Inter-Criteria Dependencies-Based Decision Support in the Sustainable wind Energy Management
<p>Network structure in the ANP method.</p> "> Figure 2
<p>Research procedure</p> "> Figure 3
<p>Decision model with alternatives and dependencies between sub-criteria</p> "> Figure 4
<p>Utility of alternatives determined by means of: (<b>a</b>) the AHP method; (<b>b</b>) the ANP method; depending on the weight of the criterion C1 and sub-criterion C1.1.</p> "> Figure 5
<p>The number of changed rankings for the alternative A5 generated: (<b>a</b>) without considering dependencies between sub-criteria; (<b>b</b>) when taking into account dependencies between sub-criteria</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Methodological Background
3.1. Choosing an MCDA Method for Decision Problems in the RES Field
- the issues of a decision which was being considered [58],
- identifying the decision problem and preparing a problem model in the form of a hierarchical structure (AHP) or a network structure (ANP),
- carrying out pairwise comparisons (alternatives and criteria),
- achieving a solution with the use of supermatrix [80].
3.2. Proposed Methodology
- determining a goal of the decision and alternatives;
- developing criteria;
- modelling preferences;
- investigating and developing the recommendation.
4. Results
4.1. Determining a Goal of the Decision and Developing Criteria
4.2. Modelling Preferences
4.3. Investigating and Developing the Recommendation
4.3.1. Preference Aggregation
4.3.2. Sensitivity Analysis
4.3.3. Rank Reversal Phenomenon Analysis
5. Discussion
6. Conclusions
- formal selection of the MCDA method for decision problems in the field of RES and sustainability, based on the analysis of intrinsic characteristics of individual methods,
- consideration of different locations and projects for the construction of onshore wind farms,
- comparison of rankings obtained using the AHP (without dependencies between criteria) and ANP (with inter-criteria dependencies) methods in order to assess the impact of such dependencies on the solution obtained,
- study of the quality of the solutions obtained through a sensitivity analysis and rank reversal phenomenon analysis.
Supplementary Materials
Funding
Conflicts of Interest
Appendix A. Unweighted, Weighted and Limit Supermatrices
A1 | A2 | A3 | A4 | C1.1 | C1.2 | C1.3 | C2.1 | C2.2 | C2.3 | C2.4 | C2.5 | C3.1 | C3.2 | C4.1 | C4.2 | C5.1 | C1 | C2 | C3 | C4 | C5 | Goal | |
A1 | 0 | 0 | 0 | 0 | 0.251 | 0.257 | 0.208 | 0.310 | 0.196 | 0.180 | 0.310 | 0.257 | 0.347 | 0.350 | 0.224 | 0.370 | 0.05 | 0 | 0 | 0 | 0 | 0 | 0 |
A2 | 0 | 0 | 0 | 0 | 0.265 | 0.282 | 0.377 | 0.251 | 0.266 | 0.223 | 0.251 | 0.281 | 0.141 | 0.200 | 0.135 | 0.247 | 0.45 | 0 | 0 | 0 | 0 | 0 | 0 |
A3 | 0 | 0 | 0 | 0 | 0.259 | 0.277 | 0.208 | 0.304 | 0.215 | 0.184 | 0.304 | 0.277 | 0.359 | 0.274 | 0.192 | 0.012 | 0.05 | 0 | 0 | 0 | 0 | 0 | 0 |
A4 | 0 | 0 | 0 | 0 | 0.225 | 0.184 | 0.208 | 0.135 | 0.323 | 0.413 | 0.135 | 0.185 | 0.153 | 0.176 | 0.449 | 0.370 | 0.45 | 0 | 0 | 0 | 0 | 0 | 0 |
C1.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.333 | 0 | 0 | 0 | 0 | 0 |
C1.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.333 | 0 | 0 | 0 | 0 | 0 |
C1.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.333 | 0 | 0 | 0 | 0 | 0 |
C2.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 |
C2.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 |
C2.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 |
C2.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 |
C2.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 |
C3.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 |
C3.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 |
C4.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 |
C4.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 |
C5.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
C1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 |
C2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 |
C3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 |
C4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 |
C5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 |
Goa | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
A1 | A2 | A3 | A4 | C1.1 | C1.2 | C1.3 | C2.1 | C2.2 | C2.3 | C2.4 | C2.5 | C3.1 | C3.2 | C4.1 | C4.2 | C5.1 | C1 | C2 | C3 | C4 | C5 | Goal | |
A1 | 0 | 0 | 0 | 0 | 0.251 | 0.257 | 0.208 | 0.310 | 0.196 | 0.180 | 0.310 | 0.257 | 0.347 | 0.350 | 0.224 | 0.370 | 0.05 | 0 | 0 | 0 | 0 | 0 | 0 |
A2 | 0 | 0 | 0 | 0 | 0.265 | 0.282 | 0.377 | 0.251 | 0.266 | 0.223 | 0.251 | 0.281 | 0.141 | 0.200 | 0.135 | 0.247 | 0.45 | 0 | 0 | 0 | 0 | 0 | 0 |
A3 | 0 | 0 | 0 | 0 | 0.259 | 0.277 | 0.208 | 0.304 | 0.215 | 0.184 | 0.304 | 0.277 | 0.359 | 0.274 | 0.192 | 0.012 | 0.05 | 0 | 0 | 0 | 0 | 0 | 0 |
A4 | 0 | 0 | 0 | 0 | 0.225 | 0.184 | 0.208 | 0.135 | 0.323 | 0.413 | 0.135 | 0.185 | 0.153 | 0.176 | 0.449 | 0.370 | 0.45 | 0 | 0 | 0 | 0 | 0 | 0 |
C1.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.333 | 0 | 0 | 0 | 0 | 0 |
C1.2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.333 | 0 | 0 | 0 | 0 | 0 |
C1.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.333 | 0 | 0 | 0 | 0 | 0 |
C2.1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 |
C2.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 |
C2.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 |
C2.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 |
C2.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 |
C3.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 |
C3.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 |
C4.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 |
C4.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 |
C5.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
C1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 |
C2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 |
C3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 |
C4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 |
C5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 |
Goa | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
A1 | A2 | A3 | A4 | C1.1 | C1.2 | C1.3 | C2.1 | C2.2 | C2.3 | C2.4 | C2.5 | C3.1 | C3.2 | C4.1 | C4.2 | C5.1 | C1 | C2 | C3 | C4 | C5 | Goal | |
A1 | 0 | 0 | 0 | 0 | 0.126 | 0.129 | 0.208 | 0.155 | 0.098 | 0.090 | 0.155 | 0.257 | 0.347 | 0.175 | 0.112 | 0.185 | 0.05 | 0 | 0 | 0 | 0 | 0 | 0 |
A2 | 0 | 0 | 0 | 0 | 0.133 | 0.141 | 0.377 | 0.125 | 0.133 | 0.111 | 0.125 | 0.281 | 0.141 | 0.100 | 0.067 | 0.123 | 0.45 | 0 | 0 | 0 | 0 | 0 | 0 |
A3 | 0 | 0 | 0 | 0 | 0.129 | 0.138 | 0.208 | 0.152 | 0.108 | 0.092 | 0.152 | 0.277 | 0.359 | 0.137 | 0.096 | 0.006 | 0.05 | 0 | 0 | 0 | 0 | 0 | 0 |
A4 | 0 | 0 | 0 | 0 | 0.112 | 0.092 | 0.208 | 0.068 | 0.161 | 0.206 | 0.068 | 0.185 | 0.153 | 0.088 | 0.224 | 0.185 | 0.45 | 0 | 0 | 0 | 0 | 0 | 0 |
C1.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.333 | 0 | 0 | 0 | 0 | 0 |
C1.2 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.333 | 0 | 0 | 0 | 0 | 0 |
