Dynamic Modeling and Investigation of a Tunable Vortex Bladeless Wind Turbine
<p>Schematic drawing of a vortex bladeless wind turbine with a tuning mechanism. The turbine is fixed at the base.</p> "> Figure 2
<p>Equivalent lumped-mass model of the proposed tunable wind turbine.</p> "> Figure 3
<p>Charge amplitude spectrum at various coupling factors.</p> "> Figure 4
<p>Frequency spectrum of the output charge at different values of the spring stiffness.</p> "> Figure 5
<p>Time history plots of the four generalized coordinates of the turbine at a wind speed (<math display="inline"><semantics> <mrow> <msub> <mi>U</mi> <mi>f</mi> </msub> </mrow> </semantics></math>) of 4.22 m/s and a spring stiffness (<math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </semantics></math>) of 2034 N/m.</p> "> Figure 6
<p>Output power of the tunable and conventional VBWT at <math display="inline"><semantics> <mrow> <msub> <mi>U</mi> <mi>f</mi> </msub> </mrow> </semantics></math> = 4.22 m/s and <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </semantics></math> = 2034 N/m.</p> "> Figure 7
<p>Output power of the tunable turbine at <math display="inline"><semantics> <mrow> <msub> <mi>U</mi> <mi>f</mi> </msub> </mrow> </semantics></math> = 7.0 m/s with <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </semantics></math> = 8081 N/m (<math display="inline"><semantics> <mo>−</mo> </semantics></math>) and <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </semantics></math> = 2034 N/m (<math display="inline"><semantics> <mrow> <mo>⋅</mo> <mo>−</mo> </mrow> </semantics></math>) versus the power of the conventional turbine (<math display="inline"><semantics> <mo>⋯</mo> </semantics></math>).</p> "> Figure 8
<p>Turbine output power as a function of the tuning spring stiffness at different wind speeds.</p> "> Figure 9
<p>Optimum spring stiffness as a function of the wind speed. The tuneable turbine is feasible beyond a threshold wind speed of 2.875 m/s.</p> "> Figure 10
<p>Output rms power of the tunable and conventional turbines as a function of the wind speeds.</p> "> Figure 11
<p>Optimum spring stiffness at various diameters of cantilever beam of the tunable turbine.</p> "> Figure 12
<p>Effect of external load and spring stiffness on the output power of the turbine; (<b>a</b>) Rms power of the turbine versus the load and spring stiffness; (<b>b</b>) Contour plot of the output power.</p> ">
Abstract
:1. Introduction
2. Turbine Design and Structure
3. Dynamic Modeling
4. Results and Discussion
4.1. Effect of Coupling Factors on the Turbine Dynamics
4.2. Effect of Tunable Spring Stiffness on the Output Power
4.3. Optimum Spring Stiffness
4.4. Threshold Wind Speed
4.5. Design Optimization
5. Conclusions
Funding
Conflicts of Interest
References
- Tandel, R.; Shah, S.; Tripathi, S. A state-of-art review on Bladeless Wind Turbine. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2012; Volume 1950, p. 012058. [Google Scholar]
- Bardakjian, A.T.; Mandadakis, P.P.; Tingle, A. Efficiency comparison of horizontal axis wind turbines and bladeless turbines. PAM Rev. Energy Sci. Technol. 2017, 4, 59–75. [Google Scholar] [CrossRef]
- Williamson, C.H.; Govardhan, R. Vortex-induced vibrations. Annu. Rev. Fluid Mech. 2004, 36, 413–455. [Google Scholar] [CrossRef]
- Chizfahm, A.; Yazdi, E.A.; Eghtesad, M. Dynamic modeling of vortex induced vibration wind turbines. Renew. Energy 2018, 121, 632–643. [Google Scholar] [CrossRef]
- Azadi Yazdi, E. Optimal control of a broadband vortex-induced vibration energy harvester. J. Intell. Mater. Syst. Struct. 2020, 31, 137–151. [Google Scholar] [CrossRef]
- Yazdi, E.A. Nonlinear model predictive control of a vortex-induced vibrations bladeless wind turbine. Smart Mater. Struct. 2018, 27, 075005. [Google Scholar] [CrossRef]
- Meliga, P.; Chomaz, J.M.; Gallaire, F. Extracting energy from a flow: An asymptotic approach using vortex-induced vibrations and feedback control. J. Fluids Struct. 2011, 27, 861–874. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, L.; Wu, C.; Mao, X.; Jiang, D. Flow induced motion and energy harvesting of bluff bodies with different cross sections. Energy Convers. Manag. 2015, 91, 416–426. [Google Scholar] [CrossRef]
- Villarreal, D.J.Y. Electrical Power Generator Harnessing a Swaying Movement of a Pole and Including a System for Generating a Magnetic Repulsion Force. U.S. Patent No. 10,641,243, 5 May 2020. [Google Scholar]
- Villarreal, D.Y.; Vortex Bladeless, S.L. VIV Resonant Wind Generators. Vortex Blade-Less SL. 2018. Available online: https://vortexbladeless.com (accessed on 1 July 2022).
