Point of Common Connection Voltage Modulated Direct Power Control with Disturbance Observer to Increase in Renewable Energy Acceptance in Power System
"> Figure 1
<p>Schematic of the grid-connected voltage source inverter with the step-up transformer and the proposed PCCVM-DPC and proposed DOB.</p> "> Figure 2
<p>Schematic of the Simulink/MATLAB simulation environments.</p> "> Figure 3
<p>Closed-loop bode plot of PCCVM-DOC with PI and PI + DOB.</p> "> Figure 4
<p>Fast Fourier Transform (FFT) result of <math display="inline"><semantics> <msub> <mi>v</mi> <mrow> <mi>p</mi> <mi>c</mi> <mi>c</mi> <mo>,</mo> <mi>a</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 5
<p>Validation results of the estimated disturbances of PI + DOB.</p> "> Figure 6
<p>Validation results of the active power for PCCVM-DPC with PI and PI + DOB.</p> "> Figure 7
<p>Validation results of the reactive power for PCCVM-DPC with PI and proposed PI+DOB.</p> "> Figure 8
<p>Validation results of the current harmonics for PCCVM-DPC with PI and proposed PI + DOB.</p> "> Figure 9
<p>Validation results of the power control performance during the transient region.</p> "> Figure 10
<p>Validation results of the current harmonics for PCCVM-DPC with PI and the proposed PI + DOB, considering the parameter uncertainties (THD of grid voltage: 2.9%).</p> ">
Abstract
:1. Introduction
- Modeling of the active and reactive power dynamics for the PCCVM-DPC, including the step-up transformer’s nonlinearity.
- Analyzing the model disturbance including the parameter uncertainties of the inverter system, the distorted voltage harmonics at the PCC side and the transformer’s nonlinearity.
- Presenting disturbance observer for the PCCVM-DPC system and analyzing the robustness of the closed-loop system.
2. Main Contents
2.1. Active and Reactive Power Dynamics at the PCC Including Step-Up Transformer
2.2. Disturbance Observer Design for PCCVM-DPC
2.3. Disturbance Rejection Control of the PCCVM-DPC System
3. Validation
3.1. Simulation Environment
3.2. Validation Results for Different Voltage Harmonic Conditions
- Case 1-1: ≃ 0 and .
- Case 2-1: and.
- Case 3-1: and.
3.3. Validation Results for the Transient Regions
3.4. Validation Results for the Parameter Uncertainties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IRENA. Renewable Capacity Statistics 2024; International Renewable Energy Agency (IRENA): Masdar City, United Arab Emirates, 2024. [Google Scholar]
- Solanke, T.U.; Ramachandaramurthy, V.K.; Yong, J.Y.; Pasupuleti, J.; Kasinathan, P.; Rajagopalan, A. A review of strategic charging–discharging control of grid-connected electric vehicles. J. Energy Storage 2020, 28, 101193. [Google Scholar] [CrossRef]
- Wu, D.; Ma, X. Modeling and optimization methods for controlling and sizing grid-connected energy storage: A review. Curr. Sustain. Energy Rep. 2021, 8, 123–130. [Google Scholar] [CrossRef]
- Zhao, C.; Andersen, P.B.; Træholt, C.; Hashemi, S. Grid-connected battery energy storage system: A review on application and integration. Renew. Sustain. Energy Rev. 2023, 182, 113400. [Google Scholar] [CrossRef]
- Choudhury, S. Review of energy storage system technologies integration to microgrid: Types, control strategies, issues, and future prospects. J. Energy Storage 2022, 48, 103966. [Google Scholar] [CrossRef]
- Rahmani-Andebili, M. Stochastic, adaptive, and dynamic control of energy storage systems integrated with renewable energy sources for power loss minimization. Renew. Energy 2017, 113, 1462–1471. [Google Scholar] [CrossRef]
- Lee, K.; Venkataramanan, G.; Jahns, T.M. Modeling effects of voltage unbalances in industrial distribution systems with adjustable-speed drives. IEEE Trans. Ind. Appl. 2008, 44, 1322–1332. [Google Scholar] [CrossRef]
- Campbell, M.; Arce, G. Effect of motor voltage unbalance on motor vibration: Test and evaluation. IEEE Trans. Ind. Appl. 2017, 54, 905–911. [Google Scholar] [CrossRef]
- Gontijo, G.F.; Tricarico, T.C.; da Silva, L.F.; Krejci, D.; França, B.W.; Aredes, M.; Guerrero, J.M. Modeling, control, and experimental verification of a DFIG with a series-grid-side converter with voltage sag, unbalance, and distortion compensation capabilities. IEEE Trans. Ind. Appl. 2019, 56, 584–600. [Google Scholar] [CrossRef]
