiTi shape memory alloy under cyclic compression. Scr. Mater. 2019, 159, 62–67. [Google Scholar] [CrossRef]
- Dalémat, M.; Coret, M.; Leygue, A.; Verron, E. Measuring stress field without constitutive equation. Mech. Mater. 2019, 136, 103087. [Google Scholar] [CrossRef] [Green Version]
- Su, T.-H.; Lu, N.-H.; Chen, C.-H.; Chen, C.-S. Full-field stress and strain measurements revealing energy dissipation characteristics in martensitic band of Cu-Al-Mn shape memory alloy. Mater. Today Commun. 2020, 24, 101321. [Google Scholar] [CrossRef]
- Leygue, A.; Coret, M.; Réthoré, J.; Stainier, L.; Verron, E. Data-based derivation of material response. Comput. Method Appl. Mech. Eng. 2018, 331, 184–196. [Google Scholar] [CrossRef]
- Lieberman, D.S.; Wechsler, M.S.; Read, T.A. Cubic to orthorhombic diffusionless phase change—Experimental and theoretical studies of AuCd. J. Appl. Phys. 1955, 26, 473–484. [Google Scholar] [CrossRef]
- Omori, T.; Kawata, S.; Kainuma, R. Orientation Dependence of Superelasticity and Stress Hysteresis in Cu–Al–Mn Alloy. Mater. Trans. 2020, 61, 55–60. [Google Scholar] [CrossRef]
- Miyazaki, S.; Imai, T.; Igo, Y.; Otsuka, K. Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys. Metall. Trans. A 1986, 17, 115–120. [Google Scholar] [CrossRef]
- Norfleet, D.M.; Sarosi, P.M.; Manchiraju, S.; Wagner, M.F.X.; Uchic, M.D.; Anderson, P.M.; Mills, M.J. Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals. Acta Mater. 2009, 57, 3549–3561. [Google Scholar] [CrossRef]
- Delville, R.; Malard, B.; Pilch, J.; Sittner, P.; Schryvers, D. Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires. Int. J. Plast. 2011, 27, 282–297. [Google Scholar] [CrossRef]
- Simon, T.; Kröger, A.; Somsen, C.; Dlouhy, A.; Eggeler, G. On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys. Acta Mater. 2010, 58, 1850–1860. [Google Scholar] [CrossRef]
- Pfetzing-Micklich, J.; Ghisleni, R.; Simon, T.; Somsen, C.; Michler, J.; Eggeler, G. Orientation dependence of stress-induced phase transformation and dislocation plasticity in NiTi shape memory alloys on the micro scale. Mater. Sci. Eng. A 2012, 538, 265–271. [Google Scholar] [CrossRef]
- Mohamadnejad, S.; Basti, A.; Ansari, R. Analyses of Dislocation Effects on Plastic Deformation. Multiscale Sci. Eng. 2020, 2, 69–89. [Google Scholar] [CrossRef]
- Brinson, L.C.; Schmidt, I.; Lammering, R. Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: Micro and macromechanical investigations via in situ optical microscopy. J. Mech. Phys. Solids 2004, 52, 1549–1571. [Google Scholar] [CrossRef]
- Kato, H.; Ozu, T.; Hashimoto, S.; Miura, S. Cyclic stress–strain response of superelastic Cu–Al–Mn alloy single crystals. Mater. Sci. Eng. A 1999, 264, 245–253. [Google Scholar] [CrossRef]
- Heller, L.; Seiner, H.; Šittner, P.; Sedlák, P.; Tyc, O.; Kadeřávek, L. On the plastic deformation accompanying cyclic martensitic transformation in thermomechanically loaded NiTi. Int. J. Plast. 2018, 111, 53–71. [Google Scholar] [CrossRef]
- Kato, H.; Sasaki, K. Transformation-induced plasticity as the origin of serrated flow in an NiTi shape memory alloy. Int. J. Plast. 2013, 50, 37–48. [Google Scholar] [CrossRef]
- Wang, J.; Sehitoglu, H.; Maier, H.J. Dislocation slip stress prediction in shape memory alloys. Int. J. Plast. 2014, 54, 247–266. [Google Scholar] [CrossRef]
- Paranjape, H.M.; Bowers, M.L.; Mills, M.J.; Anderson, P.M. Mechanisms for phase transformation induced slip in shape memory alloy micro-crystals. Acta Mater. 2017, 132, 444–454. [Google Scholar] [CrossRef]
