Syringaldehyde Alleviates Cardiac Hypertrophy Induced by Hyperglycemia in H9c2 Cells Through GLP-1 Receptor Signals
<p>Syringaldehyde (SA) increases the expression of the GLP-1 receptor in H9c2 cells with hypertrophy. (<b>a</b>) Changes in GLP-1 receptor protein levels induced via SA administration at concentrations of 0.1 μM (low), 0.5 μM (medium), and 1 μM (high). (<b>b</b>) Changes in calcium influx induced via SA administration at different concentrations. (<b>c</b>) Levels of cellular cyclic AMP (cAMP) in cells subjected to different concentrations of SA. (<b>d</b>) The cellular cAMP level induced by SA at 1 μM was inhibited, following 30 min pretreatment with Ex 9 at concentrations of 0.1 μM or 0.5 μM. The sample size was 6 except for the Western blotting analysis (n = 4). Statistical significance was indicated as follows: * <span class="html-italic">p</span> < 0.05 vs. control (Con); <sup>#</sup> <span class="html-italic">p</span> < 0.05 vs. vehicle (Veh).</p> "> Figure 2
<p>Syringaldehyde (SA) ameliorated the hyperglycemia-induced hypertrophy of H9c2 cells. (<b>a</b>) Changes in the size of the hypertrophic cells treated with syringaldehyde at different concentrations of 0.1 μM (low), 0.5 μM (medium), and 1 μM (high). * <span class="html-italic">p</span> < 0.05 vs. control (Con). <sup>#</sup> <span class="html-italic">p</span> < 0.05) vs. vehicle (Veh). Gene expression levels of (<b>b</b>) the gene expression levels of ANP (Con: 1 ± 0.2; Veh: 2.1 ± 0.2; SA Med: 1.3 ± 0.1; SA High: 1.2 ± 0.1), BNP (Con: 1 ± 0.2; Veh: 1.9 ± 0.1; SA Med: 1.4 ± 0.2; SA High: 1.1 ± 0.1) and (<b>c</b>) β-MHC (Con: 1 ± 0.1; Veh: 1.9 ± 0.1; SA Med: 1.3 ± 0.2; SA High: 1 ± 0.1) in hypertrophic cells administered various concentrations of SA or without treatment. * <span class="html-italic">p</span> < 0.05 vs. control (Con). <sup>#</sup> <span class="html-italic">p</span> < 0.05) vs. vehicle (Veh). (<b>d</b>) The size of the H9c2 cells was observed using light microscopy (scale bar: 100 μm). Control cells in a normal culture (Con) were not modified with SA at 1 μM (Con + SA), as indicated in the upper panel. * <span class="html-italic">p</span> < 0.05 vs. normal cells (Con). <sup>#</sup> <span class="html-italic">p</span> < 0.05) vs. high glucose-induced hypertrophic cell (HG). Values for each indicator are expressed as fold changes in gene expressions of ANP, BNP, and β-MHC, relative to the control group. Fold change is calculated as follows: fold change = data of the experimental group/data of the control group.</p> "> Figure 3
<p>The signaling pathway for syringaldehyde (SA) alleviated cardiac hypertrophy in H9c2 cells. (<b>a</b>) Changes in cell size in hypertrophic cardiomyocytes with GLP-1 resistance. Cells were treated with or without SA at 1 μM (high dose), exendin-4 (EX-4) at 0.5 μM, and metformin at 5 μM, respectively. (<b>b</b>) SA and EX-4 failed to stimulate cAMP levels in H9c2 cells with GLP-1 resistance, whereas dopamine at 5 μM elevated cAMP levels in these cells. (<b>c</b>) A decrease in hypertrophic cell size due to SA at 0.5 μM (a medium dose) was reversed via