Rat Models in Post-Traumatic Stress Disorder Research: Strengths, Limitations, and Implications for Translational Studies
<p>Schematic picture of two classical designs for the electric shock models—Footshock (<b>A</b>) and Inescapable Tail Shock models (<b>B</b>). The animal is kept inside the chamber to restrict movement during shocks. The electrical impulses are supplied either on the floor to affect the feet (<b>A</b>) or to the panel to which the tail can touch.</p> "> Figure 2
<p>Schematic picture of different approaches used to restrict the movement of an animal. (<b>A</b>) Each foot of the animal is fixed to prevent movement while the body is not fixed (the animal can move its head and tail). (<b>B</b>) The animal is placed in a transparent chamber restricting its lateral movement to the desired extent (adjusted by the restriction block). (<b>C</b>) The animal is fully enclosed by a transparent bag restricting its movement while not preventing its breathing. Note that all approaches do not block seeing or hearing, thus simulating stress in humans.</p> "> Figure 3
<p>A simplified representation of the underwater trauma (UWT) model used to stress an animal. The animal is allowed to swim in an open pool without an underwater platform for a short period (typically 30 s). The pool is closed by a metal net to submerge the animal underwater and induce sudden stress because the animal cannot emerge from the water during this time.</p> "> Figure 4
<p>A simplified representation of predator-based models. (<b>A</b>) The animal is exposed to a predator scent or odor (urea, fur, or collar) but is not exposed to direct contact with the predator. This method provides the highest level of protection for the animal. (<b>B</b>) The animal is exposed to the direct view of the predator (and often in the common space allowing transmission of scents and dangerous sounds), but direct contact between the animal and the predator is blocked, thus providing an intermediate danger level. (<b>C</b>) The animal is exposed to direct contact with the predator. In this method, the only barrier between the animal and the predator is a transparent shield, which partially blocks the contact but does not prevent attack. The methods simulate the most dangerous situations.</p> "> Figure 5
<p>A progression plot for the proposed “ideal” design and strategy for experimental research using PTSD animal models (rats in this case).</p> ">
Abstract
:1. Introduction
2. Single-Stressor Models
2.1. The Electric Shock Models
2.2. Immobilization Stress Models
2.3. The Underwater Trauma (UWT) and Water Avoidance Stress (WAS) Models
2.4. Sudden Sound Stress and Acoustic Startle Response
3. Intermediate Complexity Models
3.1. Single Prolonged Stress (SPS)
3.2. Unpredictable Variable Stress (UVS)
3.3. The Stress–Re-Stress (S-R) and Differential Contextual Odor Conditioning (DCOC) Paradigms
3.4. Time-Dependent Sensitization (TDS)
3.5. Comparative Analysis of PTSD Animal Models: SPS, S-R, and TDS
4. Social Interaction Models
4.1. The Role of Social Interaction
4.2. Social Stressors in Animal Research
5. Predator-Based Models
5.1. The Predator Scent Stress (PSS) Model
5.2. The Direct Confrontation with Predators
5.3. Integrating Military-Relevant Trauma into Predator-Based Models
5.4. The Common Features of Predator-Based Models
6. Pharmacological and Genetic Approaches in PTSD Research
6.1. Pharmacological Approaches and Validation
6.2. Genetic-Based Approaches
7. Current Questions for the PTSD Research
7.1. Animal Model Resemblance to Human PTSD
- Brief stressor induction: Demonstrates face validity by showing how short-term stressors can induce PTSD-like symptoms, mirroring the initial onset of the disorder.
- Intensity-dependent responses and persistence of alterations over time: Aligns with construct validity by illustrating that symptom severity increases with stressor intensity and that biological changes persist or become more pronounced over time, reinforcing the theoretical underpinnings of PTSD.
- Bi-directional expression: Enhances construct validity by acknowledging that symptoms can manifest differently under various conditions, adding depth to our understanding of the disorder’s complexity.
- Inter-individual variability: Supports predictive validity by recognizing that individual differences in genetics or past experiences can influence responses to treatment, mirroring the diverse reactions seen in humans.
7.2. Sensitive Periods, Gender, and Memory
7.3. The Problem of Phenotyping PTSD
7.4. From Adaptive Mechanisms to Pathological Outcomes
8. Conclusions
9. Recommendations for Ideal Model and Study Design in PTSD Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegmund, A.; Wotjak, C.T. Toward an animal model of posttraumatic stress disorder. Ann. N. Y. Acad. Sci. 2006, 1071, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Aliczki, M.; Haller, J. Electric shock as a model of post-traumatic stress disorder in rodents. In Comprehensive Guide to Post-Traumatic Stress Disorder; Martin, C., Preedy, V., Patel, V., Eds.; Springer: Cham, Switzerland, 2005. [Google Scholar] [CrossRef]
- Andersen, N.D.; Sterrett, J.D.; Costanza-Chavez, G.W.; Zambrano, C.A.; Baratta, M.V.; Frank, M.G.; Maier, S.F.; Lowry, C.A. An integrative model for endophenotypes relevant to posttraumatic stress disorder (PTSD): Detailed methodology for inescapable tail shock stress (IS) and juvenile social exploration (JSE). In Translational Methods for PTSD Research; Humana: New York, NY, USA, 2023; pp. 135–168. [Google Scholar] [CrossRef]
- Bali, A.; Jaggi, A.S. Electric foot shock stress adaptation: Does it exist or not? Life Sci. 2015, 130, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Rabasa, C.; Muñoz-Abellán, C.; Daviu, N.; Nadal, R.; Armario, A. Repeated exposure to immobilization or two different footshock intensities reveals differential adaptation of the hypothalamic-pituitary-adrenal axis. Physiol. Behav. 2011, 103, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Sidles, S.J.; Kelly, R.R.; Kelly, K.D.; Hathaway-Schrader, J.D.; Khoo, S.K.; Jones, J.A.; Cray, J.J.; LaRue, A.C. Inescapable foot shock induces a PTSD-like phenotype and negatively impacts adult murine bone. Dis. Model. Mech. 2024, 17, dmm050044. [Google Scholar] [CrossRef]
- Szente, B.; Balla, G.Y.; Varga, Z.K.; Toth, B.; Biro, L.; Balogh, Z.; Hill, M.N.; Toth, M.; Mikics, E.; Aliczki, M. Endocannabinoid and neuroplasticity-related changes as susceptibility factors in a rat model of posttraumatic stress disorder. Neurobiol. Stress. 2024, 32, 100662. [Google Scholar] [CrossRef]
- Rau, V.; DeCola, J.P.; Fanselow, M.S. Stress-induced enhancement of fear learning: An animal model of posttraumatic stress disorder. Neurosci. Biobehav. Rev. 2005, 29, 1207–1223. [Google Scholar] [CrossRef]
- Louvart, H.; Maccari, S.; Lesage, J.; Léonhardt, M.; Dickes-Coopman, A.; Darnaudéry, M. Effects of a single footshock followed by situational reminders on HPA axis and behaviour in the aversive context in male and female rats. Psychoneuroendocrinology 2006, 31, 92–99. [Google Scholar] [CrossRef]
- Morena, M.; Berardi, A.; Colucci, P.; Palmery, M.; Trezza, V.; Hill, M.N.; Campolongo, P. Enhancing Endocannabinoid Neurotransmission Augments The Efficacy of Extinction Training and Ameliorates Traumatic Stress-Induced Behavioral Alterations in Rats. Neuropsychopharmacology 2018, 43, 1284–1296. [Google Scholar] [CrossRef]
- Berardi, A.; Trezza, V.; Palmery, M.; Trabace, L.; Cuomo, V.; Campolongo, P. An Updated Animal Model Capturing Both the Cognitive and Emotional Features of Post-Traumatic Stress Disorder (PTSD). Front. Behav. Neurosci. 2014, 8, 142. [Google Scholar] [CrossRef]
- Riccardi, E.; Mancini, G.F.; Pisaneschi, A.; Morena, M.; Campolongo, P. Sex Differences in Fear Expression and Persistence in an Animal Model of Post-Traumatic Stress Disorder. Neuroscience 2024, 560, 371–380. [Google Scholar] [CrossRef]
- Ribeiro, A.C.A.F.; Batista, T.H.; Ferrari, M.S.; Giusti-Paiva, A.; Vilela, F.C. The Accentuation in Post-Traumatic Stress Disorder-like Symptoms Induced by Diabetes in Rats Is Not Associated with a Further Increase in Astrocyte Activation in the Hippocampus. Neurosci. Lett. 2021, 762, 136174. [Google Scholar] [CrossRef] [PubMed]
- Siegmund, A.; Wotjak, C.T. A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear. J. Psychiatr. Res. 2007, 41, 848–860. [Google Scholar] [CrossRef] [PubMed]
- Louvart, H.; Maccari, S.; Ducrocq, F.; Thomas, P.; Darnaudéry, M. Long-term behavioural alterations in female rats after a single intense footshock followed by situational reminders. Psychoneuroendocrinology 2005, 30, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Rau, V.; Fanselow, M.S. Exposure to a stressor produces a long lasting enhancement of fear learning in rats. Stress 2009, 12, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Borghans, B.; Homberg, J.R. Animal models for posttraumatic stress disorder: An overview of what is used in research. World J. Psychiatry 2015, 5, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Flandreau, E.I.; Toth, M. Animal models of PTSD: A critical review. Curr. Top. Behav. Neurosci. 2018, 38, 47–68. [Google Scholar] [CrossRef]
- Shoshan, N.; Segev, A.; Abush, H.; Mizrachi Zer-Aviv, T.; Akirav, I. Cannabinoids prevent the differential long-term effects of exposure to severe stress on hippocampal- and amygdala-dependent memory and plasticity. Hippocampus 2017, 27, 1093–1109. [Google Scholar] [CrossRef]
- Burstein, O.; Shoshan, N.; Doron, R.; Akirav, I. Cannabinoids prevent depressive-like symptoms and alterations in BDNF expression in a rat model of PTSD. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 84 Pt A, 129–139. [Google Scholar] [CrossRef]
- Daniels, W.M.; de Klerk, U.; Uys, J.; van Vuuren, P.; Stein, D.J. The development of behavioral and endocrine abnormalities in rats after repeated exposure to direct and indirect stress. Neuropsychiatr. Dis. Treat. 2008, 4, 451–464. [Google Scholar] [CrossRef]
- Deslauriers, J.; Toth, M.; Der-Avakian, A.; Risbrough, V.B. Current status of animal models of posttraumatic stress disorder: Behavioral and biological phenotypes and future challenges in improving translation. Biol. Psychiatry 2018, 83, 895–907. [Google Scholar] [CrossRef]
- Viellard, J.M.A.; Melleu, F.F.; Tamais, A.M.; de Almeida, A.P.; Zerbini, C.; Ikebara, J.M.; Domingues, K.; de Lima, M.A.X.; Oliveira, F.A.; Motta, S.C.; et al. A subiculum-hypothalamic pathway functions in dynamic threat detection and memory updating. Curr. Biol. 2024, 34, 2657–2671.e7. [Google Scholar] [CrossRef] [PubMed]
- Bali, A.; Jaggi, A.S. Preclinical experimental stress studies: Protocols, assessment, and comparison. Eur. J. Pharmacol. 2015, 746, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Daviu, N.; Molina, P.; Nadal, R.; Belda, X.; Serrano, S.; Armario, A. Influence of Footshock Number and Intensity on the Behavioral and Endocrine Response to Fear Conditioning and Cognitive Fear Generalization in Male Rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024, 135, 111112. [Google Scholar] [CrossRef] [PubMed]
