Analysis of Direct Torque Control Response to Stator and Rotor Faults in Permanent Magnet Synchronous Machines
<p>Electromagnetic torque and stator flux linkage control loops in DTC-driven PMSM.</p> "> Figure 2
<p>Torque and stator flux linkage variations due to hysteresis comparators. (<b>a</b>) Actual torque variation within torque hysteresis bands. (<b>b</b>) Actual flux variation within flux hysteresis bands.</p> "> Figure 3
<p>Frequency spectrum of the IPMSM torque magnitude under both FOC (<b>left</b>) and DTC (<b>right</b>) drives. The 6th and 12th harmonics are not observed in the DTC drive.</p> "> Figure 4
<p>Frequency spectrum of the torque angle in DTC-driven PMSM.</p> "> Figure 5
<p>Sector partitions and the available set of voltage vectors in the DTC drive.</p> "> Figure 6
<p>Illustration of the error between the actual and estimated stator flux linkages after the occurrence of a fault.</p> "> Figure 7
<p>Path of the estimated stator flux linkage based on the voltage vector selection table shown in <a href="#energies-16-06940-t001" class="html-table">Table 1</a>.</p> "> Figure 8
<p>Optimal path of the actual stator flux linkage based on the voltage vector selection table shown in <a href="#energies-16-06940-t001" class="html-table">Table 1</a>.</p> "> Figure 9
<p>Path of the actual stator flux linkage based on the voltage vector selection table shown in <a href="#energies-16-06940-t001" class="html-table">Table 1</a>.</p> "> Figure 10
<p>Machine model in MAXWELL coupled with DTC circuit in SIMPLORER including the TTSC fault circuit on phase A winding.</p> "> Figure 11
<p>Sequence components of the commanded voltages in DTC-driven PMSM under healthy operating conditions.</p> "> Figure 12
<p>Sequence components of the commanded voltages in DTC-driven PMSM under TTSC fault with different severity levels. The healthy sequence components, from <a href="#energies-16-06940-f011" class="html-fig">Figure 11</a>, are shown in the faded color. (<b>a</b>) Case 1: (15, 0.5 <math display="inline"><semantics> <mo>Ω</mo> </semantics></math>). (<b>b</b>) Case 2: (30, 0.25 <math display="inline"><semantics> <mo>Ω</mo> </semantics></math>).</p> "> Figure 13
<p>Sequence components of the commanded voltages in DTC-driven PMSM under HRC fault with different severity levels. The healthy sequence components, from <a href="#energies-16-06940-f011" class="html-fig">Figure 11</a>, are shown in the faded color. (<b>a</b>) Case 1: 100%. (<b>b</b>) Case 2: 150%.</p> "> Figure 14
<p>Sequence components of the commanded voltages in DTC-driven PMSM under demagnetization fault with different severity levels. The healthy sequence components, from <a href="#energies-16-06940-f011" class="html-fig">Figure 11</a>, are shown in the faded color. (<b>a</b>) Case 1: 1 Magnet. (<b>b</b>) Case 2: 3 Magnets.</p> "> Figure 15
<p>Sequence components of the commanded voltages in DTC-driven PMSM under eccentricity fault with different severity levels. The healthy sequence components, from <a href="#energies-16-06940-f011" class="html-fig">Figure 11</a>, are shown in the faded color. (<b>a</b>) Case 1: 40%. (<b>b</b>) Case 2: 60%.</p> "> Figure 16
<p>The magnitude of the magnet and reluctance torque multipliers, cos (m) and cos (d), in (<a href="#FD18-energies-16-06940" class="html-disp-formula">18</a>) and (<a href="#FD19-energies-16-06940" class="html-disp-formula">19</a>).</p> "> Figure 17
<p>The magnitude of the offset error in (<a href="#FD18-energies-16-06940" class="html-disp-formula">18</a>) and (<a href="#FD19-energies-16-06940" class="html-disp-formula">19</a>).</p> ">
Abstract
:1. Introduction
- (1)
- Its thorough analysis of the DTC reaction to the faulty operation of a PMSM; and
- (2)
- Its summary of the challenges in stability for DTC-driven PMSMs.