C1.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.333 | 0 | 0 | 0 | 0 | 0 |
C2.1 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 |
C2.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.25 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 |
C2.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.25 | 0.25 | 0 | 0 | 0 | 0 | 0 | 0.25 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 |
C2.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.25 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 |
C2.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.25 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 |
C3.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 |
C3.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 |
C4.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 |
C4.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 |
C5.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
C1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 |
C2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 |
C3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 |
C4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 |
C5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 |
Goa | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
A1 | A2 | A3 | A4 | C1.1 | C1.2 | C1.3 | C2.1 | C2.2 | C2.3 | C2.4 | C2.5 | C3.1 | C3.2 | C4.1 | C4.2 | C5.1 | C1 | C2 | C3 | C4 | C5 | Goal | |
A1 | 0 | 0 | 0 | 0 | 0.251 | 0.257 | 0.208 | 0.310 | 0.196 | 0.180 | 0.310 | 0.257 | 0.347 | 0.350 | 0.224 | 0.370 | 0.05 | 0.119 | 0.125 | 0.174 | 0.149 | 0.025 | 0.079 |
A2 | 0 | 0 | 0 | 0 | 0.265 | 0.282 | 0.377 | 0.251 | 0.266 | 0.223 | 0.251 | 0.281 | 0.141 | 0.200 | 0.135 | 0.247 | 0.45 | 0.154 | 0.127 | 0.085 | 0.095 | 0.225 | 0.092 |
A3 | 0 | 0 | 0 | 0 | 0.259 | 0.277 | 0.208 | 0.304 | 0.215 | 0.184 | 0.304 | 0.277 | 0.359 | 0.274 | 0.192 | 0.012 | 0.05 | 0.124 | 0.128 | 0.158 | 0.051 | 0.025 | 0.065 |
A4 | 0 | 0 | 0 | 0 | 0.225 | 0.184 | 0.208 | 0.135 | 0.323 | 0.413 | 0.135 | 0.185 | 0.153 | 0.176 | 0.449 | 0.370 | 0.45 | 0.103 | 0.119 | 0.082 | 0.205 | 0.225 | 0.098 |
C1.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.167 | 0 | 0 | 0 | 0 | 0.022 |
C1.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.167 | 0 | 0 | 0 | 0 | 0.022 |
C1.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.167 | 0 | 0 | 0 | 0 | 0.022 |
C2.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 | 0 | 0.013 |
C2.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 | 0 | 0.013 |
C2.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 | 0 | 0.013 |
C2.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 | 0 | 0.013 |
C2.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 | 0 | 0.013 |
C3.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.25 | 0 | 0 | 0.033 |
C3.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.25 | 0 | 0 | 0.033 |
C4.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.25 | 0 | 0.033 |
C4.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.25 | 0 | 0.033 |
C5.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.067 |
C1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.067 |
C2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.067 |
C3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.067 |
C4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.067 |
C5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.067 |
Goa | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
A1 | A2 | A3 | A4 | C1.1 | C1.2 | C1.3 | C2.1 | C2.2 | C2.3 | C2.4 | C2.5 | C3.1 | C3.2 | C4.1 | C4.2 | C5.1 | C1 | C2 | C3 | C4 | C5 | Goal | |
A1 | 0 | 0 | 0 | 0 | 0.134 | 0.142 | 0.208 | 0.157 | 0.131 | 0.133 | 0.189 | 0.257 | 0.347 | 0.232 | 0.121 | 0.187 | 0.05 | 0.095 | 0.101 | 0.155 | 0.098 | 0.025 | 0.068 |
A2 | 0 | 0 | 0 | 0 | 0.136 | 0.140 | 0.377 | 0.139 | 0.157 | 0.140 | 0.177 | 0.281 | 0.141 | 0.114 | 0.105 | 0.147 | 0.45 | 0.112 | 0.099 | 0.069 | 0.080 | 0.225 | 0.081 |
A3 | 0 | 0 | 0 | 0 | 0.138 | 0.147 | 0.208 | 0.157 | 0.140 | 0.136 | 0.194 | 0.277 | 0.359 | 0.211 | 0.115 | 0.087 | 0.05 | 0.098 | 0.105 | 0.150 | 0.065 | 0.025 | 0.063 |
A4 | 0 | 0 | 0 | 0 | 0.104 | 0.095 | 0.208 | 0.099 | 0.165 | 0.164 | 0.107 | 0.185 | 0.153 | 0.110 | 0.197 | 0.152 | 0.45 | 0.074 | 0.084 | 0.071 | 0.112 | 0.225 | 0.078 |
C1.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.126 | 0 | 0 | 0 | 0 | 0.019 |
C1.2 | 0 | 0 | 0 | 0 | 0.256 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.190 | 0 | 0 | 0 | 0 | 0.029 |
C1.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.126 | 0 | 0 | 0 | 0 | 0.019 |
C2.1 | 0 | 0 | 0 | 0 | 0.128 | 0.262 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.095 | 0.078 | 0 | 0 | 0 | 0.026 |
C2.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.134 | 0 | 0 | 0 | 0.078 | 0 | 0.045 | 0 | 0.019 |
C2.3 | 0 | 0 | 0 | 0 | 0.032 | 0.066 | 0 | 0.138 | 0.148 | 0 | 0 | 0 | 0 | 0 | 0.168 | 0 | 0 | 0.016 | 0.111 | 0 | 0.056 | 0 | 0.030 |
C2.4 | 0 | 0 | 0 | 0 | 0.048 | 0.098 | 0 | 0.207 | 0.074 | 0.286 | 0 | 0 | 0 | 0 | 0.084 | 0.286 | 0 | 0.024 | 0.146 | 0 | 0.117 | 0 | 0.048 |
C2.5 | 0 | 0 | 0 | 0 | 0.024 | 0.049 | 0 | 0.103 | 0.185 | 0.143 | 0.333 | 0 | 0 | 0 | 0.076 | 0.143 | 0 | 0.012 | 0.171 | 0 | 0.070 | 0 | 0.040 |
C3.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.333 | 0 | 0 | 0 | 0.032 | 0.026 | 0.333 | 0 | 0 | 0.043 |
C3.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.222 | 0 | 0 | 0.029 |
C4.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.178 | 0 | 0.029 |
C4.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.178 | 0 | 0.029 |
C5.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.058 |
C1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.058 |
C2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.058 |
C3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.058 |
C4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.058 |
C5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.058 |
Goa | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
References
- Halicka, K. Designing routes of development of renewable energy technologies. Procedia Soc. Behav. Sci. 2014, 156, 58–62. [Google Scholar] [CrossRef]
- Paska, J.; Surma, T. Electricity generation from renewable energy sources in Poland. Renew. Energy 2014, 71, 286–294. [Google Scholar] [CrossRef]
- Mesjasz-Lech, A. Planning of production resources use and environmental effects on the example of a thermal power plant. Procedia Soc. Behav. Sci. 2015, 213, 539–545. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.F.; Monforti-Ferrario, F.; Banja, M.; Motola, V. Renewable energy policy framework and bioenergy contribution in the European Union – An overview from National Renewable Energy Action Plans and Progress Reports. Renew. Sustain. Energy Rev. 2015, 51, 969–985. [Google Scholar] [CrossRef] [Green Version]
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. PE/48/2018/REV/1. Official Journal of the European Union. 21.12.2018. Available online: https://eur-lex.europa.eu/eli/dir/2018/2001/oj (accessed on 3 February 2019).
