Investigation of a Magnetic Levitation Architecture with a Ferrite Core for Energy Harvesting
<p>General linear electromagnetic energy harvester scheme.</p> "> Figure 2
<p>Linear electromagnetic energy harvester model.</p> "> Figure 3
<p>Linear EM energy harvesting architectures: (<b>a</b>) spring-mass with moving coil; (<b>b</b>) spring-mass with moving magnet; (<b>c</b>) free impact mass frequency-up converter; (<b>d</b>) magnetic levitation; and (<b>e</b>) double spring-mass with moving magnet.</p> "> Figure 4
<p>Non-resonant EM energy harvesters: (<b>a</b>) rotational, steady torque conversion (<b>b</b>) hybrid, converts linear to rotational movement.</p> "> Figure 5
<p>(<b>a</b>) Schematic of the developed energy harvester: coil with an air core, ferrite, four levitating magnets, and one fixed magnet; (<b>b</b>) final assembly.</p> "> Figure 6
<p>(<b>a</b>) Schematic of the full-wave rectifier circuit; (<b>b</b>) in-series association of full-wave rectifier circuits.</p> "> Figure 7
<p>System built for the mechanical stimulation of the transducers.</p> "> Figure 8
<p>Signal generated by the energy harvester when excited with a harmonic signal of 10 Hz frequency, with a selected segment of the signal.</p> "> Figure 9
<p>Voltage measurements at the output capacitor of the rectifier circuit connected to the energy harvester for input signals with frequencies from 5 to 20 Hz.</p> ">
Abstract
:1. Introduction
2. Background
2.1. Principles
2.2. Resonant Linear Architectures
2.3. Non-Resonant Architectures and Hybrid Architectures
3. Proposed EM Structure
3.1. Proposed Resonant Linear Architecture
3.2. EM Transducer Characteristics
- PVC spool: an outer diameter of 27 mm, an internal diameter of 12 mm, and a height of 12.4 mm;
- Coil: 1500 turns of enamel-coated copper wire with a diameter of 35 AWG (0.1426 mm) and a height of 8.40 mm (representing 33.87% of the container);
- Cylindrical permanent magnets of neodymium-iron-boron (Nd2Fe14B), with a mass of 3.35 g, a diameter of 12 mm, and a height of 4 mm;
- Ferrite ring: an internal diameter of 14 mm, an external diameter of 23 mm, and a height of 8.4 mm
- Height of 32.8 mm;
- Internal radius of 6 mm;
- Effective stroke of 8 mm;
- Volume of 15.10 cm3.
3.3. Bridge Rectifier Circuit
4. Mechanical Vibrational Stimulation
5. Results and Discussion
5.1. Output Voltage and Power of the Designed Energy Harvester
5.2. Voltage Across the Output Capacitor of the Rectifier Circuit
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Want, R.; Farkas, K.I.; Narayanaswami, C. Guest Editors’ Introduction: Energy Harvesting and Conservation. IEEE Pervasive Comput. 2005, 4, 14–17. [Google Scholar] [CrossRef]
- Beeby, S.P.; Tudor, M.J.; White, N.M. Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 2006, 17, R175–R195. [Google Scholar] [CrossRef]
- Kim, S.; Vyas, R.; Bito, J.; Niotaki, K.; Collado, A.; Georgiadis, A.; Tentzeris, M.M. Ambient RF Energy-Harvesting Technologies for Self-Sustainable Standalone Wireless Sensor Platforms. Proc. IEEE 2014, 102, 1649–1666. [Google Scholar] [CrossRef]
- Tressler, J.F.; Alkoy, S.; Newnham, R.E. Piezoelectric Sensors and Sensor Materials. J. Electroceram. 1998, 2, 257–272. [Google Scholar] [CrossRef]