pretreatment with H-89 at doses of 0.5 μM (low) or 1 μM (high). (<b>d</b>) Changes in cellular ROS levels in high glucose-induced hypertrophic cells with or without SA treatment. The inhibition of PKA by H-89 (1 μM) reversed the ROS-lowering effect of SA. Values for each indicator are expressed as fold changes in cell size, gene expressions of ANP, BNP, and β-MHC, relative to the control group. Results are presented as the mean ± SE from independent experiments, n = 6. Statistical significance: * <span class="html-italic">p</span> < 0.05 vs. normal control (Con). <sup>#</sup> <span class="html-italic">p</span> < 0.05 vs. vehicle (Veh). <sup>†</sup> <span class="html-italic">p</span> < 0.05 vs. hypertrophic cells treated with SA at 0.5 μM (Blank).</p> "> Figure 4
<p>The role of AMPK in syringaldehyde (SA)-alleviated cardiac hypertrophy in H9c2 cells. H9c2 cells were treated with a high glucose medium for 48 h. siRNA was used to ablate the expression of AMPK and H9c2 cells that received with same volume of scramble. (<b>a</b>) Changes in cell size due to SA at 1 μM (high) were, like the effect of EX-4, reversed by AMPK ablation. Additionally, the effects of metformin were also removed in AMPK-silenced cells. (<b>b</b>) The changes in gene expression levels of ANP (Con: 1 ± 0.2; Veh: 2.6 ± 0.4; SA High + scramble: 1.2 ± 0.2; SA High + siRNA: 2.2 ± 0.3; EX4+ scramble: 1.4 ± 0.1; EX4 + siRNA: 2.2 ± 0.3), and BNP (Con: 1 ± 0.3; Veh: 2.4 ± 0.3; SA High + scramble: 1.3 ± 0.4; SA High + siRNA: 2.3 ± 0.4; EX4+ scramble: 1.6 ± 0.2; EX4 + siRNA: 2.2 ± 0.4). (<b>c</b>) The changes in gene expression levels of β-MHC (Con: 1 ± 0.2; Veh: 1.9 ± 0.2; SA High + scramble: 1.2 ± 0.1; SA High + siRNA: 1.7 ± 0.2; EX4+ scramble: 1.3 ± 0.1; EX4 + siRNA: 1.7 ± 0.3). (<b>d</b>) The expression of O-linked b-N-acetylglucosamine transferase (OGT) was promoted by high glucose levels and reduced by SA at a 1 μM (high) dose. The effect of SA was reversed by compound C (CpC) at doses of 5 μM (low) and 10 μM (high). The value of each indicator shown in a column is the mean ± standard error of the mean (SEM) per group; n = 6. Values for each indicator are expressed as fold changes in cell size, cAMP levels, and ROS levels relative to the control group. Fold change is calculated as follows: fold change = data of the experimental group/data of the control group. * <span class="html-italic">p</span> < 0.05 vs. normal control (Con). <sup>#</sup> <span class="html-italic">p</span> < 0.05 vs. vehicle (Veh). <sup>†</sup> <span class="html-italic">p</span> < 0.05 vs. hypertrophic cell administered with SA 1 μM (Blank).</p> "> Figure 5
<p>The schematic diagram that presents how syringaldehyde alleviates cardiac hypertrophy.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Syringaldehyde (SA) Activated GLP-1 Receptors in Cardiomyocytes and Alleviated Cardiac Hypertrophy Induced by Hyperglycemia in H9c2 Cells
2.2. Effects of Syringaldehyde (SA) Were Ablated in H9c2 Cells with GLP-1 Resistance
2.3. Protein Kinase A (PKA) Is Involved in the Activation of the GLP-1 Receptor in H9c2 Cells
2.4. Role of AMPK in Cardiac Effects of Syringaldehyde (SA)