- Armario, A.; Vallès, A.; Dal-Zotto, S.; Márquez, C.; Belda, X. A single exposure to severe stressors causes long-term desensitisation of the physiological response to the homotypic stressor. Stress 2004, 7, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Ornelas, L.C.; Besheer, J. Predator Odor Stressor, 2,3,5-Trimethyl-3-Thiazoline (TMT): Assessment of Stress Reactive Behaviors During an Animal Model of Traumatic Stress in Rats. Curr. Protoc. 2024, 4, e967. [Google Scholar] [CrossRef]
- Muroy, S.E.; Long, K.L.P.; Kaufer, D.; Kirby, E.D. Moderate Stress-Induced Social Bonding and Oxytocin Signaling Are Disrupted by Predator Odor in Male Rats. Neuropsychopharmacology 2016, 41, 2160–2170. [Google Scholar] [CrossRef]
- Roth, M.K.; Bingham, B.; Shah, A.; Joshi, A.; Frazer, A.; Strong, R.; Morilak, D.A. Effects of Chronic plus Acute Prolonged Stress on Measures of Coping Style, Anxiety, and Evoked HPA-Axis Reactivity. Neuropharmacology 2012, 63, 1118–1126. [Google Scholar] [CrossRef]
- Belda, X.; Rotllant, D.; Fuentes, S.; Delgado, R.; Nadal, R.; Armario, A. Exposure to Severe Stressors Causes Long-Lasting Dysregulation of Resting and Stress-Induced Activation of the Hypothalamic-Pituitary-Adrenal Axis. Ann. N. Y. Acad. Sci. 2008, 1148, 165–173. [Google Scholar] [CrossRef]
- Vazquez-Palacios, G.; Velazquez-Moctezuma, J. Effect of Electric Foot Shocks, Immobilization, and Corticosterone Administration on the Sleep-Wake Pattern in the Rat. Physiol. Behav. 2000, 71, 23–28. [Google Scholar] [CrossRef]
- Uramoto, H.; Ohno, T.; Ishihara, T. Gastric mucosal protection induced by restraint and water-immersion stress in rats. Jpn. J. Pharmacol. 1990, 54, 287–298. [Google Scholar] [CrossRef]
- Komori, T.; Miyahara, S.; Yamamoto, M.; Matsumoto, T.; Zhang, K.; Nakagawa, M.; Nomura, S.; Motomura, E.; Shiroyama, T.; Okazaki, Y. Effects of odorants on the hypothalamic-pituitary-adrenal axis and interleukin-6 (IL-6) and IL-6 receptor mRNA expression in rat hypothalamus after restraint stress. Chem. Senses 2003, 28, 767–771. [Google Scholar] [CrossRef] [PubMed]
- Strekalova, T.; Liu, Y.; Kiselev, D.; Khairuddin, S.; Chiu, J.L.Y.; Lam, J.; Chan, Y.-S.; Pavlov, D.; Proshin, A.; Lesch, K.-P.; et al. Chronic Mild Stress Paradigm as a Rat Model of Depression: Facts, Artifacts, and Future Perspectives. Psychopharmacology 2022, 239, 663–693. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, R.; Antelman, S.M. Criteria for rationally evaluating animal models of posttraumatic stress disorder. Biol. Psychiatry 1993, 33, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Gameiro, G.H.; Gameiro, P.H.; Andrade, A.D.A.S.; Pereira, L.F.; Arthuri, M.T.; Marcondes, F.K.; Veiga, M.C. Nociception- and anxiety-like behavior in rats submitted to different periods of restraint stress. Physiol. Behav. 2006, 87, 643–649. [Google Scholar] [CrossRef]
- Sanz-García, A.; Knafo, S.; Pereda-Pérez, I.; Esteban, J.A.; Venero, C.; Armario, A. Administration of the TrkB receptor agonist 7,8-dihydroxyflavone prevents traumatic stress-induced spatial memory deficits and changes in synaptic plasticity. Hippocampus 2016, 26, 1179–1188. [Google Scholar] [CrossRef]
- Barha, C.K.; Brummelte, S.; Lieblich, S.E.; Galea, L.A. Chronic restraint stress in adolescence differentially influences hypothalamic-pituitary-adrenal axis function and adult hippocampal neurogenesis in male and female rats. Hippocampus 2011, 21, 1216–1227. [Google Scholar] [CrossRef]
- Richter-Levin, G. Acute and long-term behavioral correlates of underwater trauma--potential relevance to stress and post-stress syndromes. Psychiatry Res. 1998, 79, 73–83. [Google Scholar] [CrossRef]
- Sadeghi, M.A.; Hemmati, S.; Yousefi-Manesh, H.; Foroutani, L.; Nassireslami, E.; Yousefi Zoshk, M.; Hosseini, Y.; Abbasian, K.; Dehpour, A.R.; Chamanara, M. Cilostazol Pretreatment Prevents PTSD-Related Anxiety Behavior through Reduction of Hippocampal Neuroinflammation. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 133–144. [Google Scholar] [CrossRef]
- Moore, N.L.; Gauchan, S.; Genovese, R.F. Differential severity of anxiogenic effects resulting from a brief swim or underwater trauma in adolescent male rats. Pharmacol. Biochem. Behav. 2012, 102, 264–268. [Google Scholar] [CrossRef]
- Ardi, Z.; Ritov, G.; Lucas, M.; Richter-Levin, G. The Effects of a Reminder of Underwater Trauma on Behaviour and Memory-Related Mechanisms in the Rat Dentate Gyrus. Int. J. Neuropsychopharmacol. 2014, 17, 571–580. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Y.; Yang, L.; Tucker, L.; Yang, B.; Zong, X.; Hamblin, M.R.; Zhang, Q. Transcranial Photobiomodulation Prevents PTSD-like Comorbidities in Rats Experiencing Underwater Trauma. Transl. Psychiatry 2021, 11, 270. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, A.; Ben-Yishay, E.; Richter-Levin, G. Behavioral Profiling Reveals an Enhancement of Dentate Gyrus Paired Pulse Inhibition in a Rat Model of PTSD. Mol. Cell Neurosci. 2021, 111, 103601. [Google Scholar] [CrossRef] [PubMed]
- Ritov, G.; Ardi, Z.; Richter-Levin, G. Differential activation of amygdala, dorsal and ventral hippocampus following an exposure to a reminder of underwater trauma. Front. Behav. Neurosci. 2014, 8, 18. [Google Scholar] [CrossRef] [PubMed]
- Lee, U.J.; Ackerman, A.L.; Wu, A.; Zhang, R.; Leung, J.; Bradesi, S.; Mayer, E.A.; Rodríguez, L.V. Chronic psychological stress in high-anxiety rats induces sustained bladder hyperalgesia. Physiol. Behav. 2015, 139, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Nozu, T.; Miyagishi, S.; Nozu, R.; Takakusaki, K.; Okumura, T. Repeated water avoidance stress induces visceral hypersensitivity: Role of interleukin-1, interleukin-6, and peripheral corticotropin-releasing factor. J. Gastroenterol. Hepatol. 2017, 32, 1958–1965. [Google Scholar] [CrossRef]
- Kavushansky, A.; Vouimba, R.M.; Cohen, H.; Richter-Levin, G. Activity and plasticity in the CA1, the dentate gyrus, and the amygdala following controllable vs. uncontrollable water stress. Hippocampus 2006, 16, 35–42. [Google Scholar] [CrossRef]
- Bradesi, S.; Schwetz, I.; Ennes, H.S.; Lamy, C.M.; Ohning, G.; Fanselow, M.; Pothoulakis, C.; McRoberts, J.A.; Mayer, E.A. Repeated exposure to water avoidance stress in rats: A new model for sustained visceral hyperalgesia. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 289, G42–G53. [Google Scholar] [CrossRef]
- Wang, Z.; Chang, H.H.; Gao, Y.; Zhang, R.; Guo, Y.; Holschneider, D.P.; Rodriguez, L.V. Effects of water avoidance stress on peripheral and central responses during bladder filling in the rat: A multidisciplinary approach to the study of urologic chronic pelvic pain syndrome (MAPP) research network study. PLoS ONE 2017, 12, e0182976. [Google Scholar] [CrossRef]
- Dias, B.; Serrão, P.; Cruz, F.; Charrua, A. Effect of water avoidance stress on serum and urinary NGF levels in rats: Diagnostic and therapeutic implications for BPS/IC patients. Sci. Rep. 2019, 9, 14113. [Google Scholar] [CrossRef]
- Vorhees, C.V.; Williams, M.T. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 2006, 1, 848–858. [Google Scholar] [CrossRef]
- Ritov, G.; Richter-Levin, G. Water associated zero maze: A novel rat test for long term traumatic re-experiencing. Front. Behav. Neurosci. 2014, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Ritov, G.; Boltyansky, B.; Richter-Levin, G. A novel approach to PTSD modeling in rats reveals alternating patterns of limbic activity in different types of stress reaction. Mol. Psychiatry 2016, 21, 630–641. [Google Scholar] [CrossRef] [PubMed]
- Ardi, Z.; Albrecht, A.; Richter-Levin, A.; Saha, R.; Richter-Levin, G. Behavioral profiling as a translational approach in an animal model of posttraumatic stress disorder. Neurobiol. Dis. 2016, 88, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, I.; Snippe-Strauss, M.; Tenenhaus Zamir, A.; Benhos, A.; Richter-Levin, G. Individual behavioral profiling as a translational approach to assess treatment efficacy in an animal model of post-traumatic stress disorder. Front. Neurosci. 2022, 16, 1071482. [Google Scholar] [CrossRef]
- Hahad, O.; Prochaska, J.H.; Daiber, A.; Muenzel, T. Environmental noise-induced effects on stress hormones, oxidative stress, and vascular dysfunction: Key factors in the relationship between cerebrocardiovascular and psychological disorders. Oxid. Med. Cell. Longev. 2019, 2019, 4623109. [Google Scholar] [CrossRef]
- Pole, N.; Neylan, T.C.; Best, S.R.; Orr, S.P.; Marmar, C.R. Fear-potentiated startle and posttraumatic stress symptoms in urban police officers. J. Trauma. Stress. 2003, 16, 471–479. [Google Scholar] [CrossRef]
- Pole, N.; Neylan, T.C.; Otte, C.; Henn-Hasse, C.; Metzler, T.J.; Marmar, C.R. Prospective prediction of posttraumatic stress disorder symptoms using fear-potentiated auditory startle responses. Biol. Psychiatry 2009, 65, 235–240. [Google Scholar] [CrossRef]
- Stauffer, C.S.; Morrison, T.E.; Meinzer, N.K.; Leung, D.; Buffington, J.; Sheh, E.G.; Neylan, T.C.; O’Donovan, A.; Woolley, J.D. Effects of oxytocin administration on fear-potentiated acoustic startle in co-occurring PTSD and alcohol use disorder: A randomized clinical trial. Psychiatry Res. 2022, 308, 114340. [Google Scholar] [CrossRef]
- Theodoroff, S.M.; Reavis, K.M.; Griest, S.E.; Carlson, K.F.; Hammill, T.L.; Henry, J.A. Decreased sound tolerance associated with blast exposure. Sci. Rep. 2019, 9, 10204. [Google Scholar] [CrossRef]
- Walters, A.S.; Hening, W.A. Noise-induced psychogenic tremor associated with post-traumatic stress disorder. Mov. Disord. 1992, 7, 333–338. [Google Scholar] [CrossRef]
- Naegeli, C.; Zeffiro, T.; Piccirelli, M.; Jaillard, A.; Weilenmann, A.; Hassanpour, K.; Schick, M.; Rufer, M.; Orr, S.P.; Mueller-Pfeiffer, C. Locus coeruleus activity mediates hyperresponsiveness in posttraumatic stress disorder. Biol. Psychiatry 2018, 83, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Mogi, T.; Inoue, H.; Koizumi, A. A mouse model of a sudden death induced by noise exposure is useful to investigate human responses to physical stress. Ind. Health 1995, 33, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, E.; Hodgson, D.M.; Nalivaiko, E. Amygdala mediates respiratory responses to sudden arousing stimuli and to restraint stress in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 306, R951–R959. [Google Scholar] [CrossRef] [PubMed]
- Lemercier, C.E.; Krieger, P.; Manahan-Vaughan, D. Dynamic modulation of mouse thalamocortical visual activity by salient sounds. iScience 2024, 27, 109364. [Google Scholar] [CrossRef]
- Poletaeva, I.I.; Surina, N.M.; Kostina, Z.A.; Perepelkina, O.V.; Fedotova, I.B. The Krushinsky-Molodkina rat strain: The study of audiogenic epilepsy for 65 years. Epilepsy Behav. 2017, 71 Pt B, 130–141. [Google Scholar] [CrossRef]
- Dechandt, C.R.P.; Vicentini, T.M.; Lanfredi, G.P.; Silva, R.M.P., Jr.; Espreafico, E.M.; de Oliveira, J.A.C.; Faça, V.M.; Garcia-Cairasco, N.; Alberici, L.C. The highly efficient powerhouse in the Wistar audiogenic rat, an epileptic rat strain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 316, R243–R254. [Google Scholar] [CrossRef]
- Garbuz, D.G.; Davletshin, A.A.; Litvinova, S.A.; Fedotova, I.B.; Surina, N.M.; Poletaeva, I.I. Rodent models of audiogenic epilepsy: Genetic aspects, advantages, current problems and perspectives. Biomedicines 2022, 10, 2934. [Google Scholar] [CrossRef]