- IEA Bioenergy. European Union – 2018 update. Bioenergy policies and status of implementation. Country reports. 09.2018. Available online: https://www.ieabioenergy.com/wp-content/uploads/2018/10/CountryReport2018_EU_final.pdf (accessed on 3 February 2019).
- European Environment Agency. Environmental indicator report 2018. Greenhouse gas emissions. 07.12.2018. Available online: https://www.eea.europa.eu/airs/2018/resource-efficiency-and-low-carbon-economy/greenhouse-gas-emission (accessed on 3 February 2019).
- Paska, J.; Sałek, M.; Surma, T. Current status and perspectives of renewable energy sources in Poland. Renew. Sustain. Energy Rev. 2009, 13, 142–154. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Global Trends. Available online: https://www.irena.org/ourwork/Knowledge-Data-Statistics/Data-Statistics/Costs/Global-Trends (accessed on 3 February 2019).
- International Renewable Energy Agency. Query Tool. Available online: https://www.irena.org/ourwork/Knowledge-Data-Statistics/Data-Statistics/Capacity-and-Generation/Query-Tool (accessed on 3 February 2019).
- EU Commission. Energy sources, production costs and performance of technologies for power generation, heating and transport, Commission staff working document accompanying the communication from the comission to the european parliament, the council, the european economic and social committee and the committee of the regions. Second strategic energy review. SEC (2008) 2892 final, 13.11.2008. Available online: http://aei.pitt.edu/39570/ (accessed on 3 February 2019).
- Ioannou, K.; Tsantopoulos, G.; Arabatzis, G.; Andreopoulou, Z.; Zafeiriou, E. A Spatial Decision Support System Framework for the Evaluation of Biomass Energy Production Locations: Case Study in the Regional Unit of Drama, Greece. Sustainability 2018, 10, 531. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Renewable Power Generation Costs in 2017. Available online: https://www.irena.org/publications/2018/Jan/Renewable-power-generation-costs-in-2017 (accessed on 3 February 2019).
- Wu, Y.; Zhang, J.; Yuan, J.; Geng, S.; Zhang, H. Study of decision framework of offshore wind power station site selection based on ELECTRE-III under intuitionistic fuzzy environment: A case of China. Energy Convers. Manag. 2016, 113, 66–81. [Google Scholar] [CrossRef]
- Wu, Y.; Geng, S.; Xu, H.; Zhang, H. Study of decision framework of wind farm project plan selection under intuitionistic fuzzy set and fuzzy measure environment. Energy Convers. Manag. 2014, 87, 274–284. [Google Scholar] [CrossRef]
- Lee, A.H.I.; Hung, M.C.; Kang, H.Y.; Pearn, W.L. A wind turbine evaluation model under a multi-criteria decision making environment. Energy Convers. Manag. 2012, 64, 289–300. [Google Scholar] [CrossRef]
- Taha, R.A.; Daim, T. Multi-Criteria Applications in Renewable Energy Analysis, a Literature Review. In Research and Technology Management in the Electricity Industry; Daim, T., Oliver, T., Kim, J., Eds.; Springer: London, UK, 2013; pp. 281–304. [Google Scholar]
- Strantzali, E.; Aravossis, K. Decision making in renewable energy investments: A review. Renew. Sustain. Energy Rev. 2016, 55, 885–898. [Google Scholar]
- Wimmler, C.; Hejazi, G.; de Oliveira Fernades, E.; Moreira, C.; Connors, S. Multi-Criteria Decision Support Methods for Renewable Energy Systems on Islands. J. Clean Energy Technol. 2015, 3, 185–195. [Google Scholar] [CrossRef]
- Wang, J.J.; Jing, Y.Y.; Zhang, C.F.; Zhao, J.H. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev. 2009, 13, 2263–2278. [Google Scholar] [CrossRef]
- San Cristobal, J.R. Multi-criteria decision making in the selection of a renewable energy project in Spain: The Vikor method. Renew. Energy 2011, 36, 498–502. [Google Scholar] [CrossRef]
- Henggeler Antunes, C.; Oliveira Henriques, C. Multi-Objective Optimization and Multi-Criteria Analysis Models and Methods for Problems in the Energy Sector. In Multiple Criteria Decision Analysis. State of the Art Surveys, 2nd ed.; Greco, S., Ehrgott, M., Figueira, J.R., Eds.; Springer: New York, NY, USA, 2016; pp. 1067–1165. [Google Scholar]
- Golcuk, I.; Baykasoglu, A. An analysis of DEMATEL approaches for criteria interaction handling within ANP. Expert Syst. Appl. 2016, 46, 346–366. [Google Scholar] [CrossRef]
- de Montis, A.; De Toro, P.; Droste-Franke, B.; Omann, I.; Stagl, S. Assessing the quality of different MCDA method. In Alternatives for Environmental Valuation; Getzner, M., Spash, C.L., Stagl, S., Eds.; Taylor & Francis: New York, NY, USA, 2005; pp. 99–133. [Google Scholar]
- Chen, C.R.; Huang, C.C.; Tsuei, H.J. A Hybrid MCDM Model for Improving GIS-Based Solar Farms Site Selection. Int. J. Photoenergy 2014, 2014, 925370. [Google Scholar] [CrossRef]
- Mardani, A.; Jusoh, A.; Zavadskas, E.K.; Cavallaro, F.; Khalifah, Z. Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches. Sustainability 2015, 7, 13947–13984. [Google Scholar] [CrossRef]
- Suganthi, L.; Iniyan, S.; Samuel, A.A. Applications of fuzzy logic in renewable energy systems—A review. Renew. Sustain. Energy Rev. 2015, 48, 585–607. [Google Scholar] [CrossRef]
- Yeh, T.M.; Huang, Y.L. Factors in determining wind farm location: Integrating GQM, fuzzy DEMATEL and ANP. Renew. Energy 2014, 66, 159–169. [Google Scholar] [CrossRef]
- Kaya, T.; Kahraman, C. Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. Energy 2010, 35, 2517–2527. [Google Scholar]
- San Cristobal, J.R. Multi-Criteria Analysis in the Renewable Energy Industry; Springer: London, UK, 2012; pp. 11–17. [Google Scholar]
- Wu, Y.; Geng, S. Multi-criteria decision making on selection of solar-wind hybrid power station location: A case of China. Energy Convers. Manag. 2014, 81, 527–533. [Google Scholar]