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Culture of Cardiac Cells
4.3. Induction of Cardiac Hypertrophy in H9c2 Cells
4.4. Induction of GLP-1 Resistance in H9c2 Cells
4.5. Detection of Cellular ROS
4.6. Cardiomyocyte Transfections
4.7. Quantitative Reverse-Transcription Polymerase Chain Reaction (qRT-PCR) of O-Linked N-Acetylglucosamine Transferase (OGT)
ANP | F: 5′-CACAGATCTGATGGATTTCAAGA-3′; |
R: 5′-CCTCATCTTCTACCGGCATC-3′; | |
BNP | F: 5′-GTCAGTCGCTTGGGCTGT-3′; |
R: 5′-CCAGAGCTGGGGAAAGAAG-3′; | |
β-MHC | F: 5′-CATCCCCAATGAGACGAAGT-3′; |
R: 5′-GGGAAGCCCTTCCTACAGAT-3′ | |
Ogt | F: 5′-G GCTATGTGAGTT CTGACTTCGG-3′ |
R: 5′-GATTGGCTTCCGCCATCACCTT-3′, | |
Gapdh | F: 5′-CATCACTGCCACCCAGAAGACTG-3′ |
R: 5′-ATGCCAGTGAGCTTCCCGTTCAG-3′ |
4.8. Western Blot Analysis
4.9. Detection of Intracellular Calcium Level
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zuo, L.; Youtz, D.J.; Wold, L.E. Particulate matter exposure exacerbates high glucose-induced cardiomyocyte dysfunction through ROS generation. PLoS ONE 2011, 6, e23116. [Google Scholar] [CrossRef] [PubMed]
- Braunwald, E. The war against heart failure: The Lancet lecture. Lancet 2015, 385, 812–824. [Google Scholar] [CrossRef] [PubMed]
- D’Ascenzi, F.; Pelliccia, A.; Corrado, D.; Cameli, M.; Curci, V.; Alvino, F.; Natali, B.M.; Focardi, M.; Bonifazi, M.; Mondillo, S. Right ventricular remodelling induced by exercise training in competitive athletes. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 301–307. [Google Scholar] [CrossRef]
- Driver, J.A.; Djousse, L.; Logroscino, G.; Gaziano, J.M.; Kurth, T. Incidence of cardiovascular disease and cancer in advanced age: Prospective cohort study. BMJ 2008, 337, a2467. [Google Scholar] [CrossRef]
- Bernardo, B.C.; Weeks, K.L.; Pretorius, L.; McMullen, J.R. Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies. Pharmacol. Ther. 2010, 128, 191–227. [Google Scholar] [CrossRef]
- Voulgari, C.; Papadogiannis, D.; Tentolouris, N. Diabetic cardiomyopathy: From the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vasc. Health Risk Manag. 2010, 6, 883–903. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J. The biology of incretin hormones. Cell Metab. 2006, 3, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Ban, K.; Noyan-Ashraf, M.H.; Hoefer, J.; Bolz, S.S.; Drucker, D.J.; Husain, M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 2008, 117, 2340–2350. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Z.; Ilyas, I.; Little, P.J.; Kamato, D.; Sahebka, A.; Chen, Z.; Luo, S.; Zheng, X.; Weng, J.; et al. GLP-1 receptor agonists (GLP-1RAs): Cardiovascular actions and therapeutic potential. Int. J. Biol. Sci. 2021, 17, 2050–2068. [Google Scholar] [CrossRef] [PubMed]
- Popoviciu, M.S.; Paduraru, L.; Yahya, G.; Metwally, K.; Cavalu, S. Emerging Role of GLP-1 Agonists in Obesity: A Comprehensive Review of Randomised Controlled Trials. Int. J. Mol. Sci. 2023, 24, 10449. [Google Scholar] [CrossRef] [PubMed]