- Campeau, S. Apparatus and general methods for exposing rats to audiogenic stress. Bio Protoc. 2016, 6, e1994. [Google Scholar] [CrossRef]
- Schumacher, S.; Schnyder, U.; Furrer, M.; Mueller-Pfeiffer, C.; Wilhelm, F.H.; Moergeli, H.; Oe, M.; Martin-Soelch, C. Startle reactivity in the long-term after severe accidental injury: Preliminary data. Psychiatry Res. 2013, 210, 570–574. [Google Scholar] [CrossRef]
- Zheng, A.; Schmid, S. A review of the neural basis underlying the acoustic startle response with a focus on recent developments in mammals. Neurosci. Biobehav. Rev. 2023, 148, 105129. [Google Scholar] [CrossRef]
- Russo, A.S.; Parsons, R.G. Acoustic startle response in rats predicts inter-individual variation in fear extinction. Neurobiol. Learn. Mem. 2017, 139, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Nahum, K.; Todder, D.; Zohar, J.; Cohen, H. The role of microglia in the (mal)adaptive response to traumatic experience in an animal model of PTSD. Int. J. Mol. Sci. 2022, 23, 7185. [Google Scholar] [CrossRef] [PubMed]
- Grillon, C. Startle reactivity and anxiety disorders: Aversive conditioning, context, and neurobiology. Biol. Psychiatry 2002, 52, 958–975. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Smerin, S.E.; Zhang, L.; Xing, G.; Li, X.; Benedek, D.; Ursano, R.; Li, H. Corticosterone mitigates the stress response in an animal model of PTSD. J. Psychiatr. Res. 2015, 60, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Brymer, K.J.; Kulhaway, E.Y.; Howland, J.G.; Caruncho, H.J.; Kalynchuk, L.E. Altered acoustic startle prepulse facilitation and object recognition memory produced by corticosterone withdrawal in male rats. Behav. Brain Res. 2021, 408, 113291. [Google Scholar] [CrossRef]
- Russell, A.L.; Miller, L.; Yi, H.; Keil, R.; Handa, R.J.; Wu, T.J. Knockout of the circadian gene, Per2, disrupts corticosterone secretion and results in depressive-like behaviors and deficits in startle responses. BMC Neurosci. 2021, 22, 5. [Google Scholar] [CrossRef]
- Dong, X.; Li, Y. Peritraumatic startle response predicts the vulnerability to develop PTSD-like behaviors in rats: A model for peritraumatic dissociation. Front. Behav. Neurosci. 2014, 8, 14. [Google Scholar] [CrossRef]
- Gonzales, M.; Garrett, C.; Chapman, C.D.; Dess, N.K. Stress-induced attenuation of acoustic startle in low-saccharin-consuming rats. Biol. Psychol. 2008, 79, 193–199. [Google Scholar] [CrossRef]
- Torrisi, S.A.; Lavanco, G.; Maurel, O.M.; Gulisano, W.; Laudani, S.; Geraci, F.; Grasso, M.; Barbagallo, C.; Caraci, F.; Bucolo, C.; et al. A novel arousal-based individual screening reveals susceptibility and resilience to PTSD-like phenotypes in mice. Neurobiol. Stress 2020, 14, 100286. [Google Scholar] [CrossRef]
- Liberzon, I.; Krstov, M.; Young, E.A. Stress-restress: Effects on ACTH and fast feedback. Psychoneuroendocrinology 1997, 22, 443–453. [Google Scholar] [CrossRef]
- Liberzon, I.; López, J.F.; Flagel, S.B.; Vázquez, D.M.; Young, E.A. Differential regulation of hippocampal glucocorticoid receptors mRNA and fast feedback: Relevance to post-traumatic stress disorder. J. Neuroendocr. 1999, 11, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Morinobu, S.; Takei, S.; Fuchikami, M.; Matsuki, A.; Yamawaki, S.; Liberzon, I. Single prolonged stress: Toward an animal model of posttraumatic stress disorder. Depress. Anxiety 2009, 26, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.R.; Noble, L.J.; McIntyre, C.K. Using the single prolonged stress model to examine the pathophysiology of PTSD. Front. Pharmacol. 2017, 8, 615. [Google Scholar] [CrossRef] [PubMed]
- Lisieski, M.J.; Eagle, A.L.; Conti, A.C.; Liberzon, I.; Perrine, S.A. Single-prolonged stress: A review of two decades of progress in a rodent model of post-traumatic stress disorder. Front. Psychiatry 2018, 9, 196. [Google Scholar] [CrossRef] [PubMed]
- Ferland-Beckham, C.; Chaby, L.E.; Daskalakis, N.P.; Knox, D.; Liberzon, I.; Lim, M.M.; McIntyre, C.; Perrine, S.A.; Risbrough, V.B.; Sabban, E.L.; et al. Systematic review and methodological considerations for the use of single prolonged stress and fear extinction retention in rodents. Front. Behav. Neurosci. 2021, 15, 652636. [Google Scholar] [CrossRef]
- Liberzon, I.; Young, E.A. Effects of stress and glucocorticoids on CNS oxytocin receptor binding. Psychoneuroendocrinology 1997, 22, 411–422. [Google Scholar] [CrossRef]
- Fan, Z.; Chen, J.; Li, L.; Wang, H.; Gong, X.; Xu, H.; Wu, L.; Yan, C. Environmental enrichment modulates HPA axis reprogramming in adult male rats exposed to early adolescent stress. Neurosci. Res. 2021, 172, 63–72. [Google Scholar] [CrossRef]
- Wu, Z.; Tian, Q.; Li, F.; Gao, J.; Liu, Y.; Mao, M.; Liu, J.; Wang, S.; Li, G.; Ge, D.; et al. Behavioral changes over time in post-traumatic stress disorder: Insights from a rat model of single prolonged stress. Behav. Process. 2016, 124, 123–129. [Google Scholar] [CrossRef]
- Ganon-Elazar, E.; Akirav, I. Cannabinoids prevent the development of behavioral and endocrine alterations in a rat model of intense stress. Neuropsychopharmacology 2012, 37, 456–466. [Google Scholar] [CrossRef]
- Goodman, J.; McIntyre, C.K. Impaired spatial memory and enhanced habit memory in a rat model of post-traumatic stress disorder. Front. Pharmacol. 2017, 8, 663. [Google Scholar] [CrossRef]
- Sanchís-Ollé, M.; Belda, X.; Gagliano, H.; Visa, J.; Nadal, R.; Armario, A. Animal models of PTSD: Comparison of the neuroendocrine and behavioral sequelae of immobilization and a modified single prolonged stress procedure that includes immobilization. J. Psychiatr. Res. 2023, 160, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Kohda, K.; Harada, K.; Kato, K.; Hoshino, A.; Motohashi, J.; Yamaji, T.; Morinobu, S.; Matsuoka, N.; Kato, N. Glucocorticoid receptor activation is involved in producing abnormal phenotypes of single-prolonged stress rats: A putative post-traumatic stress disorder model. Neuroscience 2007, 148, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Keller, S.M.; Schreiber, W.B.; Stanfield, B.R.; Knox, D. Inhibiting corticosterone synthesis during fear memory formation exacerbates cued fear extinction memory deficits within the single prolonged stress model. Behav. Brain Res. 2015, 287, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Algamal, M.; Ojo, J.O.; Lungmus, C.P.; Muza, P.; Cammarata, C.; Owens, M.J.; Mouzon, B.C.; Diamond, D.M.; Mullan, M.; Crawford, F. Chronic hippocampal abnormalities and blunted HPA Axis in an animal model of repeated unpredictable stress. Front. Behav. Neurosci. 2018, 12, 150. [Google Scholar] [CrossRef] [PubMed]
- Meewisse, M.L.; Reitsma, J.B.; de Vries, G.J.; Gersons, B.P.; Olff, M. Cortisol and post-traumatic stress disorder in adults: Systematic review and meta-analysis. Br. J. Psychiatry 2007, 191, 387–392. [Google Scholar] [CrossRef]
- Dekel, S.; Ein-Dor, T.; Rosen, J.B.; Bonanno, G.A. Differences in cortisol response to trauma activation in individuals with and without comorbid PTSD and depression. Front. Psychol. 2017, 8, 797. [Google Scholar] [CrossRef]
- Shafia, S.; Vafaei, A.A.; Samaei, S.A.; Bandegi, A.R.; Rafiei, A.; Valadan, R.; Hosseini-Khah, Z.; Mohammadkhani, R.; Rashidy-Pour, A. Effects of moderate treadmill exercise and fluoxetine on behavioural and cognitive deficits, hypothalamic-pituitary-adrenal axis dysfunction and alterations in hippocampal BDNF and mRNA expression of apoptosis-related proteins in a rat model of post-traumatic stress disorder. Neurobiol. Learn. Mem. 2017, 139, 165–178. [Google Scholar] [CrossRef]
- Chen, J.; Ye, W.; Li, L.; Su, J.; Huang, Y.; Liu, L.; Wu, L.; Yan, C. Paeoniflorin regulates the hypothalamic-pituitary-adrenal axis negative feedback in a rat model of post-traumatic stress disorder. Iran. J. Basic. Med. Sci. 2020, 23, 439–448. [Google Scholar] [CrossRef]
- Keller, S.M.; Schreiber, W.B.; Staib, J.M.; Knox, D. Sex differences in the single prolonged stress model. Behav. Brain Res. 2015, 286, 29–32. [Google Scholar] [CrossRef]
- Knox, D.; Nault, T.; Henderson, C.; Liberzon, I. Glucocorticoid receptors and extinction retention deficits in the single prolonged stress model. Neuroscience 2012, 223, 163–173. [Google Scholar] [CrossRef]
- Fulco, B.C.W.; Klann, I.P.; Rodrigues, R.F.; Marzari, B.N.; Nogueira, C.W. Social-single prolonged stress as an ether-free candidate animal model of post-traumatic stress disorder: Female and male outcomings. J. Psychiatr. Res. 2022, 154, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.; Yi, P.-L.; Hsiao, Y.-T.; Lee, T.-Y.; Chang, F.-C. A Prolonged Stress Rat Model Recapitulates Some PTSD-like Changes in Sleep and Neuronal Connectivity. Commun. Biol. 2023, 6, 716. [Google Scholar] [CrossRef] [PubMed]
- Nahvi, R.J.; Nwokafor, C.; Serova, L.I.; Sabban, E.L. Single prolonged stress as a prospective model for posttraumatic stress disorder in females. Front. Behav. Neurosci. 2019, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- Pooley, A.E.; Benjamin, R.C.; Sreedhar, S.; Eagle, A.L.; Robison, A.J.; Mazei-Robison, M.S.; Breedlove, S.M.; Jordan, C.L. Sex differences in the traumatic stress response: The role of adult gonadal hormones. Biol. Sex Differ. 2018, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.T.K.; Marques, L.S.; Brambila, C.A.; da Cruz Weber Fulco, B.; Nogueira, C.W.; Zeni, G. Social-Single Prolonged Stress Affects Contextual Fear Conditioning in Male and Female Wistar Rats: Molecular Insights in the Amygdala. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024, 133, 111021. [Google Scholar] [CrossRef]
- Mancini, G.F.; Marchetta, E.; Riccardi, E.; Trezza, V.; Morena, M.; Campolongo, P. Sex-Divergent Long-Term Effects of Single Prolonged Stress in Adult Rats. Behav. Brain Res. 2021, 401, 113096. [Google Scholar] [CrossRef]
- Zer-Aviv, T.M.; Akirav, I. Sex Differences in Hippocampal Response to Endocannabinoids after Exposure to Severe Stress. Hippocampus 2016, 26, 947–957. [Google Scholar] [CrossRef]
- Tanelian, A.; Nankova, B.; Miari, M.; Sabban, E.L. Microbial composition, functionality, and stress resilience or susceptibility: Unraveling sex-specific patterns. Biol. Sex Differ. 2024, 15, 20. [Google Scholar] [CrossRef]
- Shen, D.; Chang, L.; Su, F.; Huang, S.; Xu, H.; Si, Y.; Wang, F.; Xue, Y. The gut microbiome modulates the susceptibility to traumatic stress in a sex-dependent manner. J. Neurosci. Res. 2024, 102, e25315. [Google Scholar] [CrossRef]
- Fitzpatrick, C.J.; Jagannathan, L.; Lowenstein, E.; Robinson, T.E.; Becker, J.B.; Morrow, J.D. Single Prolonged Stress Decreases Sign-Tracking and Cue-Induced Reinstatement of Cocaine-Seeking. Behav. Brain Res. 2019, 359, 799–806. [Google Scholar] [CrossRef]
- Guan, P.; Huang, C.; Lan, Q.; Huang, S.; Zhou, P.; Zhang, C. Activation of Ventral Tegmental Area Dopaminergic Neurons Ameliorates Anxiety-like Behaviors in Single Prolonged Stress-Induced PTSD Model Rats. Neurochem. Int. 2022, 161, 105424. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi-Farani, A.; Farhangian, S.; Shirooie, S. Sex Differences in Acetylcholinesterase Modulation during Spatial and Fear Memory Extinction in the Amygdala; an Animal Study in the Single Prolonged Stress Model of PTSD. Res. Pharm. Sci. 2022, 17, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Dunsmoor, J.E.; Cisler, J.M.; Fonzo, G.A.; Creech, S.K.; Nemeroff, C.B. Laboratory models of post-traumatic stress disorder: The elusive bridge to translation. Neuron 2022, 110, 1754–1776. [Google Scholar] [CrossRef] [PubMed]