- Salvador, C.S.; Teresa, J.A.; Martinez, J.M.; Bacasnot, M.C.; Orilla, K.V.; Cabana, R.J.; Ladaran, W.I. Design and construction of arc shaped and disc shaped pendulum for vortex bladeless wind generator. In Proceedings of the 2017 25th International Conference on Systems Engineering (ICSEng), Las Vegas, NV, USA, 22–24 August 2017; pp. 363–369. [Google Scholar]
- Villareal, D.J.Y. Electrical Power Generator for Producing Oscillating Movement of a Structure and Converting Oscillating Movement into Electrical Energy. U.S. Patent No. 11,053,914, 6 July 2021. [Google Scholar]
- Gautam, A.; Srinivas, S.S.; Teja, A.R. Efficient Electro-Mechanical Conversion System in Bladeless Wind Turbines. In Proceedings of the 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, The Netherlands, 17–19 June 2020; pp. 1009–1014. [Google Scholar]
- Bhardwaj, V.; Teja, A.R. Electromagnetic Field Configurations for Bladeless Wind Turbines. In Proceedings of the 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), Anchorage, AK, USA, 20–23 June 2021; pp. 1–5. [Google Scholar]
- Patangtalo, W.; Aimmanee, S.; Chutima, S. A unified analysis of isotropic and composite Belleville springs. Thin-Walled Struct. 2016, 109, 285–295. [Google Scholar] [CrossRef]
- Pedersen, N.L.; Pedersen, P. Stiffness and design for strength of trapezoidal Belleville springs. J. Strain Anal. Eng. Des. 2011, 46, 825–836. [Google Scholar] [CrossRef]
- Dragoni, E. A contribution to wave spring design. J. Strain Anal. Eng. Des. 1988, 23, 145–153. [Google Scholar] [CrossRef]
- Qiu, D.; Paredes, M.; Seguy, S. Variable pitch spring for nonlinear energy sink: Application to passive vibration control. Proceedings of the Institution of Mechanical Engineers. Part C J. Mech. Eng. Sci. 2019, 233, 611–622. [Google Scholar] [CrossRef]
- Ouakad, H.M. The response of a micro-electro-mechanical system (MEMS) cantilever-paddle gas sensor to mechanical shock loads. J. Vib. Control 2015, 21, 2739–2754. [Google Scholar] [CrossRef]
- Erturk, A.; Inman, D.J. Modal analysis of a uniform cantilever with a tip mass. In Piezoelectric Energy Harvesting; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Simeon, B. On Lagrange multipliers in flexible multibody dynamics. Comput. Methods Appl. Mech. Eng. 2006, 195, 6993–7005. [Google Scholar] [CrossRef]
- Torre, C. Constraints and Lagrange Multipliers [Lecture Notes]. 21 September 2016. Available online: http://www.physics.usu.edu/torre/6010_Fall_2016/ (accessed on 11 July 2022).