- Jun, D.; Tian-tian, F.; Yi-sheng, Y.; Yu, M. Macro-site selection of wind/solar hybrid power station based on ELECTRE-II. Renew. Sustain. Energy Rev. 2014, 35, 194–204. [Google Scholar] [CrossRef]
- Al-Yahyai, S.; Charabi, Y.; Gastli, A.; Al-Badi, A. Wind farm land suitability indexing using multi-criteria analysis. Renew. Energy 2012, 44, 80–87. [Google Scholar] [CrossRef]
- Latinopoulos, D.; Kechagia, K. A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renew. Energy 2015, 78, 550–560. [Google Scholar] [CrossRef]
- Sanchez-Lozano, J.M.; Garcia-Cascales, M.S.; Lamata, M.T. Identification and selection of potential sites for onshore wind farms development in Region of Murcia, Spain. Energy 2014, 73, 311–324. [Google Scholar] [CrossRef]
- Sanchez-Lozano, J.M.; Garcia-Cascales, M.S.; Lamata, M.T. GIS-based onshore wind farm site selection using Fuzzy Multi-Criteria Decision Making methods. Evaluating the case of Southeastern Spain. Appl. Energy 2016, 171, 86–102. [Google Scholar] [CrossRef]
- Jangid, J.; Bera, A.K.; Joseph, M.; Singh, V.; Singh, T.P.; Pradhan, B.K.; Das, S. Potential zones identification for harvesting wind energy resources in desert region of India—A multi criteria evaluation approach using remote sensing and GIS. Renew. Sustain. Energy Rev. 2016, 65, 1–10. [Google Scholar] [CrossRef]
- Atici, K.B.; Simsek, A.B.; Ulucan, A.; Tosun, M.U. A GIS-based Multiple Criteria Decision Analysis approach for wind power plant site selection. Util. Policy 2015, 37, 86–96. [Google Scholar] [CrossRef]
- Aydin, N.Y.; Kentel, E.; Duzgun, H.S. GIS-based site selection methodology for hybrid renewable energy systems: A case study from western Turkey. Energy Convers. Manag. 2013, 70, 90–106. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Yousefi, H.; Mohammadi, M. Multi-criteria decision support system for wind farm site selection using GIS. Sustain. Energy Technol. Assess. 2016, 13, 38–50. [Google Scholar]
- Ramirez-Rosado, I.J.; Garcia-Garrido, E.; Fernandez-Jimenez, L.A.; Zorzano-Santamaria, P.J.; Monteiro, C.; Miranda, V. Promotion of new wind farms based on a decision support system. Renew. Energy 2008, 33, 558–566. [Google Scholar] [CrossRef]
- Fetanat, A.; Khorasaninejad, E. A novel hybrid MCDM approach for offshore wind farm site selection: A case study of Iran. Ocean Coast. Manag. 2015, 109, 17–28. [Google Scholar] [CrossRef]
- Wątróbski, J.; Ziemba, P.; Wolski, W. Methodological Aspects of Decision Support System for the Location of Renewable Energy Sources. Ann. Comput. Sci. Inf. Syst. 2015, 5, 1451–1459. [Google Scholar]
- Lee, A.H.I.; Chen, H.H.; Kang, H.Y. Multi-criteria decision making on strategic selection of wind farms. Renew. Energy 2009, 34, 120–126. [Google Scholar] [CrossRef]
- Gamboa, G.; Munda, G. The problem of windfarm location: A social multi-criteria evaluation framework. Energy Policy 2007, 35, 1564–1583. [Google Scholar] [CrossRef]
- Wątróbski, J.; Ziemba, P.; Jankowski, J.; Zioło, M. Green Energy for a Green City—A Multi-Perspective Model Approach. Sustainability 2016, 8, 702. [Google Scholar] [CrossRef]
- Chen, H.H.; Kang, H.Y.; Lee, A.H.I. Strategic selection of suitable projects for hybrid solar-wind power generation systems. Renew. Sustain. Energy Rev. 2010, 14, 413–421. [Google Scholar] [CrossRef]
- Cavallaro, F.; Ciraolo, L. A multicriteria approach to evaluate wind energy plants on an Italian island. Energy Policy 2005, 33, 235–244. [Google Scholar] [CrossRef]
- Gumus, S.; Kucukvar, M.; Tatari, O. Intuitionistic fuzzy multi-criteria decision making framework based on life cycle environmental, economic and social impacts: The case of U.S. wind energy. Sustain. Prod. Consum. 2016, 8, 78–92. [Google Scholar] [CrossRef]
- Shirgholami, Z.; Zangeneh, S.N.; Bortolini, M. Decision system to support the practitioners in the wind farm design: A case study for Iran mainland. Sustain. Energy Technol. Assess. 2016, 16, 1–10. [Google Scholar] [CrossRef]
- Shafiee, M. A fuzzy analytic network process model to mitigate the risks associated with offshore wind farms. Expert Syst. Appl. 2015, 42, 2143–2152. [Google Scholar] [CrossRef]
- Tian, W.; Bai, J.; Sun, H.; Zhao, Y. Application of the analytic hierarchy process to a sustainability assessment of coastal beach axploitation: A case study of the wind power projects on the coastal beaches of Yancheng, China. J. Environ. Manag. 2013, 115, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Hajkowicz, S.; Higgins, A. A comparison of multiple criteria analysis techniques for water resource management. Eur. J. Oper. Res. 2008, 184, 255–265. [Google Scholar] [CrossRef]
- Wątróbski, J.; Jankowski, J.; Ziemba, P.; Karczmarczyk, A.; Zioło, M. Generalised framework for multi-criteria method selection. Omega. In Press. [CrossRef]
- Hanne, T. Meta Decision Problems in Multiple Criteria Decision Making. In Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications; Gal, T., Stewart, T.J., Hanne, T., Eds.; Springer Science: New York, NY, USA, 1999; pp. 147–171. [Google Scholar]
- Guitouni, A.; Martel, J.M. Tentative guidelines to help choosing an appropriate MCDA method. Eur. J. Oper. Res. 1998, 109, 501–521. [Google Scholar] [CrossRef]
- Cinelli, M.; Coles, S.R.; Kirwan, K. Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecol. Indic. 2014, 46, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Bagheri Moghaddam, N.; Nasiri, M.; Mousavi, S.M. An appropriate multiple criteria decision making method for solving electricity planning problems, addressing sustainability issue. Int. J. Environ. Sci. Technol. 2011, 8, 605–620. [Google Scholar] [CrossRef] [Green Version]