- Wakizono, T.; Sawamura, T.; Shimizu, K.; Nibuya, M.; Suzuki, G.; Toda, H.; Hirano, J.; Kikuchi, A.; Takahashi, Y.; Nomura, S. Stress Vulnerabilities in an Animal Model of Post-Traumatic Stress Disorder. Physiol. Behav. 2007, 90, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Lages, Y.V.M.; Rossi, A.D.; Krahe, T.E.; Landeira-Fernandez, J. Effect of chronic unpredictable mild stress on the expression profile of serotonin receptors in rats and mice: A me-ta-analysis. Neurosci. Biobehav. Rev. 2021, 124, 78–88. [Google Scholar] [CrossRef]
- Paredes, D.; Knippenberg, A.R.; Bulin, S.E.; Keppler, L.J.; Morilak, D.A. Adjunct treatment with ketamine enhances the therapeutic effects of extinction learning after chronic unpredictable stress. Neurobiol. Stress. 2022, 19, 100468. [Google Scholar] [CrossRef]
- Sequeira-Cordero, A.; Salas-Bastos, A.; Fornaguera, J.; Brenes, J.C. Behavioural characterisation of chronic unpredictable stress based on ethologically relevant paradigms in rats. Sci. Rep. 2019, 9, 17403. [Google Scholar] [CrossRef]
- Markov, D.D.; Novosadova, E.V. Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables. Biology 2022, 11, 1621. [Google Scholar] [CrossRef]
- Guo, Q.H.; Tong, Q.H.; Lu, N.; Cao, H.; Yang, L.; Zhang, Y.Q. Proteomic analysis of the hippocampus in mouse models of trigeminal neuralgia and inescapable shock-induced depression. Neurosci. Bull. 2018, 34, 74–84. [Google Scholar] [CrossRef]
- Prajapati, S.K.; Singh, N.; Garabadu, D.; Krishnamurthy, S. A novel stress re-stress model: Modification of re-stressor cue induces long-lasting post-traumatic stress disorder-like symptoms in rats. Int. J. Neurosci. 2020, 130, 941–952. [Google Scholar] [CrossRef]
- Brand, S.J.; Harvey, B.H. Exploring a post-traumatic stress disorder paradigm in Flinders sensitive line rats to model treatment-resistant depression I: Bio-behavioural validation and response to imipramine. Acta Neuropsychiatr. 2017, 29, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.; Liberzon, I.; Richter-Levin, G. Exposure to extreme stress impairs contextual odour discrimination in an animal model of PTSD. Int. J. Neuropsychopharmacol. 2009, 12, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Verbitsky, A.; Dopfel, D.; Zhang, N. Rodent models of post-traumatic stress disorder: Behavioral assessment. Transl. Psychiatry 2020, 10, 132. [Google Scholar] [CrossRef] [PubMed]
- Harvey, B.H.; Naciti, C.; Brand, L.; Stein, D.J. Endocrine, Cognitive and Hippocampal/Cortical 5HT 1A/2A Receptor Changes Evoked by a Time-Dependent Sensitisation (TDS) Stress Model in Rats. Brain Res. 2003, 983, 97–107. [Google Scholar] [CrossRef]
- Zhang, J.; Xue, R.; Li, Y.-F.; Zhang, Y.-Z.; Wei, H.-W. Anxiolytic-like Effects of Treadmill Exercise on an Animal Model of Post-Traumatic Stress Disorder and Its Mechanism. J. Sports Med. Phys. Fit. 2020, 60, 172–179. [Google Scholar] [CrossRef]
- Sorg, B.A.; Hooks, M.S.; Kalivas, P.W. Neuroanatomy and Neurochemical Mechanisms of Time-Dependent Sensitization. Toxicol. Ind. Health 1994, 10, 369–386. [Google Scholar] [CrossRef]
- Henschen, D.; Swift, K.; Taylor, R.; Scott, E.; May, M.; Ngouajio, B.; Jenkins, K.; Johnson, F., III; Jeong, I.; Silva, G.; et al. Development of an animal model of military-relevant traumatic stress. Mil. Med. 2023, 188, 561–571. [Google Scholar] [CrossRef]
- Vanderschuren, L.J.M.J.; Achterberg, E.J.M.; Trezza, V. The Neurobiology of Social Play and Its Rewarding Value in Rats. Neurosci. Biobehav. Rev. 2016, 70, 86–105. [Google Scholar] [CrossRef]
- Trezza, V.; Baarendse, P.J.J.; Vanderschuren, L.J.M.J. The Pleasures of Play: Pharmacological Insights into Social Reward Mechanisms. Trends Pharmacol. Sci. 2010, 31, 463–469. [Google Scholar] [CrossRef]
- Ben-Ami Bartal, I. The Complex Affective and Cognitive Capacities of Rats. Science 2024, 385, 1298–1305. [Google Scholar] [CrossRef]
- Bijlsma, A.; Omrani, A.; Spoelder, M.; Verharen, J.P.H.; Bauer, L.; Cornelis, C.; de Zwart, B.; van Dorland, R.; Vanderschuren, L.J.M.J.; Wierenga, C.J. Social Play Behavior Is Critical for the Development of Prefrontal Inhibitory Synapses and Cognitive Flexibility in Rats. J. Neurosci. 2022, 42, 8716–8728. [Google Scholar] [CrossRef] [PubMed]
- Komelkova, M.; Yushkov, B.; Fedorov, S.; Ibragimov, R.; Platkovskiy, P.; Hu, D.; Luo, S.; Sarapultsev, A. Early-life maternal deprivation in rats increases sensitivity to the subsequent stressors: A pilot study. Gen. Physiol. Biophys. 2023, 42, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Pibiri, F.; Nelson, M.; Guidotti, A.; Costa, E.; Pinna, G. Decreased corticolimbic allopregnanolone expression during social isolation enhances contextual fear: A model relevant for posttraumatic stress disorder. Proc. Natl. Acad. Sci. USA 2008, 105, 5567–5572. [Google Scholar] [CrossRef] [PubMed]
- Zoladz, P.R.; Conrad, C.D.; Fleshner, M.; Diamond, D.M. Acute episodes of predator exposure in conjunction with chronic social instability as an animal model of post-traumatic stress disorder. Stress 2008, 11, 259–281. [Google Scholar] [CrossRef] [PubMed]
- Perelló, M.; Chacon, F.; Cardinali, D.P.; Esquifino, A.I.; Spinedi, E. Effect of social isolation on 24-h pattern of stress hormones and leptin in rats. Life Sci. 2006, 78, 1857–1862. [Google Scholar] [CrossRef]
- Hammamieh, R.; Chakraborty, N.; De Lima, T.C.; Meyerhoff, J.; Gautam, A.; Muhie, S.; D’Arpa, P.; Lumley, L.; Carroll, E.; Jett, M. Murine model of repeated exposures to conspecific trained aggressors simulates features of post-traumatic stress disorder. Behav. Brain Res. 2012, 235, 55–66. [Google Scholar] [CrossRef]
- Huhman, K.L. Social conflict models: Can they inform us about human psychopathology? Horm. Behav. 2006, 50, 640–646. [Google Scholar] [CrossRef]
- Vagnerová, K.; Jágr, M.; Mekadim, C.; Ergang, P.; Sechovcová, H.; Vodička, M.; Olša Fliegerová, K.; Dvořáček, V.; Mrázek, J.; Pácha, J. Profiling of adrenal corticosteroids in blood and local tissues of mice during chronic stress. Sci. Rep. 2023, 13, 7278. [Google Scholar] [CrossRef]
- Yang, R.; Daigle, B.J., Jr.; Muhie, S.Y.; Hammamieh, R.; Jett, M.; Petzold, L.; Doyle, F.J., III. Core modular blood and brain biomarkers in social defeat mouse model for post traumatic stress disorder. BMC Syst. Biol. 2013, 7, 80. [Google Scholar] [CrossRef]
- Golden, S.A.; Covington, H.E.; Berton, O.; Russo, S.J. A Standardized Protocol for Repeated Social Defeat Stress in Mice. Nat. Protoc. 2011, 6, 1183–1191. [Google Scholar] [CrossRef]
- Munshi, S.; Ritger, A.; Rosenkranz, A.J. Induction of Repeated Social Defeat Stress in Rats. Bio Protoc. 2022, 12, e4306. [Google Scholar] [CrossRef] [PubMed]
- File, S.E.; Hyde, J.R. Can social interaction be used to measure anxiety? Br. J. Pharmacol. 1978, 62, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, R.J.; Blanchard, D.C. Attack and defense in rodents as ethoexperimental models for the study of emotion. Prog. Neuropsychopharmacol. Biol. Psychiatry 1989, 13 (Suppl. S1), S3–S14. [Google Scholar] [CrossRef] [PubMed]
- File, S.E.; Seth, P. A review of 25 years of the social interaction test. Eur. J. Pharmacol. 2003, 463, 35–53. [Google Scholar] [CrossRef]
- Christianson, J.P.; Benison, A.M.; Jennings, J.; Sandsmark, E.K.; Amat, J.; Kaufman, R.D.; Baratta, M.V.; Paul, E.D.; Campeau, S.; Watkins, L.R.; et al. The sensory insular cortex mediates the stress-buffering effects of safety signals but not behavioral control. J. Neurosci. 2008, 28, 13703–13711. [Google Scholar] [CrossRef]
- Baratta, M.V.; Gruene, T.M.; Dolzani, S.D.; Chun, L.E.; Maier, S.F.; Shansky, R.M. Controllable stress elicits circuit-specific patterns of prefrontal plasticity in males but not females. Brain Struct. Funct. 2019, 224, 1831–1843. [Google Scholar] [CrossRef]
- Koolhaas, J.M.; de Boer, S.F.; Buwalda, B.; Meerlo, P. Social stress models in rodents: Towards enhanced validity. Neurobiol. Stress. 2016, 6, 104–112. [Google Scholar] [CrossRef]
- Deslauriers, J.; Powell, S.; Risbrough, V.B. Immune signaling mechanisms of PTSD risk and symptom development: Insights from animal models. Curr. Opin. Behav. Sci. 2017, 14, 123–132. [Google Scholar] [CrossRef]
- Cohen, H.; Matar, M.A.; Todder, D.; Cohen, C.; Zohar, J.; Hawlena, H.; Abramsky, Z. Sounds of danger and post-traumatic stress responses in wild rodents: Ecological validity of a translational model of post-traumatic stress disorder. Mol. Psychiatry 2023, 28, 4719–4728. [Google Scholar] [CrossRef]
- Cohen, H.; Kozlovsky, N.; Alona, C.; Matar, M.A.; Joseph, Z. Animal model for PTSD: From clinical concept to translational research. Neuropharmacology 2012, 62, 715–724. [Google Scholar] [CrossRef]
- Blount, H.L.; Dee, J.; Wu, L.; Schwendt, M.; Knackstedt, L.A. Stress resilience-associated behaviors following predator scent stress are accompanied by upregulated nucleus accumbens mGlu5 transcription in female Sprague Dawley rats. Behav. Brain Res. 2023, 436, 114090. [Google Scholar] [CrossRef] [PubMed]
- Kondashevskaya, M.V.; Aleksankina, V.V.; Artem’eva, K.A. The search for diagnostic criteria to divide the Wistar rat population into phenotypes during modeling of post-traumatic stress disorder. Bull. Exp. Biol. Med. 2023, 176, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Shanazz, K.; Nalloor, R.; Lucas, R.; Vazdarjanova, A. Neuroinflammation is a susceptibility factor in developing a PTSD-like phenotype. Front. Behav. Neurosci. 2023, 17, 1112837. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.; Matar, M.A.; Buskila, D.; Kaplan, Z.; Zohar, J. Early post-stressor intervention with high-dose corticosterone attenuates posttraumatic stress response in an animal model of posttraumatic stress disorder. Biol. Psychiatry 2008, 64, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Pentkowski, N.S.; Maestas-Olguin, C.; Martinez, G. Characterizing the effects of 2-phenylethylamine and coyote urine on unconditioned and conditioned defensive behaviors in adolescent male and female Long-Evans hooded rats. Physiol. Behav. 2022, 248, 113726. [Google Scholar] [CrossRef]
- Xue, B.; Xue, J.; Yu, Y.; Wei, S.G.; Beltz, T.G.; Felder, R.B.; Johnson, A.K. Predator scent-induced sensitization of hypertension and anxiety-like behaviors. Cell Mol. Neurobiol. 2022, 42, 1141–1152. [Google Scholar] [CrossRef]
- Parker, J.; Klein, S.L.; McClintock, M.K.; Morison, W.L.; Ye, X.; Conti, C.J.; Peterson, N.; Nousari, C.H.; Tausk, F.A. Chronic stress accelerates ultraviolet-induced cutaneous carcinogenesis. J. Am. Acad. Dermatol. 2004, 51, 919–922. [Google Scholar] [CrossRef]
- Farmer-Dougan, V.; Chandrashekar, S.; Stutzman, D.; Bradham, K.; Dougan, J.D. Fox urine as an aversive stimulus: Modification of a passive avoidance task. J. Gen. Psychol. 2005, 132, 313–320. [Google Scholar] [CrossRef]
- Albrechet-Souza, L.; Gilpin, N.W. The predator odor avoidance model of post-traumatic stress disorder in rats. Behav. Pharmacol. 2019, 30, 105–114. [Google Scholar] [CrossRef]