- Tsapas, A.; Avgerinos, I.; Karagiannis, T.; Malandris, K.; Manolopoulos, A.; Andreadis, P.; Liakos, A.; Matthews, D.R.; Bekiari, E. Comparative Effectiveness of Glucose-Lowering Drugs for Type 2 Diabetes: A Systematic Review and Network Meta-analysis. Ann. Intern. Med. 2020, 173, 278–286. [Google Scholar] [CrossRef]
- Thomas, M.C. The potential and pitfalls of GLP-1 receptor agonists for renal protection in type 2 diabetes. Diabetes Metab. 2017, 43 (Suppl. S1), 2S20–2S27. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Chen, H.; Liu, Q.; Zhou, S.; Liu, Z.; Xiao, Y. GLP-1 receptor agonists and myocardial metabolism in atrial fibrillation. J. Pharm. Anal. 2024, 14, 100917. [Google Scholar] [CrossRef]
- Ma, Y.L.; Kong, C.Y.; Guo, Z.; Wang, M.Y.; Wang, P.; Liu, F.Y.; Yang, D.; Yang, Z.; Tang, Q.Z. Semaglutide ameliorates cardiac remodeling in male mice by optimizing energy substrate utilization through the Creb5/NR4a1 axis. Nat. Commun. 2024, 15, 4757. [Google Scholar] [CrossRef] [PubMed]
- Timmers, L.; Henriques, J.P.; de Kleijn, D.P.; Devries, J.H.; Kemperman, H.; Steendijk, P.; Verlaan, C.W.; Kerver, M.; Piek, J.J.; Doevendans, P.A.; et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J. Am. Coll. Cardiol. 2009, 53, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Palee, S.; Chattipakorn, S.C.; Chattipakorn, N. Liraglutide preserves intracellular calcium handling in isolated murine myocytes exposed to oxidative stress. Physiol. Res. 2017, 66, 889–895. [Google Scholar] [CrossRef]
- Chen, W.R.; Chen, Y.D.; Tian, F.; Yang, N.; Cheng, L.Q.; Hu, S.Y.; Wang, J.; Yang, J.J.; Wang, S.F.; Gu, X.F. Effects of Liraglutide on Reperfusion Injury in Patients With ST-Segment-Elevation Myocardial Infarction. Circ. Cardiovasc. Imaging 2016, 9, e005146. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fan, S.; Xiong, Q.; Niu, Y.; Zhang, X.; Qin, J.; Shi, Y.; Zhang, L. Glucagon-like peptide-1 attenuates cardiac hypertrophy via the AngII/AT1R/ACE2 and AMPK/mTOR/p70S6K pathways. Acta Biochim. Biophys. Sin. 2021, 53, 1189–1197. [Google Scholar] [CrossRef]
- Zhou, Y.; He, X.; Chen, Y.; Huang, Y.; Wu, L.; He, J. Exendin-4 attenuates cardiac hypertrophy via AMPK/mTOR signaling pathway activation. Biochem. Biophys. Res. Commun. 2015, 468, 394–399. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Jamialahmadi, T.; Moallem, S.A.; Sahebkar, A. Boosting GLP-1 by Natural Products. Adv. Exp. Med. Biol. 2021, 1328, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, D.; Banerjee, R.; Kallijarvi, J.; Purhonen, J. Protocol for quantification of UDP-GlcNAc using an enzymatic microplate assay. STAR Protoc. 2024, 5, 102817. [Google Scholar] [CrossRef]
- Cheemanapalli, S.; Anuradha, C.M.; Madhusudhana, P.; Mahesh, M.; Raghavendra, P.B.; Kumar, C.S. Exploring the Binding Affinity of Novel Syringic Acid Analogues and Critical Determinants of Selectivity as Potent Proteasome Inhibitors. Anticancer Agents Med. Chem. 2016, 16, 1496–1510. [Google Scholar] [CrossRef] [PubMed]