2. Faulty Operation of DTC-Driven PMSM
3. Response of Flux and Torque Comparators
3.1. Flux Comparator Response
3.2. Torque Comparator Response
4. Impact of Variations in Stator Flux Linkage Angle
5. Numerical Results
5.1. Numerical Setup
5.2. Flux Comparator
5.3. Torque Comparator
6. Conclusions
- (1)
- Provided insight into the DTC reaction to faulty operation of a PMSM; and
- (2)
- Identified challenges in stability for DTC-driven PMSMs.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DTC | Direct Torque Control |
FEM | Finite Element Model |
FFT | Fast Fourier Transform |
FOC | Field-Oriented Control |
HRC | High Resistance Contact |
PMSM | Permanent Magnet Synchronous Machine |
TTSC | Turn-to-Turn Short Circuit |
ZSVC | Zero-Sequence Voltage Component |
References
- Thangavel, S.; Mohanraj, D.; Girijaprasanna, T.; Raju, S.; Dhanamjayulu, C.; Muyeen, S.M. A Comprehensive Review on Electric Vehicle: Battery Management System, Charging Station, Traction Motors. IEEE Access 2023, 11, 20994–21019. [Google Scholar] [CrossRef]
- González-Cagigal, M.A.; Rosendo-Macías, J.A.; Gómez-Expósito, A. Parameter Estimation of Wind Turbines With PMSM Using Cubature Kalman Filters. IEEE Trans. Power Syst. 2020, 35, 1796–1804. [Google Scholar] [CrossRef]
- Wang, W.; Liu, C.; Zhao, H.; Song, Z. Improved Deadbeat-Direct Torque and Flux Control for PMSM With Less Computation and Enhanced Robustness. IEEE Trans. Ind. Electron. 2023, 70, 2254–2263. [Google Scholar] [CrossRef]
- Allafi, I.M.; Foster, S.N. Condition Monitoring Accuracy in Inverter-Driven Permanent Magnet Synchronous Machines Based on Motor Voltage Signature Analysis. Energies 2023, 16, 1477. [Google Scholar] [CrossRef]
- Bhuiyan, E.A.; Akhand, M.M.A.; Das, S.K.; Ali, M.F.; Tasneem, Z.; Islam, M.R.; Saha, D.K.; Badal, F.R.; Ahamed, M.H.; Moyeen, S.I. A Survey on Fault Diagnosis and Fault Tolerant Methodologies for Permanent Magnet Synchronous Machines. Int. J. Autom. Comput. 2020, 17, 763–787. [Google Scholar] [CrossRef]
- Kadjoudj, M.; Golea, N.; Benbouzid, M. Problems of Stator Flux Estimation in DTC of PMSM Drives. J. Electr. Eng. Technol. 2007, 2, 468–477. [Google Scholar] [CrossRef]
- Feng, C.; Chaoying, X.; Xiaoxin, H. Study on the losing control problem of direct torque control in permanent magnet synchronous motor drive. Trans. Inst. Meas. Control 2019, 41, 504–515. [Google Scholar] [CrossRef]
- Haddad, R.Z.; Strangas, E.G. On the Accuracy of Fault Detection and Separation in Permanent Magnet Synchronous Machines Using MCSA/MVSA and LDA. IEEE Trans. Energy Convers. 2016, 31, 924–934. [Google Scholar] [CrossRef]
- Haddad, R.Z.; Lopez, C.A.; Foster, S.N.; Strangas, E.G. A Voltage-Based Approach for Fault Detection and Separation in Permanent Magnet Synchronous Machines. IEEE Trans. Ind. Appl. 2017, 53, 5305–5314. [Google Scholar] [CrossRef]
- Zanardelli, W.G.; Strangas, E.G.; Aviyente, S. Identification of Intermittent Electrical and Mechanical Faults in Permanent-Magnet AC Drives Based on Time–Frequency Analysis. IEEE Trans. Ind. Appl. 2007, 43, 971–980. [Google Scholar] [CrossRef]
- Chen, H.; He, J.; Guan, X.; Demerdash, N.A.O.; EL-Refaie, A.M.; Lee, C.H.T. High-Resistance Connection Diagnosis in Five-Phase PMSMs Based on the Method of Magnetic Field Pendulous Oscillation and Symmetrical Components. IEEE Trans. Ind. Electron. 2022, 69, 2288–2299. [Google Scholar] [CrossRef]