- Lu, D.; Wang, X.; Blaabjerg, F. Impedance-based analysis of DC-link voltage dynamics in voltage-source converters. IEEE Trans. Power Electron. 2018, 34, 3973–3985. [Google Scholar] [CrossRef]
- Blasko, V.; Kaura, V. A new mathematical model and control of a three-phase AC-DC voltage source converter. IEEE Trans. Power Electron. 1997, 12, 116–123. [Google Scholar] [CrossRef]
- Zeng, Q.; Chang, L.; Song, P. SVPWM-based current controller with grid harmonic compensation for three-phase grid-connected VSI. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551), Aachen, Germany, 20–25 June 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 4, pp. 2494–2500. [Google Scholar]
- Hadjidemetriou, L.; Kyriakides, E.; Blaabjerg, F. A grid side converter current controller for accurate current injection under normal and fault ride through operation. In Proceedings of the IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1454–1459. [Google Scholar]
- Blaabjerg, F.; Teodorescu, R.; Liserre, M.; Timbus, A.V. Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 2006, 53, 1398–1409. [Google Scholar] [CrossRef]
- Kazmierkowski, M.P.; Malesani, L. Current control techniques for three-phase voltage-source PWM converters: A survey. IEEE Trans. Ind. Electron. 1998, 45, 691–703. [Google Scholar] [CrossRef]
- Reyes, M.; Rodriguez, P.; Vazquez, S.; Luna, A.; Teodorescu, R.; Carrasco, J.M. Enhanced decoupled double synchronous reference frame current controller for unbalanced grid-voltage conditions. IEEE Trans. Power Electron. 2012, 27, 3934–3943. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, P.; Jiang, P.; Gao, F.; Fu, L.; Liu, Z. Robust Control Method of Grid-Connected Inverters With Enhanced Current Quality While Connected to a Weak Power Grid. IEEE Trans. Power Electron. 2022, 37, 7263–7274. [Google Scholar] [CrossRef]
- Chowdhury, V.R.; Kimball, J.W. Robust Control Scheme for a Three Phase Grid-Tied Inverter With LCL Filter During Sensor Failures. IEEE Trans. Ind. Electron. 2021, 68, 8253–8264. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, L.; Zhou, X.; Yang, X. Second-Order Linear Active Disturbance Rejection Control and Stability Analysis of Energy Storage Grid-Connected Inverter. IEEE Access 2020, 8, 160738–160748. [Google Scholar] [CrossRef]
- Liu, J.; Vazquez, S.; Wu, L.; Marquez, A.; Gao, H.; Franquelo, L.G. Extended state observer-based sliding-mode control for three-phase power converters. IEEE Trans. Ind. Electron. 2016, 64, 22–31. [Google Scholar] [CrossRef]
- Hollweg, G.V.; de Oliveira Evald, P.J.D.; Tambara, R.V.; Gründling, H.A. A robust adaptive super-twisting sliding mode controller applied on grid-tied power converter with an LCL filter. Control Eng. Pract. 2022, 122, 105104. [Google Scholar] [CrossRef]
- Liu, X.; Qiu, L.; Fang, Y.; Wang, K.; Li, Y.; Rodríguez, J. Finite control-set learning predictive control for power converters. IEEE Trans. Ind. Electron. 2023, 71, 8190–8196. [Google Scholar] [CrossRef]
- Liu, X.; Qiu, L.; Fang, Y.; Wang, K.; Li, Y.; Rodríguez, J. Predictive control of voltage source inverter: An online reinforcement learning solution. IEEE Trans. Ind. Electron. 2023, 71, 6591–6600. [Google Scholar] [CrossRef]
- Errouissi, R.; Shareef, H.; Awwad, F. Disturbance observer-based control for three-phase grid-tied inverter with LCL filter. IEEE Trans. Ind. Appl. 2021, 57, 5411–5424. [Google Scholar] [CrossRef]
- Hou, B.; Qi, J.; Li, H. Robust Direct Power Control of Three-Phase PWM Rectifier with Mismatched Disturbances. Electronics 2024, 13, 1476. [Google Scholar] [CrossRef]
- Kaura, V.; Blasko, V. Operation of a phase locked loop system under distorted utility conditions. IEEE Trans. Ind. Appl. 1997, 33, 58–63. [Google Scholar] [CrossRef]
- Chung, S.K. A phase tracking system for three phase utility interface inverters. IEEE Trans. Power Electron. 2000, 15, 431–438. [Google Scholar] [CrossRef]
- Wang, X.; Harnefors, L.; Blaabjerg, F. Unified impedance model of grid-connected voltage-source converters. IEEE Trans. Power Electron. 2017, 33, 1775–1787. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, Y.; Wu, W.; Gong, W.; Zhou, L.; Zhou, X.; Guerrero, J.M. Admittance Modeling and Stability Analysis of Grid-Connected Inverter With LADRC-PLL. IEEE Trans. Ind. Electron. 2021, 68, 12272–12284. [Google Scholar] [CrossRef]