- Polatidis, H.; Haralambopoulos, D.A.; Munda, G.; Vreeker, R. Selecting an Appropriate Multi-Criteria Decision Analysis Technique for Renewable Energy Planning. Energy Sources Part B Econ. Plan. Policy 2006, 1, 181–193. [Google Scholar] [CrossRef]
- Roy, B. Multicriteria Methodology for Decision Aiding; Springer Science: Dordrecht, Germany, 1996. [Google Scholar]
- Bouyssou, D.; Vincke, P. Binary Relations and Preference Modeling. In Decision-making Process: Concepts and Methods; Bouyssou, D., Dubois, D., Pirlot, M., Prade, H., Eds.; ISTE Ltd.: London, UK, 2009; pp. 49–84. [Google Scholar]
- Roy, B. Paradigms and Challenges. In Multiple Criteria Decision Analysis. State of the Art Surveys, 2nd ed.; Greco, S., Ehrgott, M., Figueira, J.R., Eds.; Springer: New York, NY, USA, 2016; pp. 19–39. [Google Scholar]
- Moretti, S.; Ozturk, M.; Tsoukias, A. Preference Modeling. In Multiple Criteria Decision Analysis. State of the Art Surveys, 2nd ed.; Greco, S., Ehrgott, M., Figueira, J.R., Eds.; Springer-Verlag: New York, NY, USA, 2016; pp. 43–95. [Google Scholar]
- Mandic, K.; Bobar, V.; Delibasić, B. Modeling Interactions Among Criteria in MCDM Methods: A Review. Lect. Notes Bus. Inf. Process. 2015, 216, 98–109. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L.; Vargas, L.G. Decision Making with the Analytic Network Process. Economic, Political, Social and Technological Applications with Benefits, Opportunities, Costs and Risks, 2nd ed.; Springer Science: New York, USA, NY, 2013. [Google Scholar]
- Figueira, J.R.; Mousseau, V.; Roy, B. ELECTRE Methods. In Multiple Criteria Decision Analysis. State of the Art Surveys, 2nd ed.; Greco, S., Ehrgott, M., Figueira, J.R., Eds.; Springer-Verlag: New York, NY, USA, 2016; pp. 155–185. [Google Scholar]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Brans, J.P.; Mareschal, B.; Vincke, P. Promethee: A new family of outranking methods in multicriteria analysis. In Proceedings of the International conference on Operational Research OR’84, Washington, CA, USA, 6–10 August 1984; pp. 408–421. [Google Scholar]
- MacCrimmon, K.R. Decision making among multiple-attribute alternatives: a survey and consolidated approach; The Rand Corporation: Santa Monica, CA, USA, 1968; pp. 17–44. [Google Scholar]
- Shit, P.K.; Bhunia, G.S.; Maiti, R. Potential landslide susceptibility mapping using weighted overlay model (WOM). Model. Earth Syst. Environ. 2016, 2, 21. [Google Scholar] [CrossRef]
- Yager, R.R.; Kacprzyk, J. The Ordered Weighted Averaging Operators. Theory and Applications; Springer Science: New York, NY, USA, 1997. [Google Scholar]
- Wu, W.W. Choosing knowledge management strategies by using a combined ANP and DEMATEL approach. Expert Syst. Appl. 2008, 35, 828–835. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega 2016, 64, 126–130. [Google Scholar] [CrossRef]
- Sałabun, W. The Characteristic Objects Method: A New Distance-based Approach to Multicriteria Decision-making Problems. J. Mult. Criteria Decis. Anal. 2015, 22, 37–50. [Google Scholar] [CrossRef]
- Ziemba, P. NEAT F-PROMETHEE—A New Fuzzy Multiple Criteria Decision Making Method Based on the Adjustment of Mapping Trapezoidal Fuzzy Numbers. Expert Systems with Applications 2018, 110, 363–380. [Google Scholar] [CrossRef]
- Ziemba, P.; Wątróbski, J.; Zioło, M.; Karczmarczyk, A. Using the PROSA Method in Offshore Wind Farm Location Problems. Energies 2017, 10, 1755. [Google Scholar] [CrossRef]
- Ziemba, P.; Wątróbski, J. Selected Issues of Rank Reversal Problem in ANP Method. In Selected Issues in Experimental Economics. Proceedings of the 2015 Computational Methods in Experimental Economics (CMEE) Conference, Międzyzdroje, Poland, 17-19 September 2015; Nermend, K., Łatuszyńska, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 203–225. [Google Scholar]
- Yang, C.-L.; Yuan, B.J.C.; Huang, C.-Y. Key Determinant Derivations for Information Technology Disaster Recovery Site Selection by the Multi-Criterion Decision Making Method. Sustainability 2015, 7, 6149–6188. [Google Scholar] [CrossRef] [Green Version]
- Ziemba, P.; Wątróbski, J.; Jankowski, J.; Piwowarski, M. Research on the Properties of the AHP in the Environment of Inaccurate Expert Evaluations. In Selected Issues in Experimental Economics. Proceedings of the 2015 Computational Methods in Experimental Economics (CMEE) Conference, Międzyzdroje, Poland, 17-19 September 2015; Nermend, K., Łatuszyńska, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 227–243. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy and Analytic Network Process for the Measurement of Intangible Criteria and for Decision-Making. In Multiple Criteria Decision Analysis. State of the Art Surveys, 2nd ed.; Greco, S., Ehrgott, M., Figueira, J.R., Eds.; Springer: New York, NY, USA, 2016; pp. 363–419. [Google Scholar]
- Saaty, T.L. Decision-making with the AHP: Why is the principal eigenvector necessary. Eur. J. Oper. Res. 2003, 145, 85–91. [Google Scholar] [CrossRef]
- Saaty, T.L. Fundamentals of the analytic network process—Dependence and feedback in decision-making with a single network. J. Syst. Sci. Syst. Eng. 2004, 13, 129–157. [Google Scholar] [CrossRef]
- Cortes-Aldana, F.A.; Garcia-Melon, M.; Fernandez-de-Lucio, I.; Aragones-Beltran, P.; Poveda-Bautista, R. University objectives and socioeconomic results: A multicriteria measuring of alignment. Eur. J. Oper. Res. 2009, 199, 811–822. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, R. Criticisms of the Analytic Hierarchy Process: Why they often make no sense. Math. Comput. Model. 2007, 46, 948–961. [Google Scholar] [CrossRef]
- Giberson, M. Assessing Wind Power Cost Estimates; Institute for Energy Research: Washington, DC, USA, 2013; Available online: http://instituteforenergyresearch.org/wp-content/uploads/2013/10/Giberson-study-Final.pdf (accessed on 8 February 2019).