- Ebrahimi, B.M.; Faiz, J. Feature Extraction for Short-Circuit Fault Detection in Permanent-Magnet Synchronous Motors Using Stator-Current Monitoring. IEEE Trans. Power Electron. 2010, 25, 2673–2682. [Google Scholar] [CrossRef]
- Ebrahimi, B.M.; Faiz, J.; Roshtkhari, M.J. Static-, Dynamic-, and Mixed-Eccentricity Fault Diagnoses in Permanent-Magnet Synchronous Motors. IEEE Trans. Ind. Electron. 2009, 56, 4727–4739. [Google Scholar] [CrossRef]
- Wang, B.; Wang, J.; Griffo, A.; Sen, B. Stator Turn Fault Detection by Second Harmonic in Instantaneous Power for a Triple-Redundant Fault-Tolerant PM Drive. IEEE Trans. Ind. Electron. 2018, 65, 7279–7289. [Google Scholar] [CrossRef]
- Allafi, I.M.; Foster, S.N. Fault Detection and Identification for Inverter-Driven Permanent Magnet Synchronous Machines. In Proceedings of the 2021 IEEE 13th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Dallas, TX, USA, 22–25 August 2021; Volume 1, pp. 358–364. [Google Scholar] [CrossRef]
- Hang, J.; Ding, S.; Ren, X.; Hu, Q.; Huang, Y.; Hua, W.; Wang, Q. Integration of Interturn Fault Diagnosis and Torque Ripple Minimization Control for Direct-Torque-Controlled SPMSM Drive System. IEEE Trans. Power Electron. 2021, 36, 11124–11134. [Google Scholar] [CrossRef]
- Hang, J.; Wu, H.; Ding, S.; Hua, W.; Wang, Q. A DC-Flux-Injection Method for Fault Diagnosis of High-Resistance Connection in Direct-Torque-Controlled PMSM Drive System. IEEE Trans. Power Electron. 2020, 35, 3029–3042. [Google Scholar] [CrossRef]
- Allafi, I.M.; Foster, S.N. On the Accuracy of Frequency Based Fault Diagnosis for DTC-driven PMSM. In Proceedings of the 2022 International Conference on Electrical Machines (ICEM), Valencia, Spain, 5–8 September 2022; pp. 1628–1634. [Google Scholar] [CrossRef]
- Allafi, I.M.; Foster, S.N. Condition Monitoring of Direct Torque Controlled Permanent Magnet Synchronous Machines. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Hadef, M.; Djerdir, A.; Mekideche, M.R.; N’Diaye, A.O. Diagnosis of stator winding short circuit faults in a direct torque controlled interior permanent magnet synchronous motor. In Proceedings of the 2011 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 6–9 September 2011; pp. 1–8. [Google Scholar] [CrossRef]
- Teng, Q.; Zhu, J.; Wang, T.; Lei, G. Fault tolerant direct torque control of three-phase permanent magnet synchronous motors. WSEAS Trans. Syst. 2012, 11, 465–476. [Google Scholar]
- Son, D.I.; Han, J.S.; Park, J.S.; Lim, H.S.; Lee, G.H. Performance Improvement of DTC-SVM of PMSM with Compensation for the Dead Time Effect and Power Switch Loss Based on Extended Kalman Filter. Electronics 2023, 12, 966. [Google Scholar] [CrossRef]
- Rahman, M.; Zhong, L.; Hu, W.; Lim, K.; Rahman, M. An investigation of direct and indirect torque controllers for PM synchronous motor drives. In Proceedings of the Second International Conference on Power Electronics and Drive Systems, Singapore, 26–29 May 1997; Volume 2, pp. 519–523. [Google Scholar] [CrossRef]
- Ojaghi, M.; Faiz, J. An experimental/simulation investigation to mixed eccentricity fault diagnosis of induction motors under DTC. In Proceedings of the 2014 IEEE International Conference on Industrial Technology (ICIT), Busan, Republic of Korea, 26 February–1 March 2014; pp. 143–148. [Google Scholar] [CrossRef]