- Yu, C.; Kang, G.; Kan, Q. A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals. J. Mech. Phys. Solids 2015, 82, 97–136. [Google Scholar] [CrossRef]
- Moumni, Z.; Herpen, A.V.; Riberty, P. Fatigue analysis of shape memory alloys: Energy approach. Smart Mater. Struct. 2005, 14, S287–S292. [Google Scholar] [CrossRef]
- Zaki, W.; Moumni, Z. A 3D model of the cyclic thermomechanical behavior of shape memory alloys. J. Mech. Phys. Solids 2007, 55, 2427–2454. [Google Scholar] [CrossRef]
- Kan, Q.; Yu, C.; Kang, G.; Li, J.; Yan, W. Experimental observations on rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy. Mech. Mater. 2016, 97, 48–58. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, W.; Zaki, W.; Moumni, Z. An extended thermomechanically coupled 3D rate-dependent model for pseudoelastic SMAs under cyclic loading. Smart Mater. Struct. 2017, 26, 095047. [Google Scholar] [CrossRef]
- Wang, J.; Moumni, Z.; Zhang, W. A thermomechanically coupled finite-strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys. Int. J. Plast. 2017, 97, 194–221. [Google Scholar] [CrossRef]
- Picornell, C.; Pons, J.; Cesari, E. Stabilisation of martensite by applying compressive stress in Cu-Al-Ni single crystals. Acta Mater. 2001, 49, 4221–4230. [Google Scholar] [CrossRef]
- Lin, H.C.; Wu, S.K. Determination of heat of transformation in a cold-rolled martensitic tini alloy. Metall. Trans. A 1993, 24, 293–299. [Google Scholar] [CrossRef]
- Miyazaki, S.; Kawai, T.; Otsuka, K. Study of fracture in cualni shape memory bicrystals. J. Phys. Colloq. 1982, 43, C4-813. [Google Scholar] [CrossRef] [Green Version]
- Creuziger, A.; Crone, W.C. Grain boundary fracture in CuAlNi shape memory alloys. Mater. Sci. Eng. A 2008, 498, 404–411. [Google Scholar] [CrossRef]
- Takezawa, K.; Izumi, T.; Chiba, H.; Sato, S. Coherency of the transformation strain at the grain boundary and fracture in Cu-Zn-Al alloy. J. Phys. Colloq. 1982, 43, C4-819–C4-824. [Google Scholar] [CrossRef] [Green Version]
Loading Direction | Theoretical Transformation Strain (%) | Number of Cycles | Transformation Stress (MPa) | Residual Strain (%) | Transformation Strain (%) | |
---|---|---|---|---|---|---|
Top | [5 3 26] | 10.1 | 1st | 306 | 0.12 | 5.7 |
20th | 297 | 0.77 | 5.1 | |||
Bottom | [6 5 11] | 7.1 | 1st | 398 | 0.14 | 2.0 |
20th | 292 | 2.17 | 3.9 | |||
Average | − | − | 1st | 313 | 0.24 | 3.5 |
20th | 290 | 1.78 | 4.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, T.-H.; Lu, N.-H.; Chen, C.-H.; Chen, C.-S. On the Decrease in Transformation Stress in a Bicrystal Cu-Al-Mn Shape-Memory Alloy during Cyclic Compressive Deformation. Materials 2021, 14, 4439. https://doi.org/10.3390/ma14164439
Su T-H, Lu N-H, Chen C-H, Chen C-S. On the Decrease in Transformation Stress in a Bicrystal Cu-Al-Mn Shape-Memory Alloy during Cyclic Compressive Deformation. Materials. 2021; 14(16):4439. https://doi.org/10.3390/ma14164439
Chicago/Turabian StyleSu, Tung-Huan, Nian-Hu Lu, Chih-Hsuan Chen, and Chuin-Shan Chen. 2021. "On the Decrease in Transformation Stress in a Bicrystal Cu-Al-Mn Shape-Memory Alloy during Cyclic Compressive Deformation" Materials 14, no. 16: 4439. https://doi.org/10.3390/ma14164439
APA StyleSu, T.-H., Lu, N.-H., Chen, C.-H., & Chen, C.-S. (2021). On the Decrease in Transformation Stress in a Bicrystal Cu-Al-Mn Shape-Memory Alloy during Cyclic Compressive Deformation. Materials, 14(16), 4439. https://doi.org/10.3390/ma14164439