- Yang, J.; Chen, W.; Chen, B.; Jia, Y. Economic feasibility analysis of a renewable energy project in the rural China. Procedia Environ. Sci. 2012, 13, 2280–2283. [Google Scholar] [CrossRef] [Green Version]
- Zitzler, E.; Knowles, J.; Thiele, L. Quality Assessment of Pareto Set Approximations. Lect. Notes Comput. Sci. 2008, 5252, 373–404. [Google Scholar]
- Brans, J.P.; Mareschal, B. The PROMCALC & GAIA decision support system for multicriteria decision aid. Decis. Support Syst. 1994, 12, 297–310. [Google Scholar]
- Makowski, M.; Wierzbicki, A.P. Modeling Knowledge: Model-based Decision Support and Soft Computations. In Applied Decision Support with Soft Computing; Yu, X., Kacprzyk, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 3–60. [Google Scholar]
- Tanino, T. Sensitivity Analysis in MCDM. In Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications; Gal, T., Stewart, T.J., Hanne, T., Eds.; Springer Science: New York, NY, USA, 1999; pp. 173–201. [Google Scholar]
- Wang, Y.M.; Luo, Y. On rank reversal in decision analysis. Math. Comput. Model. 2009, 49, 1221–1229. [Google Scholar] [CrossRef]
- Maleki, H.; Zahir, S. A Comprehensive Literature Review of the Rank Reversal Phenomenon in the Analytic Hierarchy Process. J. Multi-Criteria Decis. Anal. 2013, 20, 141–155. [Google Scholar] [CrossRef]
- Global Atlas for renewable energy. Available online: http://irena.masdar.ac.ae (accessed on 8 February 2019).
- Shokrzadeh, S.; Jozani, J.; Bibeau, E.; Molinski, T. A statistical algorithm for predicting the energy storage capacity for baseload wind power generation in the future electric grids. Energy 2015, 89, 793–802. [Google Scholar] [CrossRef]
- Vestas. V90 3.0 MW. Available online: https://www.ceoe.udel.edu/File%20Library/Research/Wind%20Power/ProductbrochureV90_3_0_UK.pdf (accessed on 8 February 2019).
- PSE. Plan sieci elektroenergetycznej najwyższych napięć. Available online: https://www.pse.pl/documents/20182/32630243/plan_sieci_elektroenergetycznej_najwyzszych_napiec.jpg (accessed on 8 February 2019).
- Ernst & Young. Wpływ energetyki wiatrowej na wzrost gospodarczy w Polsce, 2012. Available online: http://www.domrel.pl/_publikacje/raport_psew_2012.pdf (accessed on 8 February 2019).
- Dziennik Ustaw Rzeczypospolitej Polskiej. Rozporządzenie Ministra Gospodarki w sprawie ceny referencyjnej energii elektrycznej z odnawialnych źródeł energii w 2016 roku. 13.11.2015. Available online: http://dziennikustaw.gov.pl/du/2015/2063/1 (accessed on 8 February 2019).
- Lu, M.T.; Lin, S.W.; Tzeng, G.H. Improving RFID adoption in Taiwan’s healthcare industry based on a DEMATEL technique with a hybrid MCDM model. Decis. Support Syst. 2013, 56, 259–269. [Google Scholar] [CrossRef]
- Hung, Y.H.; Chou, S.C.; Tzeng, G.H. Knowledge management adoption and assessment for SMEs by a novel MCDM approach. Decis. Support Syst. 2011, 51, 270–291. [Google Scholar] [CrossRef]
- Carlsson, C.; Fuller, R. Multiple criteria decision making: The case for interdependence. Comput. Oper. Res. 1995, 22, 251–260. [Google Scholar] [CrossRef]
- Ziemba, P.; Becker, J. Analysis of the Digital Divide Using Fuzzy Forecasting. Symmetry 2019, 11, 166. [Google Scholar] [CrossRef]
- Ziemba, P.; Jankowski, J.; Wątróbski, J.; Wolski, W.; Becker, J. Integration of domain ontologies in the repository of website evaluation methods. In Proceedings of the 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), Lodz, Poland, 13–16 September 2015; pp. 1585–1595. [Google Scholar]
Energy Source | Capital Investment 2017 (2016 USD/kW) | Levelised Cost of Electricity 2017—World (2016 USD/kWh) | Levelised Cost of Electricity 2017—Europe (2016 USD/kWh) | Construction Time (Year) | Life-Time (Year) | Installed Capacity in Poland—2017 (MW) | Installed Capacity in EU—2017 (MW) |
---|---|---|---|---|---|---|---|
Onshore Wind | 1 477 | 0.06 | 0.08 | 1 | 25 | 5 798 | 152 751 |
Offshore Wind | 4 239 | 0.14 | 0.15 | 2 | 25 | - | 15 835 |
Hydropower | 1 535 | 0.05 | 0.12 | 3 | 30 | 969 | 130 411 |
Bioenergy | 2 668 | 0.07 | 0.07 | 2 | 20 | 1 075 | 36 341 |
Geothermal | 2 959 | 0.07 | 0.08 | 2 | 25 | - | 846 |
Solar Photovoltaic | 1 388 | 0.1 | 0.13 | 0 | 25 | 268 | 106 546 |
Concentrating Solar Power | 5 564 | 0.22 | - | 2 | 25 | - | 2 308 |
Type of Solution | No. of Criteria | MCDA Approach | Reference |
---|---|---|---|
DM | 15 | Fuzzy DEMATEL (CD); ANP (CW) | [28] |
DM | 7 | Fuzzy AHP (CW); Fuzzy VIKOR (PA) | [29] |
DM | 5 | AHP | [30] |
DM | 20 * | AHP | [31] |
DM | 11 * | ELECTRE II | [32] |
DM | 22 | Fuzzy ELECTRE III | [14] |
GIS | 7 | AHP (CW); OWA (PA) | [33] |
GIS | 6 | AHP (CW); WLC (PA) | [34] |
GIS | 10 | LM; ELECTRE TRI | [35] |
GIS | 10 | Fuzzy AHP (CW); Fuzzy TOPSIS (PA) | [36] |
GIS | 5 | AHP (CW); WO (PA) | [37] |
GIS | 13 | CM (EA); AHP (CW); ELECTRE III, ELECTRE TRI, SMAA-TRI (PA) | [38] |
GIS | 10 * | OWA | [39] |