- Cruz, S.; Cardoso, A. Diagnosis of stator inter-turn short circuits in DTC induction motor drives. IEEE Trans. Ind. Appl. 2004, 40, 1349–1360. [Google Scholar] [CrossRef]
- Berzoy, A.; Mohammed, O.A.; Restrepo, J. Analysis of the Impact of Stator Interturn Short-Circuit Faults on Induction Machines Driven by Direct Torque Control. IEEE Trans. Energy Convers. 2018, 33, 1463–1474. [Google Scholar] [CrossRef]
- Niu, F.; Wang, B.; Babel, A.S.; Li, K.; Strangas, E.G. Comparative Evaluation of Direct Torque Control Strategies for Permanent Magnet Synchronous Machines. IEEE Trans. Power Electron. 2016, 31, 1408–1424. [Google Scholar] [CrossRef]
- Alsofyani, I.M.; Idris, N.R.N.; Lee, K.B. Dynamic Hysteresis Torque Band for Improving the Performance of Lookup-Table-Based DTC of Induction Machines. IEEE Trans. Power Electron. 2018, 33, 7959–7970. [Google Scholar] [CrossRef]
- Mathapati, S.; Bocker, J. Analytical and Offline Approach to Select Optimal Hysteresis Bands of DTC for PMSM. IEEE Trans. Ind. Electron. 2013, 60, 885–895. [Google Scholar] [CrossRef]
- Chen, X.; Hu, J.; Chen, K.; Peng, Z. Modeling of electromagnetic torque considering saturation and magnetic field harmonics in permanent magnet synchronous motor for HEV. Simul. Model. Pract. Theory 2016, 66, 212–225. [Google Scholar] [CrossRef]
- Zhong, L.; Rahman, M.; Hu, W.; Lim, K. Analysis of direct torque control in permanent magnet synchronous motor drives. IEEE Trans. Power Electron. 1997, 12, 528–536. [Google Scholar] [CrossRef]
Sector | |||||||
---|---|---|---|---|---|---|---|
Parameter | Value |
---|---|
Rated power | 3.8 kW |
Rated RMS phase current | 18 A |
Rated RMS line voltage | 480 V |
Phases/Poles/Slots | 3/10/12 |
Turns per slot | 150 |
Phase resistance | 2 |
Magnet flux linkage | 0.287 Wb |
Residual flux density | 1.2 T |
Air gap length | 1 mm |
Controller Settings | Symbol | Value |
---|---|---|
Flux hysteresis band | ||
Torque hysteresis band | ||
Sampling frequency | 25 s | |
Initial conditions | () | (0.287, 0) Wb |
Operating points | () | Nm, Wb) |
Fault Type | Severity | Value |
---|---|---|
TTSC | () | (15, 0.5 ) |
(30, 0.25 ) | ||
HRC | () | 100% |
150% | ||
Partial Demagnetization | Number of Affected Magnets | 1 Magnet |
3 Magnets | ||
Static Eccentricity | () | 40% |
60% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allafi, I.M.; Foster, S.N. Analysis of Direct Torque Control Response to Stator and Rotor Faults in Permanent Magnet Synchronous Machines. Energies 2023, 16, 6940. https://doi.org/10.3390/en16196940
Allafi IM, Foster SN. Analysis of Direct Torque Control Response to Stator and Rotor Faults in Permanent Magnet Synchronous Machines. Energies. 2023; 16(19):6940. https://doi.org/10.3390/en16196940
Chicago/Turabian StyleAllafi, Ibrahim M., and Shanelle N. Foster. 2023. "Analysis of Direct Torque Control Response to Stator and Rotor Faults in Permanent Magnet Synchronous Machines" Energies 16, no. 19: 6940. https://doi.org/10.3390/en16196940
APA StyleAllafi, I. M., & Foster, S. N. (2023). Analysis of Direct Torque Control Response to Stator and Rotor Faults in Permanent Magnet Synchronous Machines. Energies, 16(19), 6940. https://doi.org/10.3390/en16196940