- Danan, D.; Todder, D.; Zohar, J.; Cohen, H. Is PTSD-phenotype associated with HPA-axis sensitivity?: The endocannabinoid system in modulating stress response in rats. Int. J. Mol. Sci. 2021, 22, 6416. [Google Scholar] [CrossRef]
- Manukhina, E.B.; Tseilikman, V.E.; Komelkova, M.V.; Lapshin, M.S.; Goryacheva, A.V.; Kondashevskaya, M.V.; Mkhitarov, V.A.; Lazuko, S.S.; Tseilikman, O.B.; Sarapultsev, A.P.; et al. Cardiac injury in rats with experimental posttraumatic stress disorder and mechanisms of its limitation in experimental posttraumatic stress disorder-resistant rats. J. Appl. Physiol. (1985) 2021, 130, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, R.J.; Blanchard, D.C.; Weiss, S.M.; Meyer, S. The effects of ethanol and diazepam on reactions to predatory odors. Pharmacol. Biochem. Behav. 1990, 35, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Zangrossi, H., Jr.; File, S.E. Behavioral consequences in animal tests of anxiety and exploration of exposure to cat odor. Brain Res. Bull. 1992, 29, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.; Zohar, J.; Matar, M. The relevance of differential response to trauma in an animal model of posttraumatic stress disorder. Biol. Psychiatry 2003, 53, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.; Liu, T.; Kozlovsky, N.; Kaplan, Z.; Zohar, J.; Mathé, A.A. The neuropeptide Y (NPY)-ergic system is associated with behavioral resilience to stress exposure in an animal model of post-traumatic stress disorder. Neuropsychopharmacology 2012, 37, 350–363. [Google Scholar] [CrossRef]
- Tseilikman, V.; Komelkova, M.; Lapshin, M.; Alliluev, A.; Tseilikman, O.; Karpenko, M.; Pestereva, N.; Manukhina, E.; Downey, H.F.; Kondashevskaya, M.; et al. High and low anxiety phenotypes in a rat model of complex post-traumatic stress disorder are associated with different alterations in regional brain monoamine neurotransmission. Psychoneuroendocrinology 2020, 117, 104691. [Google Scholar] [CrossRef]
- Ullmann, E.; Chrousos, G.; Perry, S.W.; Wong, M.L.; Licinio, J.; Bornstein, S.R.; Tseilikman, O.; Komelkova, M.; Lapshin, M.S.; Vasilyeva, M.; et al. Offensive behavior, striatal glutamate metabolites, and limbic-hypothalamic-pituitary-adrenal responses to stress in chronic anxiety. Int. J. Mol. Sci. 2020, 21, 7440. [Google Scholar] [CrossRef]
- Dell’Omo, G.; Alleva, E. Snake odor alters behavior but not pain sensitivity in mice. Physiol. Behav. 1994, 55, 125–128. [Google Scholar] [CrossRef]
- de Oliveira Crisanto, K.; de Andrade, W.M.; de Azevedo Silva, K.D.; Lima, R.H.; de Oliveira Costa, M.S.; de Souza Cavalcante, J.; de Lima, R.R.; do Nascimento, E.S., Jr.; Cavalcante, J.C. The differential mice response to cat and snake odor. Physiol. Behav. 2015, 152 Pt A, 272–279. [Google Scholar] [CrossRef]
- Carere, C.; Casetti, R.; de Acetis, L.; Perretta, G.; Cirulli, F.; Alleva, E. Behavioural and nociceptive response in male and female spiny mice (Acomys cahirinus) upon exposure to snake odour. Behav. Process. 1999, 47, 1–10. [Google Scholar] [CrossRef]
- McGregor, I.S.; Schrama, L.; Ambermoon, P.; Dielenberg, R.A. Not all ‘predator odours’ are equal: Cat odour but not 2,4,5 trimethylthiazoline (TMT; fox odour) elicits specific defensive behaviours in rats. Behav. Brain Res. 2002, 129, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Tyler, R.E.; Weinberg, B.Z.S.; Lovelock, D.F.; Ornelas, L.C.; Besheer, J. Exposure to the predator odor TMT induces early and late differential gene expression related to stress and excitatory synaptic function throughout the brain in male rats. Genes. Brain Behav. 2020, 19, e12684. [Google Scholar] [CrossRef]
- Makhijani, V.H.; Franklin, J.P.; Van Voorhies, K.; Fortino, B.; Besheer, J. The synthetically produced predator odor 2,5-dihydro-2,4,5-trimethylthiazoline increases alcohol self-administration and alters basolateral amygdala response to alcohol in rats. Psychopharmacology 2021, 238, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Tyler, R.E.; Bluitt, M.N.; Van Voorhies, K.; Ornelas, L.C.; Weinberg, B.Z.S.; Besheer, J. Predator odor (TMT) exposure potentiates interoceptive sensitivity to alcohol and increases GABAergic gene expression in the anterior insular cortex and nucleus accumbens in male rats. Alcohol 2022, 104, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Staples, L.G.; McGregor, I.S.; Apfelbach, R.; Hunt, G.E. Cat odor, but not trimethylthiazoline (fox odor), activates accessory olfactory and defense-related brain regions in rats. Neuroscience 2008, 151, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Endres, T.; Fendt, M. Aversion- vs fear-inducing properties of 2,4,5-trimethyl-3-thiazoline, a component of fox odor, in comparison with those of butyric acid. J. Exp. Biol. 2009, 212 Pt 15, 2324–2327. [Google Scholar] [CrossRef]
- Rampin, O.; Jerôme, N.; Saint-Albin, A.; Ouali, C.; Boué, F.; Meunier, N.; Nielsen, B.L. Where is the TMT? GC-MS analyses of fox feces and behavioral responses of rats to fear-inducing odors. Chem. Senses 2018, 43, 105–115. [Google Scholar] [CrossRef]
- Maestas-Olguin, C.R.; Parish, M.M.; Pentkowski, N.S. Coyote urine, but not 2-phenylethylamine, induces a complete profile of unconditioned anti-predator defensive behaviors. Physiol. Behav. 2021, 229, 113210. [Google Scholar] [CrossRef]
- Fendt, M.; Brosch, M.; Wernecke, K.E.A.; Willadsen, M.; Wöhr, M. Predator odour but not TMT induces 22-kHz ultrasonic vocalizations in rats that lead to defensive behaviours in conspecifics upon replay. Sci. Rep. 2018, 8, 11041. [Google Scholar] [CrossRef]
- Zanette, L.Y.; Clinchy, M. Ecology of fear. Curr. Biol. 2019, 29, R309–R313. [Google Scholar] [CrossRef]
- Zoladz, P.R.; Diamond, D.M. Predator-based psychosocial stress animal model of PTSD: Preclinical assessment of traumatic stress at cognitive, hormonal, pharmacological, cardiovascular and epigenetic levels of analysis. Exp. Neurol. 2016, 284 Pt B, 211–219. [Google Scholar] [CrossRef]
- Zoladz, P.R.; D’Alessio, P.A.; Seeley, S.L.; Kasler, C.D.; Goodman, C.S.; Mucher, K.E.; Allison, A.S.; Smith, I.F.; Dodson, J.L.; Stoops, T.S.; et al. A predator-based psychosocial stress animal model of PTSD in females: Influence of estrous phase and ovarian hormones. Horm. Behav. 2019, 115, 104564. [Google Scholar] [CrossRef] [PubMed]
- Paschoalin-Maurin, T.; Dos Anjos-Garcia, T.; Falconi-Sobrinho, L.L.; de Freitas, R.L.; Coimbra, J.P.C.; Laure, C.J.; Coimbra, N.C. The Rodent-versus-wild snake paradigm as a model for studying anxiety- and panic-like behaviors: Face, construct and predictive validities. Neuroscience 2018, 369, 336–349. [Google Scholar] [CrossRef] [PubMed]
- Mendes-Gomes, J.; Motta, S.C.; Passoni Bindi, R.; de Oliveira, A.R.; Ullah, F.; Baldo, M.V.C.; Coimbra, N.C.; Blanchard, D.C. Defensive behaviors and brain regional activation changes in rats confronting a snake. Behav. Brain Res. 2020, 381, 112469. [Google Scholar] [CrossRef] [PubMed]
- Mendes-Gomes, J.; Paschoalin-Maurin, T.; Donaldson, L.F.; Lumb, B.M.; Blanchard, D.C.; Coimbra, N.C. Repeated exposure of naïve and peripheral nerve-injured mice to a snake as an experimental model of post-traumatic stress disorder and its co-morbidity with neuropathic pain. Brain Res. 2020, 1744, 146907. [Google Scholar] [CrossRef] [PubMed]
- Saksida, L.M.; Galea, L.A.; Kavaliers, M. Predator-induced opioid and non-opioid mediated analgesia in young meadow voles: Sex differences and developmental changes. Brain Res. 1993, 617, 214–219. [Google Scholar] [CrossRef]
- Tsikunov, S.G.; Klyueva, N.N.; Kusov, A.G.; Vinogradova, T.V.; Klimenko, V.M.; Denisenko, A.D. Changes in the Lipid Composition of Blood Plasma and Liver in Rats Induced by Severe Psychic Trauma. Bull. Exp. Biol. Med. 2006, 141, 636–638. [Google Scholar] [CrossRef]
- Nikitina, V.A.; Zakharova, M.V.; Trofimov, A.N.; Schwarz, A.P.; Beznin, G.V.; Tsikunov, S.G.; Zubareva, O.E. Neonatal Exposure to Bacterial Lipopolysaccharide Affects Behavior and Expression of Ionotropic Glutamate Receptors in the Hippocampus of Adult Rats after Psychogenic Trauma. Biochemistry 2021, 86, 761–772. [Google Scholar] [CrossRef]
- Lyudyno, V.I.; Tsikunov, S.G.; Abdurasulova, I.N.; Kusov, A.G.; Klimenko, V.M. Modification of Anxious Behavior after Psychogenic Trauma and Treatment with Galanin Receptor Antagonist. Bull. Exp. Biol. Med. 2015, 159, 344–347. [Google Scholar] [CrossRef]
- Pacheco, A.; Aguayo, F.I.; Aliaga, E.; Muñoz, M.; García-Rojo, G.; Olave, F.A.; Parra-Fiedler, N.A.; García-Pérez, A.; Tejos-Bravo, M.; Rojas, P.S.; et al. Chronic Stress Triggers Expression of Immediate Early Genes and Differentially Affects the Expression of AMPA and NMDA Subunits in Dorsal and Ventral Hippocampus of Rats. Front. Mol. Neurosci. 2017, 10, 244. [Google Scholar] [CrossRef]
- Scott, E.; May, M.; Silva, G.; Taylor, R.; Fenlon, N.; Lowery-Gionta, E.; Matson, L. Variation in Trauma-Related Behavioral Effects Using a Preclinical Rat Model of Three Predator Exposure Stress. Stress 2022, 25, 276–290. [Google Scholar] [CrossRef] [PubMed]
- Baisley, S.K.; Cloninger, C.L.; Bakshi, V.P. Fos expression following regimens of predator stress versus footshock that differentially affect prepulse inhibition in rats. Physiol. Behav. 2011, 104, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Kigar, S.L.; Cuarenta, A.; Zuniga, C.L.; Chang, L.; Auger, A.P.; Bakshi, V.P. Brain, behavior, and physiological changes associated with predator stress—An animal model for trauma exposure in adult and neonatal rats. Front. Mol. Neurosci. 2024, 17, 1322273. [Google Scholar] [CrossRef]
- Cohen, H.; Zohar, J. An animal model of posttraumatic stress disorder: The use of cut-off behavioral criteria. Ann. N. Y. Acad. Sci. 2004, 1032, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.; Matar, M.A.; Richter-Levin, G.; Zohar, J. The contribution of an animal model toward uncovering biological risk factors for PTSD. Ann. N. Y. Acad. Sci. 2006, 1071, 335–350. [Google Scholar] [CrossRef] [PubMed]
- Koresh, O.; Kaplan, Z.; Zohar, J.; Matar, M.A.; Geva, A.B.; Cohen, H. Distinctive cardiac autonomic dysfunction following stress exposure in both sexes in an animal model of PTSD. Behav. Brain Res. 2016, 308, 128–142. [Google Scholar] [CrossRef] [PubMed]
- Toth, M.; Flandreau, E.I.; Deslauriers, J.; Geyer, M.A.; Mansuy, I.M.; Merlo Pich, E.; Risbrough, V.B. Overexpression of forebrain CRH during early life increases trauma susceptibility in adulthood. Neuropsychopharmacology 2016, 41, 1681–1690. [Google Scholar] [CrossRef]
- Aspesi, D.; Pinna, G. Animal models of post-traumatic stress disorder and novel treatment targets. Behav. Pharmacol. 2019, 30, 130–150. [Google Scholar] [CrossRef]
- Layton, B.; Krikorian, R. Memory mechanisms in posttraumatic stress disorder. J. Neuropsychiatry Clin. Neurosci. 2002, 14, 254–261. [Google Scholar] [CrossRef]
- Ren, C.; Tao, Q. Neural circuits underlying innate fear. In Advances in Experimental Medicine and Biology; Springer: Singapore, 2020; Volume 1284, pp. 1–7. [Google Scholar] [CrossRef]
- VA.Gov|Veterans Affairs. Available online: https://www.ptsd.va.gov/understand/types/combat_exposure.asp (accessed on 25 November 2024).