- Velu, P.; Vinothkumar, V.; Babukumar, S.; Ramachandhiran, D. Chemopreventive effect of syringic acid on 7,12-dimethylbenz(a)anthracene induced hamster buccal pouch carcinogenesis. Toxicol. Mech. Methods 2017, 27, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Li, Y.; Cheng, J.T.; Liu, I.M.; Cheng, K.C. Development of Syringaldehyde as an Agonist of the GLP-1 Receptor to Alleviate Diabetic Disorders in Animal Models. Pharmaceuticals 2024, 17, 538. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, S.; Mateen, S.; Mubeena Mariyath, P.M.; Naeem, S.S.; Akhtar, K.; Rizvi, W.; Moin, S. Protective effect of syringaldehyde on biomolecular oxidation, inflammation and histopathological alterations in isoproterenol induced cardiotoxicity in rats. Biomed. Pharmacother. 2018, 108, 625–633. [Google Scholar] [CrossRef]
- Guo, L.X.; Xia, Z.N.; Gao, X.; Yin, F.; Liu, J.H. Glucagon-like peptide 1 receptor plays a critical role in geniposide-regulated insulin secretion in INS-1 cells. Acta Pharmacol. Sin. 2012, 33, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Gong, N.; Li, T.F.; Zhu, B.; Wang, Y.X. Peptidic exenatide and herbal catalpol mediate neuroprotection via the hippocampal GLP-1 receptor/beta-endorphin pathway. Pharmacol. Res. 2015, 102, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Asadi, F.; Razmi, A.; Dehpour, A.R.; Shafiei, M. Tropisetron inhibits high glucose-induced calcineurin/NFAT hypertrophic pathway in H9c2 myocardial cells. J. Pharm. Pharmacol. 2016, 68, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.C.; Chang, W.T.; Kuo, F.Y.; Chen, Z.C.; Li, Y.; Cheng, J.T. TGR5 activation ameliorates hyperglycemia-induced cardiac hypertrophy in H9c2 cells. Sci. Rep. 2019, 9, 3633. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Chen, J.; Wang, T.; Zhang, M.; Wang, H.; Gao, H. Essential Role Of High Glucose-Induced Overexpression Of PKCbeta And PKCdelta In GLP-1 Resistance In Rodent Cardiomyocytes. Diabetes Metab. Syndr. Obes. 2019, 12, 2289–2302. [Google Scholar] [CrossRef]
- Depre, C.; Ponchaut, S.; Deprez, J.; Maisin, L.; Hue, L. Cyclic AMP suppresses the inhibition of glycolysis by alternative oxidizable substrates in the heart. J. Clin. Investig. 1998, 101, 390–397. [Google Scholar] [CrossRef]
- Liu, C.; Ke, P.; Zhang, J.; Zhang, X.; Chen, X. Protein Kinase Inhibitor Peptide as a Tool to Specifically Inhibit Protein Kinase A. Front. Physiol. 2020, 11, 574030. [Google Scholar] [CrossRef]
- Fan, S.; Xiong, Q.; Zhang, X.; Zhang, L.; Shi, Y. Glucagon-like peptide 1 reverses myocardial hypertrophy through cAMP/PKA/RhoA/ROCK2 signaling. Acta Biochim. Biophys. Sin. 2020, 52, 612–619. [Google Scholar] [CrossRef]
- Bugyei-Twum, A.; Advani, A.; Advani, S.L.; Zhang, Y.; Thai, K.; Kelly, D.J.; Connelly, K.A. High glucose induces Smad activation via the transcriptional coregulator p300 and contributes to cardiac fibrosis and hypertrophy. Cardiovasc. Diabetol. 2014, 13, 89. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, D.B.; Siwik, D.A.; Xiao, L.; Pimentel, D.R.; Singh, K.; Colucci, W.S. Role of oxidative stress in myocardial hypertrophy and failure. J. Mol. Cell Cardiol. 2002, 34, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Balteau, M.; Van Steenbergen, A.; Timmermans, A.D.; Dessy, C.; Behets-Wydemans, G.; Tajeddine, N.; Castanares-Zapatero, D.; Gilon, P.; Vanoverschelde, J.L.; Horman, S.; et al. AMPK activation by glucagon-like peptide-1 prevents NADPH oxidase activation induced by hyperglycemia in adult cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H1120–H1133. [Google Scholar] [CrossRef]