DSS, GIS | 14 | CM (EA); WO (PA) | [40] |
DSS, GIS | 8 | AHP (CW); WLC (PA) | [41] |
DSS | 31 | Fuzzy DEMATEL (CD); Fuzzy ANP (CW); Fuzzy ELECTRE (PA) | [42] |
DSS | 10 | AHP (CW); PROMETHEE II (PA) | [43] |
DM | 29 | AHP | [44] |
DM | 9 | C-K-Y-L (with indifference threshold) | [45] |
DM | 10 | AHP; PROMETHEE II | [46] |
DM | 27 * | Fuzzy AHP | [47] |
DM | 11 | NAIADE I | [48] |
DM | 35 | FCI (sub-criteria PA); GIFOGA (criteria PA) | [15] |
DM | 14 | Fuzzy ANP | [16] |
DM | 9 | IFE (CW); Fuzzy TOPSIS (PA) | [49] |
DM | 11 | AHP | [50] |
DM | 9 | Fuzzy ANP | [51] |
DM | 14 | AHP | [52] |
MCDA Method | Reference Problematic | Preference Modelling | Degree of Compensation | Criterion Function | Information Type | Type of Weights | Group Decision Making | Dependencies between Criteria | Reference | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Preference Relations | Order of Alternatives | Discriminating Power of the Criteria | Thresholds | Type of Information | Information Features | |||||||
AHP | γ | I, P | TO | PC | AB | n | QL, QN | D, N | C | SG | HD | [65] |
ANP | γ | I, P | TO | PC | AB | n | QL, QN | D, N | C | SG | HD, ID | [66] |
ELECTRE I | α | S, R | SU | PC | AB | n 1 | QL, QN | D | C | NG | IN | [67] |
ELECTRE IS | α | S, R | SU | PC | NA | q, p, v | QL, QN | D, N | C | NG | IN | [67] |
ELECTRE II | γ | S, R | PO | PC | AB | v 2 | QL, QN | D | C | NG | IN | [67] |
ELECTRE III | γ | S, R | PO | PC | NA | q, p, v | QL, QN | D, N | C | NG | IN | [67] |
ELECTRE IV | γ | S, R | PO | PC | NA | q, p, v | QL, QN | D, N | NW | NG | IN | [67] |
ELECTRE TRI | β | S, R | PO | PC | NA | q, p, v | QL, QN | D, N | C | NG | IN | [67] |
TOPSIS | γ | I, P | TO | FC | AB | n | QN | D | C | SG | IN | [68] |
PROMETHEE I | γ | I, P, R | PO | PC | NA | q, p, o 3 | QL, QN | D, N | C | SG 4 | HD 8 | [69] |
PROMETHEE II | γ | I, P | TO | PC | NA | q, p, o 3 | QL, QN | D, N | C | SG 4 | HD 8 | [69] |
Conjunctive Method | α | I, P | FI | NC | AB | n | QL, QN | D | NW | NG | IN | [68] |
WLC5 | γ | I, P | TO | FC | AB | n | QN | D | C | NG | IN | [70] |
Weighted Overlay | γ | I, P | TO | FC | AB | n | QN | D | C | NG | IN | [71] |
OWA | γ | I, P | TO | FC, PC, NC 6 | AB | n | QN | D, N | C | SG | IN | [72] |
DEMATEL | γ | I, P | PO, TO 7 | FC | AB | n | QL | D, N | NW | SG | ID | [73] |
BWM | γ | I, P | TO | PC | AB | n | QL, QN | D, N | C | NG | IN | [74] |
COMET | γ | I, P | TO | FC | AB | n | QL, QN | D, N | NW | SG | IN | [75] |
NEAT F-PROMETHEE I | γ | I, P, R | PO | PC | NA | q, p, o 3 | QL, QN | D, N | C | NG | IN | [76] |
NEAT F-PROMETHEE II | γ | I, P | TO | PC | NA | q, p, o 3 | QL, QN | D, N | C | NG | IN | [76] |
PROSA | γ | I, P | TO | PC | NA | q, p, o 3 | QL, QN | D, N | C | NG | HD | [77] |
Reference problematic (Ch. 1) | Preference Modelling (Ch.2) | Degree of Compensation (Ch. 3) | Criterion Function (Ch. 4) | Type of Information (Ch. 5) | Type of Weights (Ch. 6) | Group Decision Making (Ch. 7) | Dependencies between Criteria (Ch. 8) | References | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Preference Relations | Order of Alternatives | Discriminating Power of the Criteria | Thresholds | Kind of Information | Information Features | ||||||
γ | I, P | TO | PC | NA | q, p | QL, QN | - | C | SG | - | [58] |
- | I, P | TO | PC | NA | q, p | QL, QN | D, N | NW, O, C | SG | HD | [59] |
- | - | - | NC, PC | NA | q, p | QL, QN | D, N | NW, O, C | - | - | [57] |
- | - | - | NC | - | - | QL, QN | D, N | C | SG | HD, ID | [24] |
γ | I, P | TO | NC ˅ PC | NA | q, p | QL, QN | D, N | NW, O, C | SG | HD, ID | Sum of characteristics |
Criteria | Sub-Criteria | Reference | |
---|---|---|---|
C1—Technical | C1.1 | Annual mean wind speed (at the height of 100 m) | [14,15,28,31,33,34,35,36,37,40,42,44,46,47,52] |
C1.2 | Output power of wind turbine | [15,16,29,44,47,50] | |
C1.3 | Power transmission grid voltage | [46,52] | |
C2—Economic | C2.1 | Annual energy production | [15,31,38,43,44,46,47,48,50,51] |
C2.2 | Investment cost | [14,15,16,29,30,31,32,43,46,47,48,50] | |
C2.3 | Annual operation and maintenance costs | [14,15,16,29,30,32,46,47,48,50] | |
C2.4 | Annual profit | [14,15,31,41,42,46,49] | |
C2.5 | Payback period | [14,15,31,43] | |
C3—Social | C3.1 | Social acceptability | [29,31,32,42,43,46,48] |
C3.2 | Employment | [14,15,49] | |
C4—Spatial | C4.1 | Distance to main roads | [28,33,34,35,36,37,38,39,40,46] |
C4.2 | Distance to power transmission grid | [14,31,32,35,36,38,39,40,42,43,46] | |
C5—Environmental | C5.1 | Distance to protected areas (i.e., Nature 2000) | [34,38,39,40,41,43,46] |
Criteria | Sub-Criteria | Alternatives | ||||
---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | |||
C1—Technical | C1.1 | Annual mean wind speed (at the height of 100 m) (m/s) | 6.75 | 7.12 | 6.95 | 6.04 |
C1.2 | Output power of wind turbine (MW) | 0.53 | 0.58 | 0.57 | 0.38 | |