- Sharifian, N.; LeardMann, C.A.; Kolaja, C.A.; Baccetti, A.; Carey, F.R.; Castañeda, S.F.; Hoge, C.W.; Rull, R.P.; Millennium Cohort Study Team. Factors associated with mental healthcare utilization among United States military personnel with posttraumatic stress disorder or depression symptoms. Am. J. Prev. Med. 2024; in press. [Google Scholar] [CrossRef]
- Sharifian, N.; Kolaja, C.A.; LeardMann, C.A.; Castañeda, S.F.; Carey, F.R.; Seay, J.S.; Carlton, K.N.; Rull, R.P.; Cohort Study Team FTM. Racial, Ethnic, and Sex Disparities in Mental Health Among US Service Members and Veterans: Findings From the Millennium Cohort Study. Am. J. Epidemiol. 2024, 193, 500–515. [Google Scholar] [CrossRef]
- Anderson, L.; Campbell-Sills, L.; Ursano, R.J.; Kessler, R.C.; Sun, X.; Heeringa, S.G.; Nock, M.K.; Bliese, P.D.; Gonzalez, O.I.; Wynn, G.H.; et al. Prospective associations of perceived unit cohesion with postdeployment mental health outcomes. Depress. Anxiety 2019, 36, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Hearne, C.R.M. Predictors of Operation Enduring Freedom/Operation Iraqi Freedom Veterans’ Engagement in Mental Health Treatment. Mil. Med. 2013, 178, 1183–1187. [Google Scholar] [CrossRef] [PubMed]
- Ozer, E.J.; Best, S.R.; Lipsey, T.L.; Weiss, D.S. Predictors of Posttraumatic Stress Disorder and Symptoms in Adults: A Meta-Analysis. Psychol. Bull. 2003, 129, 52–73. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.; Moss, A.S.; Hodges, S. Sub-syndromal PTSD: What is important to know in military personnel and veterans? Australas. Psychiatry 2020, 28, 254–256. [Google Scholar] [CrossRef] [PubMed]
- Genovese, R.F.; Dobre, S. Mitigation of Adverse Behavioral Impact from Predator Exposure by the Nociceptin/Orphanin FQ Peptide Antagonist J-113397 in Rats. Behav. Pharmacol. 2017, 28, 521–530. [Google Scholar] [CrossRef]
- Moore, N.L.T.; Altman, D.E.; Gauchan, S.; Genovese, R.F. Adulthood Stress Responses in Rats Are Variably Altered as a Factor of Adolescent Stress Exposure. Stress 2016, 19, 295–302. [Google Scholar] [CrossRef]
- Atrooz, F.; Alkadhi, K.A.; Salim, S. Understanding Stress: Insights from Rodent Models. Curr. Res. Neurobiol. 2021, 2, 100013. [Google Scholar] [CrossRef]
- Hinojosa, C.A.; VanElzakker, M.B.; Kaur, N.; Felicione, J.M.; Charney, M.E.; Bui, E.; Marques, L.; Summergrad, P.; Rauch, S.L.; Simon, N.M.; et al. Pre-Treatment Amygdala Activation and Habituation Predict Symptom Change in Post-Traumatic Stress Disorder. Front. Behav. Neurosci. 2023, 17, 1198244. [Google Scholar] [CrossRef]
- Komelkova, M.; Manukhina, E.; Downey, H.F.; Sarapultsev, A.; Cherkasova, O.; Kotomtsev, V.; Platkovskiy, P.; Fedorov, S.; Sarapultsev, P.; Tseilikman, O.; et al. Hexobarbital Sleep Test for Predicting the Susceptibility or Resistance to Experimental Posttraumatic Stress Disorder. Int. J. Mol. Sci. 2020, 21, 5900. [Google Scholar] [CrossRef]
- Lipina, T.V.; Li, S.; Petrova, E.S.; Amstislavskaya, T.G.; Cameron, R.T.; Elliott, C.; Gondo, Y.; McGirr, A.; Mullins, J.G.L.; Baillie, G.S.; et al. PDE4B Missense Variant Increases Susceptibility to Post-Traumatic Stress Disorder-Relevant Phenotypes in Mice. J. Neurosci. 2024, 44, e0137242024. [Google Scholar] [CrossRef]
- Liberati, A.S.; Perrotta, G. Neuroanatomical and functional correlates in post-traumatic stress disorder: A narrative review. Ibrain 2024, 10, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Healy, D.G.; Harkin, A.; Cryan, J.F.; Kelly, J.P.; Leonard, B.E. Metyrapone displays antidepressant-like properties in preclinical paradigms. Psychopharmacology 1999, 145, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Zenko, M.Y.; Baranova, K.A.; Rybnikova, E.A. Pathogenetic role of the stress-induced release of glucocorticoid hormones in the development of post-traumatic stress disorder: An experimental study. Dokl. Biol. Sci. 2018, 479, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Tanriverdi, A.M.; Aydin, B.; Bebitoglu, B.T.; Cabadak, H.; Goren, M.Z. The behavioral and neurochemical effects of methylprednisolone or metyrapone in a post-traumatic stress disorder rat model. North. Clin. Istanb. 2019, 6, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.P.; Anilkumar, S.; McEwen, B.S.; Chattarji, S. Glucocorticoids protect against the delayed behavioral and cellular effects of acute stress on the amygdala. Biol. Psychiatry 2012, 72, 466–475. [Google Scholar] [CrossRef]
- Florido, A.; Velasco, E.R.; Monari, S.; Cano, M.; Cardoner, N.; Sandi, C.; Andero, R.; Perez-Caballero, L. Glucocorticoid-based pharmacotherapies preventing PTSD. Neuropharmacology 2023, 224, 109344. [Google Scholar] [CrossRef]
- Daniels, W.M.; Richter, L.; Stein, D.J. The effects of repeated intra-amygdala CRF injections on rat behavior and HPA axis function after stress. Metab. Brain Dis. 2004, 19, 15–23. [Google Scholar] [CrossRef]
- Ohmura, Y.; Yamaguchi, T.; Futami, Y.; Togashi, H.; Izumi, T.; Matsumoto, M.; Yoshida, T.; Yoshioka, M. Corticotropin-releasing factor enhances attentional function as assessed by the five-choice serial reaction time task in rats. Behav. Brain Res. 2009, 198, 429–433. [Google Scholar] [CrossRef]
- Bagosi, Z.; Megyesi, K.; Ayman, J.; Rudersdorf, H.; Ayaz, M.K.; Csabafi, K. The role of corticotropin-releasing factor (CRF) and CRF-related peptides in the social behavior of rodents. Biomedicines 2023, 11, 2217. [Google Scholar] [CrossRef]
- Jones, N.; Duxon, M.S.; King, S.M. Ethopharmacological analysis of the unstable elevated exposed plus maze, a novel model of extreme anxiety: Predictive validity and sensitivity to anxiogenic agents. Psychopharmacology 2002, 161, 314–323. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Chandramohan, Y.; Collins, A.; Droste, S.K.; Nutt, D.J.; Reul, J.M. GABAergic control of novelty stress-responsive epigenetic and gene expression mechanisms in the rat dentate gyrus. Eur. Neuropsychopharmacol. 2011, 21, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Johnston, A.L.; Baldwin, H.A.; File, S.E. Measures of anxiety and stress in the rat following chronic treatment with yohimbine. J. Psychopharmacol. 1988, 2, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Schwager, A.L.; Haack, A.K.; Taha, S.A. Impaired flexibility in decision making in rats after administration of the pharmacological stressor yohimbine. Psychopharmacology 2014, 231, 3941–3952. [Google Scholar] [CrossRef] [PubMed]
- Le Dorze, C.; Gisquet-Verrier, P. Sensitivity to trauma-associated cues is restricted to vulnerable traumatized rats and reinstated after extinction by yohimbine. Behav. Brain Res. 2016, 313, 120–134. [Google Scholar] [CrossRef] [PubMed]
- Malin, D.H.; Tsai, P.H.; Campbell, J.R.; Moreno, G.L.; Chapman, H.L.; Suzaki, A.; Keivan, M.S.; Gibbons, K.M.; Morales, E.R.; Burstein, E.S.; et al. Pimavanserin reverses multiple measures of anxiety in a rodent model of post-traumatic stress disorder. Eur. J. Pharmacol. 2023, 939, 175437. [Google Scholar] [CrossRef]
- Berger, W.; Mendlowicz, M.V.; Marques-Portella, C.; Kinrys, G.; Fontenelle, L.F.; Marmar, C.R.; Figueira, I. Pharmacologic alternatives to antidepressants in posttraumatic stress disorder: A systematic review. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 169–180. [Google Scholar] [CrossRef]
- Hazra, S.; Hazra, J.D.; Bar-On, R.A.; Duan, Y.; Edut, S.; Cao, X.; Richter-Levin, G. The role of hippocampal CaMKII in resilience to trauma-related psychopathology. Neurobiol. Stress 2022, 21, 100506. [Google Scholar] [CrossRef]
- Richter-Levin, G.; Stork, O.; Schmidt, M.V. Animal models of PTSD: A challenge to be met. Mol. Psychiatry 2019, 24, 1135–1156. [Google Scholar] [CrossRef]
- DePierro, J.; Lepow, L.; Feder, A.; Yehuda, R. Translating molecular and neuroendocrine findings in posttraumatic stress disorder and resilience to novel therapies. Biol. Psychiatry 2019, 86, 454–463. [Google Scholar] [CrossRef]
- Huang, Z.D.; Zhao, Y.F.; Li, S.; Gu, H.Y.; Lin, L.L.; Yang, Z.Y.; Niu, Y.M.; Zhang, C.; Luo, J. Comparative efficacy and acceptability of pharmaceutical management for adults with post-traumatic stress disorder: A systematic review and meta-analysis. Front. Pharmacol. 2020, 11, 559. [Google Scholar] [CrossRef]
- Chenouard, V.; Remy, S.; Tesson, L.; Ménoret, S.; Ouisse, L.-H.; Cherifi, Y.; Anegon, I. Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Front. Genet. 2021, 12, 615491. [Google Scholar] [CrossRef] [PubMed]
- Szpirer, C. Rat Models of Human Diseases and Related Phenotypes: A Systematic Inventory of the Causative Genes. J. Biomed. Sci. 2020, 27, 84. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.C.-G.; He, T.; Grandjean, J.; Homberg, J. Knockout Serotonin Transporter in Rats Moderates Outcome and Stimulus Generalization. Transl. Psychiatry 2021, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Whitney, A.J.; Lindeque, Z.; Kruger, R.; Steyn, S.F. Genetically Predisposed and Resilient Animal Models of Depression Reveal Divergent Responses to Early-Life Adversity. Acta Neuropsychiatr. 2023, 1–13. [Google Scholar] [CrossRef]
- Overstreet, D.H.; Wegener, G. The Flinders Sensitive Line Rat Model of Depression—25 Years and Still Producing. Pharmacol. Rev. 2013, 65, 143–155. [Google Scholar] [CrossRef]
- Redei, E.E.; Udell, M.E.; Solberg Woods, L.C.; Chen, H. The Wistar Kyoto Rat: A model of depression traits. Curr. Neuropharmacol. 2023, 21, 1884–1905. [Google Scholar] [CrossRef]
- Bolivar, V.; Cook, M.; Flaherty, L. List of transgenic and knockout mice: Behavioral profiles. Mamm. Genome 2000, 11, 260–274. [Google Scholar] [CrossRef]
- Anagnostopoulos, A.V.; Mobraaten, L.E.; Sharp, J.J.; Davisson, M.T. Transgenic and knockout databases: Behavioral profiles of mouse mutants. Physiol. Behav. 2001, 73, 675–689. [Google Scholar] [CrossRef]
- Finn, D.A.; Rutledge-Gorman, M.T.; Crabbe, J.C. Genetic animal models of anxiety. Neurogenetics 2003, 4, 109–135. [Google Scholar] [CrossRef]
- Chourbaji, S.; Vogt, M.A.; Gass, P. Mice that under- or overexpress glucocorticoid receptors as models for depression or posttraumatic stress disorder. Prog. Brain Res. 2008, 167, 65–77. [Google Scholar] [CrossRef]
- Charuvastra, A.; Cloitre, M. Social bonds and posttraumatic stress disorder. Annu. Rev. Psychol. 2008, 59, 301–328. [Google Scholar] [CrossRef] [PubMed]
- Sherin, J.E.; Nemeroff, C.B. Post-Traumatic Stress Disorder: The Neurobiological Impact of Psychological Trauma. Dialogues Clin. Neurosci. 2011, 13, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, T.; Nylocks, K.M.; Gamwell, K.L. Translational neuroscience measures of fear conditioning across development: Applications to high-risk children and adolescents. Biol. Mood Anxiety Disord. 2013, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Nowakowska, E.; Kus, K.; Ratajczak, P.; Cichocki, M.; Woźniak, A. The influence of aripiprazole, olanzapine and enriched environment on depressant-like behavior, spatial memory dysfunction and hippocampal level of BDNF in prenatally stressed rats. Pharmacol. Rep. 2014, 66, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Yang, Y.; Yang, J.; Zhang, J.; Han, H.; Ma, W.; Li, H.; Mao, R.; Xu, L.; Hao, W.; et al. Enriched environment experience overcomes the memory deficits and depressive-like behavior induced by early life stress. Neurosci. Lett. 2006, 404, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Cloitre, M.; Stolbach, B.C.; Herman, J.L.; van der Kolk, B.; Pynoos, R.; Wang, J.; Petkova, E. A developmental approach to complex PTSD: Childhood and adult cumulative trauma as predictors of symptom complexity. J. Trauma. Stress 2009, 22, 399–408. [Google Scholar] [CrossRef]
- Whitaker, A.M.; Gilpin, N.W.; Edwards, S. Animal models of post-traumatic stress disorder and recent neurobiological insights. Behav. Pharmacol. 2014, 25, 398–409. [Google Scholar] [CrossRef]
- de Jongh, A.; Fransen, J.; Oosterink-Wubbe, F.; Aartman, I. Psychological trauma exposure and trauma symptoms among individuals with high and low levels of dental anxiety. Eur. J. Oral Sci. 2006, 114, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Francis, D.D.; Diorio, J.; Plotsky, P.M.; Meaney, M.J. Environmental enrichment reverses the effects of maternal separation on stress reactivity. J. Neurosci. 2002, 22, 7840–7843. [Google Scholar] [CrossRef]
- Ditlevsen, D.N.; Elklit, A. The combined effect of gender and age on post-traumatic stress disorder: Do men and women show differences in the lifespan distribution of the disorder? Ann. Gen. Psychiatry 2010, 9, 32. [Google Scholar] [CrossRef]
- Ditlevsen, D.N.; Elklit, A. Gender, trauma type, and PTSD prevalence: A re-analysis of 18 Nordic convenience samples. Ann. Gen. Psychiatry 2012, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.S.; Hamann, S. Sex differences in brain activation to emotional stimuli: A meta-analysis of neuroimaging studies. Neuropsychologia 2012, 50, 1578–1593. [Google Scholar] [CrossRef] [PubMed]