- Xie, Z.; Yang, C.; Xu, T. Hesperetin attenuates LPS-induced the inflammatory response and apoptosis of H9c2 by activating the AMPK/P53 signaling pathway. Immun. Inflamm. Dis. 2023, 11, e973. [Google Scholar] [CrossRef]
- Ma, Z.G.; Dai, J.; Zhang, W.B.; Yuan, Y.; Liao, H.H.; Zhang, N.; Bian, Z.Y.; Tang, Q.Z. Protection against cardiac hypertrophy by geniposide involves the GLP-1 receptor / AMPKalpha signalling pathway. Br. J. Pharmacol. 2016, 173, 1502–1516. [Google Scholar] [CrossRef] [PubMed]
- Kehat, I.; Molkentin, J.D. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 2010, 122, 2727–2735. [Google Scholar] [CrossRef] [PubMed]
- Boudina, S.; Abel, E.D. Diabetic cardiomyopathy revisited. Circulation 2007, 115, 3213–3223. [Google Scholar] [CrossRef]
- Grubic Rotkvic, P.; Planinic, Z.; Liberati Prso, A.M.; Sikic, J.; Galic, E.; Rotkvic, L. The Mystery of Diabetic Cardiomyopathy: From Early Concepts and Underlying Mechanisms to Novel Therapeutic Possibilities. Int. J. Mol. Sci. 2021, 22, 5973. [Google Scholar] [CrossRef]
- Bazgir, F.; Nau, J.; Nakhaei-Rad, S.; Amin, E.; Wolf, M.J.; Saucerman, J.J.; Lorenz, K.; Ahmadian, M.R. The Microenvironment of the Pathogenesis of Cardiac Hypertrophy. Cells 2023, 12, 1780. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Wang, S.; Yang, X.; Cui, Y.; Guan, H.; Xiao, W.; Liu, F. Regulation of H9C2 cell hypertrophy by 14-3-3eta via inhibiting glycolysis. PLoS ONE 2024, 19, e0307696. [Google Scholar] [CrossRef]
- Zhang, M.; Shah, A.M. ROS signalling between endothelial cells and cardiac cells. Cardiovasc. Res. 2014, 102, 249–257. [Google Scholar] [CrossRef]
- Pan, X.; Li, C.; Gao, H. High Glucose Attenuates Cardioprotective Effects of Glucagon-Like Peptide-1 Through Induction of Mitochondria Dysfunction via Inhibition of beta-Arrestin-Signaling. Front. Physiol. 2021, 12, 648399. [Google Scholar] [CrossRef]
- Yang, Y. Functional Selectivity of Dopamine D(1) Receptor Signaling: Retrospect and Prospect. Int. J. Mol. Sci. 2021, 22, 11914. [Google Scholar] [CrossRef] [PubMed]
- Arad, M.; Seidman, C.E.; Seidman, J.G. AMP-activated protein kinase in the heart: Role during health and disease. Circ. Res. 2007, 100, 474–488. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, X.E.; Xu, H.E.; Melcher, K. Structure and Physiological Regulation of AMPK. Int. J. Mol. Sci. 2018, 19, 3534. [Google Scholar] [CrossRef] [PubMed]
- Zaha, V.G.; Young, L.H. AMP-activated protein kinase regulation and biological actions in the heart. Circ. Res. 2012, 111, 800–814. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ge, Z.; Huang, S.; Zhou, L.; Zhai, C.; Chen, Y.; Hu, Q.; Cao, W.; Weng, Y.; Li, Y. Delphinidin attenuates pathological cardiac hypertrophy via the AMPK/NOX/MAPK signaling pathway. Aging 2020, 12, 5362–5383. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Prasad, S.V.; Rapacciuolo, A.; Mao, L.; Koch, W.J.; Rockman, H.A. Cardiac overexpression of a G(q) inhibitor blocks induction of extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase activity in in vivo pressure overload. Circulation 2001, 103, 1453–1458. [Google Scholar] [CrossRef]