C1.3 | Power transmission grid voltage (kV) | 220 | 400 | 220 | 220 | |
C2—Economic | C2.1 | Annual energy production (MWh) | 106 784 | 86 374 | 104 857 | 46 603 |
C2.2 | Investment cost (mln PLN) | 455.40 | 336.60 | 415.80 | 277.20 | |
C2.3 | Annual operation and maintenance costs (mln PLN) | 8.86 | 7.17 | 8.70 | 3.87 | |
C2.4 | Annual profit (mln PLN) | 27.98 | 22.63 | 27.47 | 12.21 | |
C2.5 | Payback period (years) | 16.3 | 14.9 | 15.1 | 22.7 | |
C3—Social | C3.1 | Social acceptability (%) | 59 | 24 | 61 | 26 |
C3.2 | Employment (number) | 1062 | 606 | 831 | 533 | |
C4—Spatial | C4.1 | Distance to main roads (km) | 6 | 10 | 7 | 3 |
C4.2 | Distance to power transmission grid (km) | 2 | 3 | 60 | 2 | |
C5—Environmental | C5.1 | Distance to protected areas (binary) | 1 | 9 | 1 | 9 |
C1.2 | C2.1 | C2.2 | C2.3 | C2.4 | C2.5 | C3.1 | |
---|---|---|---|---|---|---|---|
C1.1 | [38,41] | ||||||
C1.2 | [38,41] | ||||||
C2.1 | [86] | [86] | |||||
C2.2 | [48] | [87] | |||||
C2.3 | [52] | ||||||
C2.4 | [87] | ||||||
C3.2 | [14,28] | ||||||
C4.1 | [38] | [38] | |||||
C4.2 | [38] |
Criteria | Predefined Weight | Sub-Criteria | Preference Direction | Weight—Predefined and AHP | Weight—ANP without Alternatives | Weight—ANP with Alternatives |
---|---|---|---|---|---|---|
C1 | 0.2 | C1.1 | max | 0.333 | 0.25 | 0.286 |
C1.2 | max | 0.333 | 0.5 | 0.428 | ||
C1.3 | max | 0.333 | 0.25 | 0.286 | ||
C2 | 0.2 | C2.1 | max | 0.2 | 0.118 | 0.16 |
C2.2 | min | 0.2 | 0.061 | 0.116 | ||
C2.3 | min | 0.2 | 0.151 | 0.185 | ||
C2.4 | max | 0.2 | 0.306 | 0.293 | ||
C2.5 | min | 0.2 | 0.364 | 0.246 | ||
C3 | 0.2 | C3.1 | max | 0.5 | 0.667 | 0.6 |
C3.2 | max | 0.5 | 0.333 | 0.4 | ||
C4 | 0.2 | C4.1 | min | 0.5 | 0.5 | 0.5 |
C4.2 | min | 0.5 | 0.5 | 0.5 | ||
C5 | 0.2 | C5.1 | max | 1 | 1 | 1 |
Alternative | A1 | A2 | A3 | A4 | |
---|---|---|---|---|---|
Utility | AHP | 0.237 | 0.275 | 0.195 | 0.293 |
ANP | 0.235 | 0.279 | 0.218 | 0.268 | |
Rank | AHP | 3 | 2 | 4 | 1 |
ANP | 3 | 1 | 4 | 2 |
AHP | ANP | ||||||||
---|---|---|---|---|---|---|---|---|---|
Criterion/Sub-Criterion | Stability Interval (Weight) | Nominal Weight | Criterion/Sub-Criterion | Stability Interval (Weight) | Nominal Weight | ||||
Min | Max | Range | Min | Max | Range | ||||
C1 | 0 | 0.32 | 0.32 | 0.2 | C1 | 0.11 | 0.52 | 0.41 | 0.2 |
C2 | 0 | 0.63 | 0.63 | 0.2 | C2 | 0 | 0.57 | 0.57 | 0.2 |
C3 | 0 | 0.33 | 0.33 | 0.2 | C3 | 0 | 0.31 | 0.31 | 0.2 |
C4 | 0.13 | 0.4 | 0.27 | 0.2 | C4 | 0.02 | 0.29 | 0.27 | 0.2 |
C5 | 0.11 | 1 | 0.89 | 0.2 | C5 | 0.13 | 0.99 | 0.86 | 0.2 |
C2.2 | 0 | 0.95 | 0.95 | 0.2 | C2.3 | 0 | 0.97 | 0.97 | 0.2 |
C2.6 | 0 | 0.95 | 0.95 | 0.2 | C2.4 | 0 | 0.72 | 0.72 | 0.2 |
C4.1 | 0.01 | 1 | 0.99 | 0.5 | C4.1 | 0 | 0.85 | 0.85 | 0.5 |
C4.2 | 0 | 0.99 | 0.99 | 0.5 | C4.2 | 0.15 | 1 | 0.85 | 0.5 |
Sub-Criterion | No Dependencies between Sub-Criteria | Implementation of Dependencies between Sub-Criteria |
---|---|---|
C1.1 | Random <5, 7.5> (m/s) | Random <5, 7.5> (m/s) |
C1.2 | Random <0.22, 0.74> (MW) | (MW) |
C1.3 | Random {110; 220; 400} (kV) | Random {110; 220; 400} (kV) |
C2.1 | Random <16321, 186311> (MWh) | +/- 15% (MWh) |
C2.2 | Random <169.2, 586.5> (mln PLN) | +/- 15% (mln PLN) |
C2.3 | Random <1.16, 17.96> (mln PLN) | +/- 15% (mln PLN0 |
C2.4 | Random <4.66, 73.91> (mln PLN) | +/- 15% (mln PLN) |
C2.5 | Random <7.9, 36.3> (years) | (years) |
C3.1 | Random <19, 93> (%) | Random <15, 80> +(%) |
C3.2 | Random <393, 1328> (number) | +/- 15% (number) |
C4.1 | Random <1, 15> (km) | Random <1, 15> (km) |
C4.2 | Random <1, 15> (km) | Random <1, 15> (km) |
C5.1 | Random {1; 9} (binary) | Random {1; 9} (binary) |
N | - | Random <10, 25> (number) |
P | - | (MW) |
Dependencies between Sub-Criteria of the Alternative A5 | The Number of Samples of the Alternative A5 | AHP Ranking | ANP Ranking | ||
---|---|---|---|---|---|
The Number of Changed Rankings | The Number of Changes in Rankings | The Number of Changed Rankings | The Number of Changes in Rankings | ||
Independent | 1000 samples | 4 | 7 | 0 | 0 |
10,000 samples | 17 | 32 | 1 | 2 | |
Dependent | 1000 samples | 10 | 19 | 0 | 0 |
10,000 samples | 66 | 127 | 1 | 2 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziemba, P. Inter-Criteria Dependencies-Based Decision Support in the Sustainable wind Energy Management. Energies 2019, 12, 749. https://doi.org/10.3390/en12040749
Ziemba P. Inter-Criteria Dependencies-Based Decision Support in the Sustainable wind Energy Management. Energies. 2019; 12(4):749. https://doi.org/10.3390/en12040749
Chicago/Turabian StyleZiemba, Paweł. 2019. "Inter-Criteria Dependencies-Based Decision Support in the Sustainable wind Energy Management" Energies 12, no. 4: 749. https://doi.org/10.3390/en12040749
APA StyleZiemba, P. (2019). Inter-Criteria Dependencies-Based Decision Support in the Sustainable wind Energy Management. Energies, 12(4), 749. https://doi.org/10.3390/en12040749