- Dell’Osso, L.; Carmassi, C.; Massimetti, G.; Stratta, P.; Riccardi, I.; Capanna, C.; Akiskal, K.K.; Akiskal, H.S.; Rossi, A. Age, gender, and epicenter proximity effects on post-traumatic stress symptoms in L’Aquila 2009 earthquake survivors. J. Affect. Disord. 2013, 146, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.S.; van Rooij, S.J.H.; Jovanovic, T. Developmental contributors to trauma response: The importance of sensitive periods, early environment, and sex differences. In Current Topics in Behavioral Neurosciences; Springer: Cham, Switzerland, 2018; Volume 38, pp. 1–22. [Google Scholar] [CrossRef]
- Tolin, D.F.; Foa, E.B. Sex differences in trauma and posttraumatic stress disorder: A quantitative review of 25 years of research. Psychol. Bull. 2006, 132, 959–992. [Google Scholar] [CrossRef] [PubMed]
- Hiscox, L.V.; Sharp, T.H.; Olff, M.; Seedat, S.; Halligan, S.L. Sex-Based Contributors to and Consequences of Post-Traumatic Stress Disorder. Curr. Psychiatry Rep. 2023, 25, 233. [Google Scholar] [CrossRef]
- Shansky, R.M.; Hamo, C.; Hof, P.R.; Lou, W.; McEwen, B.S.; Morrison, J.H. Estrogen promotes stress sensitivity in a prefrontal cortex-amygdala pathway. Cereb. Cortex 2010, 20, 2560–2567. [Google Scholar] [CrossRef]
- Shansky, R.M.; Hamo, C.; Hof, P.R.; McEwen, B.S.; Morrison, J.H. Stress-induced dendritic remodeling in the prefrontal cortex is circuit-specific. Cereb. Cortex 2009, 19, 2479–2484. [Google Scholar] [CrossRef]
- Stevens, J.S.; Jovanovic, T.; Fani, N.; Ely, T.D.; Glover, E.M.; Bradley, B.; Ressler, K.J. Disrupted amygdala-prefrontal functional connectivity in civilian women with posttraumatic stress disorder. J. Psychiatr. Res. 2013, 47, 1469–1478. [Google Scholar] [CrossRef]
- Lemogne, C.; Piolino, P.; Friszer, S.; Claret, A.; Girault, N.; Jouvent, R.; Allilaire, J.F.; Fossati, P. Episodic autobiographical memory in depression: Specificity, autonoetic consciousness, and self-perspective. Conscious. Cogn. 2006, 15, 258–268. [Google Scholar] [CrossRef]
- Moore, S.A.; Zoellner, L.A. Overgeneral autobiographical memory and traumatic events: An evaluative review. Psychol. Bull. 2007, 133, 419–437. [Google Scholar] [CrossRef]
- Asperholm, M.; Högman, N.; Rafi, J.; Herlitz, A. What did you do yesterday? A meta-analysis of sex differences in episodic memory. Psychol. Bull. 2019, 145, 785–821. [Google Scholar] [CrossRef] [PubMed]
- Asperholm, M.; van Leuven, L.; Herlitz, A. Sex differences in episodic memory variance. Front. Psychol. 2020, 11, 613. [Google Scholar] [CrossRef] [PubMed]
- Grysman, A. Gender differences in episodic encoding of autobiographical memory. J. Appl. Res. Mem. Cogn. 2017, 6, 51–59. [Google Scholar] [CrossRef]
- Compère, L.; Sperduti, M.; Gallarda, T.; Anssens, A.; Lion, S.; Delhommeau, M.; Martinelli, P.; Devauchelle, A.D.; Oppenheim, C.; Piolino, P. Sex differences in the neural correlates of specific and general autobiographical memory. Front. Hum. Neurosci. 2016, 10, 285. [Google Scholar] [CrossRef]
- Whittle, S.; Yücel, M.; Yap, M.B.; Allen, N.B. Sex differences in the neural correlates of emotion: Evidence from neuroimaging. Biol. Psychol. 2011, 87, 319–333. [Google Scholar] [CrossRef]
- Davis, P.J. Gender differences in autobiographical memory for childhood emotional experiences. J. Pers. Soc. Psychol. 1999, 76, 498–510. [Google Scholar] [CrossRef]
- Skowronski, J.J.; McCarthy, R.J.; Wells, B.M. Person memory: Past, perspectives, and prospects. In The Oxford Handbook of Social Cognition; Carlston, D., Ed.; Oxford Library of Psychology (2013; online edn, Oxford Academic); Oxford University Press: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- Herz, R.S.; Cupchik, G.C. An experimental characterization of odor-evoked memories in humans. Chem. Senses 1992, 17, 519–528. [Google Scholar] [CrossRef]
- Pines, A.M.; Friedman, A. Gender differences in romantic jealousy. J. Soc. Psychol. 1998, 138, 54–71. [Google Scholar] [CrossRef]
- Fuentes, A.; Desrocher, M. The effects of gender on the retrieval of episodic and semantic components of autobiographical memory. Memory 2013, 21, 619–632. [Google Scholar] [CrossRef]
- Herlitz, A.; Nilsson, L.G.; Bäckman, L. Gender differences in episodic memory. Mem. Cogn. 1997, 25, 801–811. [Google Scholar] [CrossRef]
- Watkins, L.E.; Sprang, K.R.; Rothbaum, B.O. Treating PTSD: A review of evidence-based psychotherapy interventions. Front. Behav. Neurosci. 2018, 12, 258. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, D.G.; Resnick, H.S.; Milanak, M.E.; Miller, M.W.; Keyes, K.M.; Friedman, M.J. National estimates of exposure to traumatic events and PTSD prevalence using DSM-IV and DSM-5 criteria. J. Trauma. Stress 2013, 26, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Koenen, K.C.; Ratanatharathorn, A.; Ng, L.; McLaughlin, K.A.; Bromet, E.J.; Stein, D.J.; Karam, E.G.; Ruscio, A.M.; Benjet, C.; Scott, K.; et al. Posttraumatic stress disorder in the World Mental Health Surveys. Psychol. Med. 2017, 47, 2260–2274. [Google Scholar] [CrossRef] [PubMed]
- Mughal, A.Y.; Devadas, J.; Ardman, E.; Levis, B.; Go, V.F.; Gaynes, B.N. A systematic review of validated screening tools for anxiety disorders and PTSD in low to middle-income countries. BMC Psychiatry 2020, 20, 338. [Google Scholar] [CrossRef] [PubMed]
- Schrader, C.; Ross, A. A review of PTSD and current treatment strategies. Mo. Med. 2021, 118, 546–551. [Google Scholar]
- Dorrington, S.; Zavos, H.; Ball, H.; McGuffin, P.; Rijsdijk, F.; Siribaddana, S.; Sumathipala, A.; Hotopf, M. Trauma, post-traumatic stress disorder and psychiatric disorders in a middle-income setting: Prevalence and comorbidity. Br. J. Psychiatry 2014, 205, 383–389. [Google Scholar] [CrossRef]
- Richardson, L.K.; Frueh, B.C.; Acierno, R. Prevalence estimates of combat-related post-traumatic stress disorder: Critical review. Aust. N. Z. J. Psychiatry 2010, 44, 4–19. [Google Scholar] [CrossRef]
- Shahmiri Barzoki, H.; Ebrahimi, M.; Khoshdel, A.; Noorbala, A.A.; Rahnejat, A.M.; Avarzamani, L.; Shahed Hagh Ghadam, H.; Avakh, F. Studying the prevalence of PTSD in veterans, combatants and freed soldiers of Iran-Iraq War: A systematic and meta-analysis review. Psychol. Health Med. 2023, 28, 812–818. [Google Scholar] [CrossRef]
- Wesemann, U.; Renner, K.H.; Rowlands, K.; Köhler, K.; Hüttermann, N.; Himmerich, H. Incidence of mental disorders in soldiers deployed to Afghanistan who have or have not experienced a life-threatening military incident—A quasi-experimental cohort study. Front. Public Health 2024, 12, 1357836. [Google Scholar] [CrossRef]
- Amstadter, A.B.; Lönn, S.L.; Cusack, S.; Sundquist, J.; Kendler, K.S.; Sundquist, K. Testing quantitative and qualitative sex effects in a national Swedish twin-sibling study of posttraumatic stress disorder. Am. J. Psychiatry 2024, 181, 720–727. [Google Scholar] [CrossRef]
- Katrinli, S.; Michopoulos, V. Decoding sex differences in PTSD heritability: A comprehensive twin study. Am. J. Psychiatry 2024, 181, 690–692. [Google Scholar] [CrossRef] [PubMed]
- Atwoli, L.; Stein, D.J.; Koenen, K.C.; McLaughlin, K.A. Epidemiology of posttraumatic stress disorder: Prevalence, correlates, and consequences. Curr. Opin. Psychiatry 2015, 28, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Afifi, T.O.; Asmundson, G.J.; Taylor, S.; Jang, K.L. The role of genes and environment on trauma exposure and posttraumatic stress disorder symptoms: A review of twin studies. Clin. Psychol. Rev. 2010, 30, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Eshuis, L.V.; van Gelderen, M.J.; van Zuiden, M.; Nijdam, M.J.; Vermetten, E.; Olff, M.; Bakker, A. Efficacy of immersive PTSD treatments: A systematic review of virtual and augmented reality exposure therapy and a meta-analysis of virtual reality exposure therapy. J. Psychiatr. Res. 2021, 143, 516–527. [Google Scholar] [CrossRef]
- Levi, O.; Yehuda, A.B.; Pine, D.S.; Bar-Haim, Y. A sobering look at treatment effectiveness of military-related posttraumatic stress disorder. Clin. Psychol. Sci. 2022, 10, 690–699. [Google Scholar] [CrossRef]
- Nijdam, M.J.; Vermetten, E.; McFarlane, A.C. Toward staging differentiation for posttraumatic stress disorder treatment. Acta Psychiatr. Scand. 2023, 147, 65–80. [Google Scholar] [CrossRef]
- Colucci, P.; Marchetta, E.; Mancini, G.F.; Alva, P.; Chiarotti, F.; Hasan, M.T.; Campolongo, P. Predicting Susceptibility and Resilience in an Animal Model of Post-Traumatic Stress Disorder (PTSD). Transl. Psychiatry 2020, 10, 243. [Google Scholar] [CrossRef]
- Willmore, L.; Cameron, C.; Yang, J.; Witten, I.B.; Falkner, A.L. Behavioural and Dopaminergic Signatures of Resilience. Nature 2022, 611, 124–132. [Google Scholar] [CrossRef]
- Schwendt, M.; Shallcross, J.; Hadad, N.A.; Namba, M.D.; Hiller, H.; Wu, L.; Krause, E.G.; Knackstedt, L.A. A Novel Rat Model of Comorbid PTSD and Addiction Reveals Intersections between Stress Susceptibility and Enhanced Cocaine Seeking with a Role for mGlu5 Receptors. Transl. Psychiatry 2018, 8, 209. [Google Scholar] [CrossRef]
- Lobo, I.; Portugal, L.C.; Figueira, I.; Volchan, E.; David, I.; Garcia Pereira, M.; de Oliveira, L. EEG correlates of the severity of posttraumatic stress symptoms: A systematic review of the dimensional PTSD literature. J. Affect. Disord. 2015, 183, 210–220. [Google Scholar] [CrossRef]
- Sheerin, C.M.; Franke, L.M.; Aggen, S.H.; Amstadter, A.B.; Walker, W.C. Evaluating the contribution of EEG power profiles to characterize and discriminate posttraumatic stress symptom factors in a combat-exposed population. Clin. EEG Neurosci. 2018, 49, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Glazebrook, A.J.; Shakespeare-Finch, J.; Andrew, B.; van der Meer, J. Posttraumatic growth EEG neuromarkers: Translational neural comparisons with resilience and PTSD in trauma-exposed healthy adults. Eur. J. Psychotraumatol. 2023, 14, 2272477. [Google Scholar] [CrossRef] [PubMed]
- Peddi, A.; Sendi, M.S.E.; Minton, S.T.; Hinojosa, C.A.; West, E.; Langhinrichsen-Rohling, R.; Ressler, K.J.; Calhoun, V.D.; van Rooij, S.J.H. Towards predicting PTSD symptom severity using portable EEG-derived biomarkers. medRxiv 2024. [Google Scholar] [CrossRef]
- Weathers, F.W.; Bovin, M.J.; Lee, D.J.; Sloan, D.M.; Schnurr, P.P.; Kaloupek, D.G.; Keane, T.M.; Marx, B.P. The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5): Development and initial psychometric evaluation in military veterans. Psychol. Assess. 2018, 30, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.B.; Trachik, B.; Goldberg, S.; Simpson, T.L. Identifying PTSD symptom typologies: A latent class analysis. Psychiatry Res. 2020, 285, 112779. [Google Scholar] [CrossRef]
- Roberts, N.P.; Kitchiner, N.J.; Lewis, C.E.; Downes, A.J.; Bisson, J.I. Psychometric properties of the PTSD Checklist for DSM-5 in a sample of trauma-exposed mental health service users. Eur. J. Psychotraumatol. 2021, 12, 1863578. [Google Scholar] [CrossRef]
- Nedelcea, C.; Ciorbea, I.D.; Vasile, D.L.; Ionescu, Ș.; Papasteri, C.; Letzner, R.D.; Cosmoiu, A.; Georgescu, T. The structure of PTSD: Development of the Post Traumatic Symptom scale from a clinician-based perspective. Eur. J. Psychotraumatol. 2022, 13, 2066455. [Google Scholar] [CrossRef]
- Blevins, C.A.; Weathers, F.W.; Davis, M.T.; Witte, T.K.; Domino, J.L. The Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5): Development and initial psychometric evaluation. J. Trauma. Stress 2015, 28, 489–498. [Google Scholar] [CrossRef]
- Allen, N.; Hevey, D.; Cogley, C.; O’Keeffe, F. A meta-analysis of the association between event-related rumination and posttraumatic growth: The event-related rumination inventory and the posttraumatic growth inventory. J. Trauma. Stress 2022, 35, 1575–1585. [Google Scholar] [CrossRef]
- Romeo, A.; Castelli, L.; Zara, G.; Di Tella, M. Posttraumatic growth and posttraumatic depreciation: Associations with core beliefs and rumination. Int. J. Environ. Res. Public Health 2022, 19, 15938. [Google Scholar] [CrossRef]
- Schubert, C.F.; Schmidt, U.; Rosner, R. Posttraumatic growth in populations with posttraumatic stress disorder—A systematic review on growth-related psychological constructs and biological variables. Clin. Psychol. Psychother. 2016, 23, 469–486. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Huang, G.D.; Xue, Y.X.; Yang, M.; Jia, X.J. The neural circuits and molecular mechanisms underlying fear dysregulation in posttraumatic stress disorder. Front. Neurosci. 2023, 17, 1281401. [Google Scholar] [CrossRef] [PubMed]
- Landis, S.C.; Amara, S.G.; Asadullah, K.; Austin, C.P.; Blumenstein, R.; Bradley, E.W.; Crystal, R.G.; Darnell, R.B.; Ferrante, R.J.; Fillit, H.; et al. A Call for Transparent Reporting to Optimize the Predictive Value of Preclinical Research. Nature 2012, 490, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Schöner, J.; Heinz, A.; Endres, M.; Gertz, K.; Kronenberg, G. Post-traumatic stress disorder and beyond: An overview of rodent stress models. J. Cell Mol. Med. 2017, 21, 2248–2256. [Google Scholar] [CrossRef]
Model | Type of Stressor | Outcome | Stressor Application | Ethological Validity * | Etiological Validity * | Complexity |
---|---|---|---|---|---|---|
Electric Shock Models | ● | ●●● | ||||
Immobilization Stress | ● | ●● | ||||