- Newnham, R.E.; Bowen, L.J.; Klicker, K.A.; Cross, L.E. Composite piezoelectric transducers. Mater. Des. 1980, 2, 93–106. [Google Scholar] [CrossRef]
- Zhang, X.; Sessler, G.M. Vibration energy harvesting with piezoelectrets and electrets. J. Phys. Conf. Ser. 2018, 1052, 012140. [Google Scholar] [CrossRef]
- Naifar, S.; Bradai, S.; Viehweger, C.; Kanoun, O. Survey of electromagnetic and magnetoelectric vibration energy harvesters for low frequency excitation. Measurement 2017, 106, 251–263. [Google Scholar] [CrossRef]
- Kázmierski, T.J.; Beeby, S. Energy Harvesting Systems: Principles, Modelling and Applications; Springer: New York, NY, USA, 2011. [Google Scholar]
- Shaikh, F.K.; Zeadally, S. Energy harvesting in wireless sensor networks: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 55, 1041–1054. [Google Scholar] [CrossRef]
- Roundy, S.; Wright, P.K.; Rabaey, J. Energy Scavenging for Wireless Sensor Networks with Special Focus on Vibrations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Roundy, S.; Leland, E.S.; Baker, J.; Carleton, E.; Reilly, E.; Lai, E.; Otis, B.; Rabaey, J.M.; Wright, P.K. Improving power output for vibration-based energy scavengers. Pervasive Comput. 2005, 4, 28–36. [Google Scholar] [CrossRef]
- Rocha, J.G.; Gonçalves, L.M.; Rocha, P.F.; Silva, M.P.; Lanceros-Méndez, S. Energy Harvesting from Piezoelectric Materials Fully Integrated in Footwear. IEEE Trans. Ind. Electron. 2010, 57, 813–819. [Google Scholar] [CrossRef]
- Khaligh, A.; Zeng, P.; Zheng, C. Kinetic energy harvesting using piezoelectric and electromagnetic technologies-state of the art. IEEE Trans. Ind. Electron. 2010, 57, 850–860. [Google Scholar] [CrossRef]
- Siang, J.; Lim, M.H.; Salman Leong, M. Review of vibration-based energy harvesting technology: Mechanism and architectural approach. Int. J. Energy Res. 2018, 42, 1866–1893. [Google Scholar] [CrossRef]
- Mitcheson, P.D.; Green, T.C.; Yeatman, E.M.; Holmes, A.S. Architectures for Vibration-Driven Micropower Generators. J. Microelectromech. Syst. 2004, 13, 429–440. [Google Scholar] [CrossRef]
- Amirtharajah, R.; Chandrakasan, A.P. Self-powered signal processing using vibration-based power generation. IEEE J. Solid-State Circuits 1998, 33, 687–695. [Google Scholar] [CrossRef]
- von Büren, T.; Tröster, G. Design and optimization of a linear vibration-driven electromagnetic micro-power generator. Sens. Actuators A Phys. 2007, 135, 765–775. [Google Scholar] [CrossRef]
- Li, X.; Hu, G.; Guo, Z.; Wang, J.; Yang, Y.; Liang, J. Frequency Up-Conversion for Vibration Energy Harvesting: A Review. Symmetry 2022, 14, 631. [Google Scholar] [CrossRef]
- Umeda, M.; Nakamura, K.; Ueha, S. Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator. Jpn. J. Appl. Phys. 1996, 35, 3267–3273. [Google Scholar] [CrossRef]
- Umeda, M.; Nakamura, K.; Ueha, S. Energy storage characteristics of a piezo-generator using impact induced vibration. Jpn. J. Appl. Phys. 1997, 36 (Suppl. S5), 3146–3151. [Google Scholar] [CrossRef]
- Halim, M.A.; Cho, H.; Park, J.Y. Design and experiment of a human-limb driven, frequency up-converted electromagnetic energy harvester. Energy Convers. Manag. 2015, 106, 393–404. [Google Scholar] [CrossRef]