- Rodríguez, P.; Luna, A.; Candela, I.; Mujal, R.; Teodorescu, R.; Blaabjerg, F. Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions. IEEE Trans. Ind. Electron. 2010, 58, 127–138. [Google Scholar] [CrossRef]
- Wen, B.; Boroyevich, D.; Burgos, R.; Mattavelli, P.; Shen, Z. Analysis of D-Q small-signal impedance of grid-tied inverters. IEEE Trans. Power Electron. 2015, 31, 675–687. [Google Scholar] [CrossRef]
- Zhou, J.Z.; Ding, H.; Fan, S.; Zhang, Y.; Gole, A.M. Impact of Short-Circuit Ratio and Phase-Locked-Loop Parameters on the Small-Signal Behavior of a VSC-HVDC Converter. IEEE Trans. Power Deliv. 2014, 29, 2287–2296. [Google Scholar] [CrossRef]
- Gui, Y.; Kim, C.; Chung, C.C. Grid voltage modulated direct power control for grid connected voltage source inverters. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2078–2084. [Google Scholar]
- Gui, Y.; Wang, X.; Blåbjerg, F.; Pan, D. Control of grid-connected voltage-source converters: The relationship between direct-power control and vector-current control. IEEE Ind. Electron. Mag. 2019, 13, 31–40. [Google Scholar] [CrossRef]
- Gao, S.; Zhao, H.; Wang, P.; Gui, Y.; Terzija, V.; Blaabjerg, F. Comparative Study of Symmetrical Controlled Grid-Connected Inverters. IEEE Trans. Power Electron. 2022, 37, 3954–3968. [Google Scholar] [CrossRef]
- Gui, Y.; Blaabjerg, F.; Wang, X.; Bendtsen, J.D.; Yang, D.; Stoustrup, J. Improved DC-link voltage regulation strategy for grid-connected converters. IEEE Trans. Ind. Electron. 2020, 68, 4977–4987. [Google Scholar] [CrossRef]
- Gui, Y.; Kim, C.; Chung, C.C.; Guerrero, J.M.; Guan, Y.; Vasquez, J.C. Improved direct power control for grid-connected voltage source converters. IEEE Trans. Ind. Electron. 2018, 65, 8041–8051. [Google Scholar] [CrossRef]
- Ahmad, S.; Mubarak, H.; Jhuma, U.K.; Ahmed, T.; Mekhilef, S.; Mokhlis, H. Point of Common Coupling Voltage Modulated Direct Power Control of Grid-Tied Photovoltaic Inverter for AC Microgrid Application. Int. Trans. Electr. Energy Syst. 2023, 2023, 3641907. [Google Scholar] [CrossRef]
- LS ELECTRIC Co. Modular Scalable PCS Catalog. Updated: 2022-July-14. Available online: https://www.ls-electric.com/products/category/Smart_Power_Solution/ESS/Modular_Scalable_Platform (accessed on 21 October 2024).
- LS ELECTRIC Co. Cast Resin Transformer Catalog. Updated: 2024-August-20. Available online: https://www.ls-electric.com/products/view/Smart_Power_Solution/Power_Distribution/Transformer/Cast_Resin_Transformer (accessed on 21 October 2024).
- IEC 60076-11:2018; Power Transformers—Part 11: Dry-Type Transformers. IEC: Geneva, Switzerland, 2018.
- Khodaparastan, M.; Mohamed, A.A.; Brandauer, W. Recuperation of regenerative braking energy in electric rail transit systems. IEEE Trans. Intell. Transp. Syst. 2019, 20, 2831–2847. [Google Scholar] [CrossRef]
- Chen, J.; Hu, H.; Wang, M.; Ge, Y.; Wang, K.; Huang, Y.; Yang, K.; He, Z.; Xu, Z.; Li, Y.R. Power flow control-based regenerative braking energy utilization in ac electrified railways: Review and future trends. IEEE Trans. Intell. Transp. Syst. 2024. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, Y.W.; Choi, W.Y. Point of Common Connection Voltage Modulated Direct Power Control with Disturbance Observer to Increase in Renewable Energy Acceptance in Power System. Energies 2024, 17, 5319. https://doi.org/10.3390/en17215319
Jeong YW, Choi WY. Point of Common Connection Voltage Modulated Direct Power Control with Disturbance Observer to Increase in Renewable Energy Acceptance in Power System. Energies. 2024; 17(21):5319. https://doi.org/10.3390/en17215319
Chicago/Turabian StyleJeong, Yong Woo, and Woo Young Choi. 2024. "Point of Common Connection Voltage Modulated Direct Power Control with Disturbance Observer to Increase in Renewable Energy Acceptance in Power System" Energies 17, no. 21: 5319. https://doi.org/10.3390/en17215319
APA StyleJeong, Y. W., & Choi, W. Y. (2024). Point of Common Connection Voltage Modulated Direct Power Control with Disturbance Observer to Increase in Renewable Energy Acceptance in Power System. Energies, 17(21), 5319. https://doi.org/10.3390/en17215319