Underwater Trauma and Water-Associated Zero Maze | ●● | ●●● | ||||
Single Prolonged Stress | ●● | ●● | ||||
Unpredictable Variable Stress | ●● | ●●● | ||||
Stress–Re-stress | ●● | ●● | ||||
Time-Dependent Sensitization | ●● | ●●● | ||||
Acoustic Startle Response | ● | ●● | ||||
Social Stress Models | ●● | ●● | ||||
Predator-Based Models | ●●● | ●●● | ||||
Pharmacological Models | N/A | ● | ||||
Genetic Models | N/A | ●● | ||||
Differential Contextual Odor Conditioning | ●● | ●● |
Model | Type of Stressor | Components | Targeted Symptoms | Key Findings | Strengths | Specific Weaknesses |
---|---|---|---|---|---|---|
SPS | Multi-Stressor | Restraint, forced swim, ether anesthesia | Acute stress response, hyperarousal | HPA axis dysregulation, impaired fear extinction | Widely used, models acute stress effects effectively | Lacks representation of chronic symptoms |
S-R | Multi-Stressor | Restraint, forced swim, ether, re-stress | Chronic aspects of PTSD, anxiety | Anxiety-like states, HPA axis dysfunction | Models chronic stress aspects and situational reminders, effective in inducing HPA axis dysregulation | Limited capacity to simulate hyperarousal symptoms |
TDS | Multi-Stressor and Ethological Validity | Restraint, forced swim, ether, situational reminder | Situational reminders, sustained PTSD symptoms | HPA axis dysregulation, prolonged stress effects | Ethologically valid, captures both acute and chronic stress effects, incorporates reminders | Limited symptom expression, requires further physiological and behavioral measures |
General Weaknesses | Low reproducibility, methodological variability, lack of standardization in scoring, absence of randomization, inadequate sample size calculations. High variability in outcomes, difficulty in conducting meta-analyses. |
Model | Description | Strengths | Weaknesses | References |
---|---|---|---|---|
Social Isolation | Prolonged isolation leading to stress-induced behavioral and physiological changes. | Models aspects of social withdrawal and anxiety-like behavior; Reproducibility. | Limited ethological relevance; Lack of specificity, overlap with symptoms of depression or anxiety; Difficult generalization to human PTSD. | [134,135,136,137,138,139,140] |
Housing Instability | Instability in housing environment leading to chronic stress. | Mimics real-world environmental instability; Assesses combined physical and psychological stress. | Highly variable outcomes depending on setup; Results may not generalize well. | [135,136,137,138] |
Juvenile Social Exploration | Introduction of a juvenile rat to assess social behavior and anxiety response. | Provides insights into social avoidance and resilience mechanisms; Relevance to stress-induced analgesia and learned helplessness. | Validation challenges in prolonged stress incubation models and conspecific exploration. | [144,145,146] |
Social Defeat Stress | Introduction of intruder into the resident’s territory to induce a defeat episode. | Models PTSD-like symptoms such as heightened fear and anxiety; Stable and reproducible outcomes; Differentiates between resilient and susceptible individuals. | Lacks protocol for social stress in females; Not suitable for single traumatic exposure modeling. | [138,139,140,141] |
Aspect | Details | References |
---|---|---|
Pros | ||
Ethological Validity | Uses naturalistic threats, closely mirroring real-life stressors. | [22,182] |
Absence of Physical Harm | Focuses on psychological stress without causing physical injuries. | [182] |
Sensitivity to Treatment | Produces phenotypes responsive to treatments like selective serotonin reuptake inhibitors (SSRIs). | [15] |
Versatile Stimuli | Allows the use of natural and synthetic stimuli. | [173,175,176] |
Reveals Genetic Predisposition | Identifies animals susceptible or resilient to PTSD-like conditions. | [15,183,191] |
Induces Long-Term Effects | Provokes enduring PTSD-like (patho)physiological and behavioral responses. | [151,182] |
Cons and Limitations | ||
Variability in Responses | Not all animals develop PTSD-like symptoms, complicating reproducibility. | [183,184,196] |
Limited Research in Females | Limited focus on females, especially in areas like sleep disturbances and depressive behaviors. | [199,202] |
Complicating Protocols | Variability in protocols and rodent strains complicates findings; secondary stressors may be needed. | [183,196,200] |
Limited Scope of PTSD Symptoms | Does not fully account for episodic memory alterations and memory dissociation. | [201] |
Synthetic Stimuli Limitations | Synthetic odors like TMT do not fully replicate the effects of natural predator odors. | [173,177,178,180,181] |
Model Type | Examples | Action | Key Features | References |
---|---|---|---|---|
Glucocorticoid Hormone Synthesis Inhibition | Metyrapone | Inhibits 11β-hydroxylase; affects HPA | Reduces glucocorticoid levels, influencing anxiety and cognitive functions. | [97,217,218,219] |
Corticosterone Administration | Corticosterone | Modulates anxiety-like behavior | Mimics chronic stress conditions; prevents anxiety-like behavior induced by immobilization stress. | [155,220,221] |
CRF Administration | CRF injections | Elevates stress response | Induces anxiety-like behaviors; disrupts HPA axis function. | [222,223,224] |
Anxiogenic Agents | FG-7142 | GABAA receptor inverse agonist | Induces anxiety and hypervigilance; useful for studying GABAergic mechanisms. | [225,226,227,228,229] |
Adrenergic Challenge | Yohimbine | Alpha-2 adrenergic receptor antagonist | Provokes hyperarousal and anxiety by enhancing noradrenaline release. | [227,228,229] |
Ecstasy-like Compounds | MDMA | Neurotoxicity at high or repeated doses | Alters mood, perception, and social behavior; studied for neurotoxic effects. | [230] |
5-HT2A Inverse Agonism | Pimavanserin | 5-HT2A inverse agonist | Reverses persistent stress effects in stressed rats. | [231] |
Model | Face Validity | Construct Validity | Predictive Validity |
---|---|---|---|
Single Prolonged Stress (SPS) | Brief stressor induction Resemblance to human PTSD symptoms | Intensity-dependent responses Persistence of alterations | Inter-individual variability Response to known PTSD treatments |
Stress–Re-stress (S-R) | Simulates trigger–response Resemblance to human PTSD symptoms | Outcome depends on re-stress treatment: - Footshock produces HPA axis dysfunction and prominent PTSD symptoms. - Forced swimming is less Effective. | Predicts treatment efficacy Response to known PTSD treatments |
Time-Dependent Sensitization (TDS) | Captures acute and chronic stress Resemblance to PTSD symptoms | Corticosterone level changes Monoamine dysregulation | Predictive of therapeutic outcomes |
Predator Scent Stress (PSS) | Naturalistic threats Resemblance to PTSD symptoms | Induces long-term HPA axis changes Neuroinflammation | Response to SSRIs and anti-inflammatory drugs |
Social Defeat Stress (SDS) | Simulates chronic social stress Resemblance to PTSD symptoms | HPA axis impact Neurobiological changes | Predicts antidepressant efficacy |
Early-Life Stress (ELS) | Models early trauma Resemblance to human PTSD symptoms | Long-term effects on brain and stress systems | Predicts mitigation effects of early stress treatments |
Physiological Response | Adaptive Effect | Potential Pathological Outcome |
---|---|---|
Stress-Induced Neurogenesis | Enhances learning and memory. Prepares the brain for future stressors by increasing resilience. | May lead to aberrant neural circuit formation. Overproduction of neurons could disrupt existing networks, leading to cognitive deficits or maladaptive behaviors. |
Inflammation | Facilitates tissue repair and recovery. Clears cellular debris after injury. | Chronic inflammation can lead to tissue damage, fibrosis, and the development of diseases such as autoimmune disorders or chronic pain syndromes. |
HPA Axis Hyperactivity | Mobilizes energy resources. Enhances immune function. Improves cognitive and emotional processing under acute stress. | Prolonged hyperactivity can result in impaired immune function, increased risk of metabolic disorders, and mental health issues like depression or anxiety. |
Autonomic Nervous System (ANS) Reactivity | Prepares the organism for fight-or-flight responses. Enhances survival during immediate threats by increasing alertness and readiness. | Chronic hyperarousal can lead to cardiovascular diseases, anxiety disorders, and impaired stress coping mechanisms, contributing to a constant state of heightened anxiety or panic. |
Model | Pros | Cons | Corticosterone Levels |
---|---|---|---|
Electric Shock Models | High control over stressor intensity and duration. Effective in simulating PTSD-like symptoms. Useful for fear conditioning. | Not ethologically valid. Potential physical harm. Inconsistent reflection of PTSD indicators. | Variable, often elevated acutely. |
Immobilization Stress Models | Extensive HPA axis data. Reliable effects on fear-specific processes. Includes data on both sexes. | Potential physical injuries. Limited naturalistic relevance. Few long-term studies. | Elevated acutely, with increased feedback, especially in females. |
Underwater Trauma and WAZM | Naturalistic stress without physical harm. Insights into hippocampal-dependent functions. | High stress intensity may vary. Ethical concerns. Potential injury risk in WAZM. | Decreased post-stress. |
Single Prolonged Stress (SPS) | Consistent PTSD phenotypes. Standardized procedure. Reveals fear extinction associations. | Low reproducibility. Fails to elicit trauma-cue avoidance. Methodological variability. | Elevated, challenging PTSD specificity. |
Unpredictable Variable Stress (UVS) | Valid for repeated traumatic events. Identifies susceptible/resilient groups. | Reproducibility challenges. Limited data on females. Inconsistent outcomes. | Enhanced negative feedback. |
Stress–Re-stress (S-R) | Simulates PTSD trigger–response. Induces HPA axis dysfunction. Responds to known treatments. | Lacks direct fear measures. Confounds depressive-like behavior. Limited treatment effectiveness. | Hypocorticosterone observed. |
Time-Dependent Sensitization (TDS) | Combines acute/chronic stress. Maintains stress responses with reminders. | Limited symptom expression. Requires more behavioral/physiological measures. | Variable. |
Acoustic Startle Response (ASR) | Evaluates anxiety/hyperarousal. Useful for screening trauma susceptibility/resilience. | Predictive value varies with timing. Modulated by contextual factors. | Often acutely elevated. |
Differential Contextual Odor Conditioning (DCOC) | Assesses contextual memory modulation. Explores cue-triggered memory and behavior. Relevant for PTSD models. | Requires precise control of environmental contexts. May not fully replicate complex PTSD symptoms. | Variable |
Social Stress Models | Highlights the social environment’s impact. Provides insights into stress-induced changes. | Limited ethological relevance. Varies with social conditions/age. Difficult to control variables. | Variable; often elevated. |
Predator-Based Models | High ethological validity. Produces robust PTSD phenotypes. Highlights genetic predisposition. | Response/protocol variability. Limited research on sleep disturbances. Differences in rodent strains. | Typically elevated. |
Pharmacological Models | Targets specific neurochemical pathways. Provides insights into treatments. | Cannot fully replicate PTSD. Inconsistent effects across species. | Varies with the agent used. |
Genetic Models | Explores genetic factors. Enables study of susceptibilities/treatment efficacy. | Limited by genetic modification specificity. May not capture full environmental interaction. | Varies widely with genetic modification and context. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarapultsev, A.; Komelkova, M.; Lookin, O.; Khatsko, S.; Gusev, E.; Trofimov, A.; Tokay, T.; Hu, D. Rat Models in Post-Traumatic Stress Disorder Research: Strengths, Limitations, and Implications for Translational Studies. Pathophysiology 2024, 31, 709-760. https://doi.org/10.3390/pathophysiology31040051
Sarapultsev A, Komelkova M, Lookin O, Khatsko S, Gusev E, Trofimov A, Tokay T, Hu D. Rat Models in Post-Traumatic Stress Disorder Research: Strengths, Limitations, and Implications for Translational Studies. Pathophysiology. 2024; 31(4):709-760. https://doi.org/10.3390/pathophysiology31040051
Chicago/Turabian StyleSarapultsev, Alexey, Maria Komelkova, Oleg Lookin, Sergey Khatsko, Evgenii Gusev, Alexander Trofimov, Tursonjan Tokay, and Desheng Hu. 2024. "Rat Models in Post-Traumatic Stress Disorder Research: Strengths, Limitations, and Implications for Translational Studies" Pathophysiology 31, no. 4: 709-760. https://doi.org/10.3390/pathophysiology31040051
APA StyleSarapultsev, A., Komelkova, M., Lookin, O., Khatsko, S., Gusev, E., Trofimov, A., Tokay, T., & Hu, D. (2024). Rat Models in Post-Traumatic Stress Disorder Research: Strengths, Limitations, and Implications for Translational Studies. Pathophysiology, 31(4), 709-760. https://doi.org/10.3390/pathophysiology31040051