- Carneiro, P.; Santos, M.P.S.D.; Rodrigues, A.; Ferreira, J.A.F.; Simões, J.A.O.; Marques, A.T.; Kholkin, A.L. Electromagnetic energy harvesting using magnetic levitation architectures: A review. Appl. Energy 2020, 260, 114191. [Google Scholar] [CrossRef]
- Wu, C.; Liu, R.; Wang, J.; Zi, Y.; Lin, L.; Wang, Z.L. A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy. Nano Energy 2017, 32, 287–293. [Google Scholar] [CrossRef]
- Carneiro, P.M.R.; Ferreira, J.A.F.; Kholkin, A.L.; Soares dos Santos, M.P. Towards Self-Adaptability of Instrumented Electromagnetic Energy Harvesters. Machines 2022, 10, 414. [Google Scholar] [CrossRef]
Characteristics | Developed Energy Harvester | Other Models in the Literature [22] |
---|---|---|
Container material | PVC | PTFE and others |
Container height | 24.8 mm | 20 to 254 mm |
Total height | 32.8 mm | 20 to 254 mm |
Internal radius of the container | 6.0 mm | 2.2 to 28.6 mm |
Total magnet stroke | 12.8 mm | 13 to 184 mm |
Effective magnet stroke | 8 mm | 13 to 184 mm |
Total volume | 15.1 cm3 | 0.5 to 235 cm3 |
Rectangular coil height | 8.4 mm | 4 to 1000 mm |
Coil height to container height ratio | 33.87% | 10 to 50% |
Distance between coil inner radius and magnet stack radius | 2.00 mm | 0.5 to 9 mm |
Number of coil turns | 1500 turns | 240 to 15,000 |
Copper coil wire diameter | 35 AWG (142.6 μm) | 40 to 635 μm |
Inertial mass | 13.7 g | 1.2 g to 1.54 kg |
Used permanent magnet | Neodymium | Neodymium |
Magnet grade | N35 | Up to N45 |
Total number of magnets | 5 | Up to 10 |
Number of levitating magnets | 4 | Up to 6 |
Other materials | Mn-Zn Ferrite | --- |
f [Hz] | Vpp [V] | Vrms [V] | Prms [μW] |
---|---|---|---|
5 | 3.5 | 0.595 | 0.035 |
10 | 7.0 | 1.227 | 0.151 |
15 | 10.4 | 1.926 | 0.371 |
20 | 12.0 | 2.491 | 0.621 |
f [Hz] | Vcap [V] |
---|---|
1 | 6.42 |
2 | 6.9 |
3 | 7.6 |
4 | 8.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, I.N.; Altafim, R.A.C.; Altafim, R.A.P.; Moreira, M.d.M.A.C.; Sousa, F.S.I.d.; Afonso, J.A.; Carmo, J.P.; Flauzino, R.d.A. Investigation of a Magnetic Levitation Architecture with a Ferrite Core for Energy Harvesting. Energies 2024, 17, 5315. https://doi.org/10.3390/en17215315
Soares IN, Altafim RAC, Altafim RAP, Moreira MdMAC, Sousa FSId, Afonso JA, Carmo JP, Flauzino RdA. Investigation of a Magnetic Levitation Architecture with a Ferrite Core for Energy Harvesting. Energies. 2024; 17(21):5315. https://doi.org/10.3390/en17215315
Chicago/Turabian StyleSoares, Igor Nazareno, Ruy Alberto Corrêa Altafim, Ruy Alberto Pisani Altafim, Melkzedekue de Moraes Alcântara Calabrese Moreira, Felipe Schiavon Inocêncio de Sousa, José A. Afonso, João Paulo Carmo, and Rogério de Andrade Flauzino. 2024. "Investigation of a Magnetic Levitation Architecture with a Ferrite Core for Energy Harvesting" Energies 17, no. 21: 5315. https://doi.org/10.3390/en17215315
APA StyleSoares, I. N., Altafim, R. A. C., Altafim, R. A. P., Moreira, M. d. M. A. C., Sousa, F. S. I. d., Afonso, J. A., Carmo, J. P., & Flauzino, R. d. A. (2024). Investigation of a Magnetic Levitation Architecture with a Ferrite Core for Energy Harvesting. Energies, 17(21), 5315. https://doi.org/10.3390/en17215315