- Owens, B.A.; Mann, B.P. Linear and nonlinear electromagnetic coupling models in vibration-based energy harvesting. J. Sound Vib. 2012, 331, 922–937. [Google Scholar] [CrossRef]
- Facchinetti, M.L.; De Langre, E.; Biolley, F. Coupling of structure and wake oscillators in vortex-induced vibrations. J. Fluids Struct. 2004, 19, 123–140. [Google Scholar] [CrossRef]
- Norberg, C. Fluctuating lift on a circular cylinder: Review and new measurements. J. Fluids Struct. 2003, 17, 57–96. [Google Scholar] [CrossRef]
- Ahlborn, B.; Seto, M.L.; Noack, B.R. On drag, Strouhal number and vortex-street structure. Fluid Dyn. Res. 2002, 30, 379. [Google Scholar] [CrossRef]
- Bai, Q.; Shehata, M.; Nada, A.; Shao, Z. Development of dynamics for design procedure of novel grating tiling device with experimental validation. Appl. Sci. 2021, 11, 11716. [Google Scholar] [CrossRef]
- Wheeler, H.A. Simple inductance formulas for radio coils. Proc. Inst. Radio Eng. 1928, 16, 1398–1400. [Google Scholar] [CrossRef]
- Use Air-Core-Coil Resistance to Estimate Inductance. Available online: https://www.edn.com/use-air-core-coil-resistance-to-estimate-inductance/ (accessed on 1 July 2022).
- Aluminum and Copper Wires—Electrical Resistance vs. Cross-Sectional Area. Available online: https://www.engineeringtoolbox.com/copper-aluminum-conductor-resistance-d_1877.html (accessed on 1 July 2022).
- Behtouei, M.; Faillace, L.; Spataro, B.; Variola, A.; Migliorati, M. A novel exact analytical expression for the magnetic field of a solenoid. Waves Random Complex Media 2022, 32, 1977–1991. [Google Scholar] [CrossRef]
- Ode45. Available online: https://www.mathworks.com/help/matlab/ref/ode45.html (accessed on 11 July 2022).
- Archer, C.L.; Jacobson, M.Z. Evaluation of global wind power. Journal of Geophysical Research. Atmospheres 2005, 110, D12110. [Google Scholar] [CrossRef]
- Rao, S.S.; Yap, F.F. Mechanical Vibrations; Addison-Wesley: New York, NY, USA, 1995; Volume 4, pp. 75–848. [Google Scholar]
- Francis, S.; Umesh, V.; Shivakumar, S. Design and Analysis of Vortex Bladeless Wind Turbine. Mater. Today Proc. 2021, 47, 5584–5588. [Google Scholar] [CrossRef]
- Viet, L.D.; Nghi, N.B. On a nonlinear single-mass two-frequency pendulum tuned mass damper to reduce horizontal vibration. Eng. Struct. 2014, 81, 175–180. [Google Scholar] [CrossRef]
Description | Parameter | Value | Unit |
---|---|---|---|
Equivalent mass of the beam | 0.133 | kg | |
Equivalent stiffness of the beam | 306.3 | N/m | |
Equivalent damping of the beam | 0.383 | N/m/s2 | |
Total length of the beam | 1.00 | m | |
Magnet mass | 0.250 | kg | |
Total length of the mast body | 2.00 | m | |
Mast body outer diameter | 0.200 | m | |
Unstretched length of the spring | 0.050 | ||
Coil inductance | 35.00 | H | |
Coil resistance | 2.00 | ||
External resistive load | 5.00 | ||
-direction coupling factor | 2200 | N/A | |
Ratio defined by Equation (7) | 2.473 | rad/m | |
Lift coefficient | 0.50 | - | |
Wind speed | 0.0 to 10.0 | m/s |
Diameter (d) (mm) | Analytical () (m/s) | Numerical () (m/s) |
---|---|---|
15 | 1.6539 | 1.6207 |
20 | 2.7476 | 2.8367 |
25 | 4.1141 | 4.1034 |
30 | 5.6855 | 5.7755 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahadur, I. Dynamic Modeling and Investigation of a Tunable Vortex Bladeless Wind Turbine. Energies 2022, 15, 6773. https://doi.org/10.3390/en15186773
Bahadur I. Dynamic Modeling and Investigation of a Tunable Vortex Bladeless Wind Turbine. Energies. 2022; 15(18):6773. https://doi.org/10.3390/en15186773
Chicago/Turabian StyleBahadur, Issam. 2022. "Dynamic Modeling and Investigation of a Tunable Vortex Bladeless Wind Turbine" Energies 15, no. 18: 6773. https://doi.org/10.3390/en15186773
APA StyleBahadur, I. (2022). Dynamic Modeling and Investigation of a Tunable Vortex Bladeless Wind Turbine. Energies, 15(18), 6773. https://doi.org/10.3390/en15186773