- Chen, C.Y.; Caporizzo, M.A.; Bedi, K.; Vite, A.; Bogush, A.I.; Robison, P.; Heffler, J.G.; Salomon, A.K.; Kelly, N.A.; Babu, A.; et al. Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure. Nat. Med. 2018, 24, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Yashirogi, S.; Nagao, T.; Nishida, Y.; Takahashi, Y.; Qaqorh, T.; Yazawa, I.; Katayama, T.; Kioka, H.; Matsui, T.S.; Saito, S.; et al. AMPK regulates cell shape of cardiomyocytes by modulating turnover of microtubules through CLIP-170. EMBO Rep. 2021, 22, e50949. [Google Scholar] [CrossRef]
- Fassett, J.T.; Hu, X.; Xu, X.; Lu, Z.; Zhang, P.; Chen, Y.; Bache, R.J. AMPK attenuates microtubule proliferation in cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 2013, 304, H749–H758. [Google Scholar] [CrossRef]
- Terai, K.; Hiramoto, Y.; Masaki, M.; Sugiyama, S.; Kuroda, T.; Hori, M.; Kawase, I.; Hirota, H. AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol. Cell Biol. 2005, 25, 9554–9575. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Yang, X. Functions of autophagy in pathological cardiac hypertrophy. Int. J. Biol. Sci. 2015, 11, 672–678. [Google Scholar] [CrossRef]
- Xie, Z.; Dong, Y.; Scholz, R.; Neumann, D.; Zou, M.H. Phosphorylation of LKB1 at serine 428 by protein kinase C-zeta is required for metformin-enhanced activation of the AMP-activated protein kinase in endothelial cells. Circulation 2008, 117, 952–962. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xu, J.; He, L.; Peng, L.; Zhong, Q.; Chen, L.; Jiang, Z. The role of autophagy in cardiac hypertrophy. Acta Biochim. Biophys. Sin. 2016, 48, 491–500. [Google Scholar] [CrossRef]
- Hang, W.; He, B.; Chen, J.; Xia, L.; Wen, B.; Liang, T.; Wang, X.; Zhang, Q.; Wu, Y.; Chen, Q.; et al. Berberine Ameliorates High Glucose-Induced Cardiomyocyte Injury via AMPK Signaling Activation to Stimulate Mitochondrial Biogenesis and Restore Autophagic Flux. Front. Pharmacol. 2018, 9, 1121. [Google Scholar] [CrossRef]
- Meng, G.; Yang, S.; Chen, Y.; Yao, W.; Zhu, H.; Zhang, W. Attenuating effects of dihydromyricetin on angiotensin II-induced rat cardiomyocyte hypertrophy related to antioxidative activity in a NO-dependent manner. Pharm. Biol. 2015, 53, 904–912. [Google Scholar] [CrossRef]
- Gurusamy, N.; Lekli, I.; Mukherjee, S.; Ray, D.; Ahsan, M.K.; Gherghiceanu, M.; Popescu, L.M.; Das, D.K. Cardioprotection by resveratrol: A novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc. Res. 2010, 86, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Li, R.L.; Wu, S.S.; Wu, Y.; Wang, X.X.; Chen, H.Y.; Xin, J.J.; Li, H.; Lan, J.; Xue, K.Y.; Li, X.; et al. Irisin alleviates pressure overload-induced cardiac hypertrophy by inducing protective autophagy via mTOR-independent activation of the AMPK-ULK1 pathway. J. Mol. Cell Cardiol. 2018, 121, 242–255. [Google Scholar] [CrossRef]
- Wang, X.; Cui, T. Autophagy modulation: A potential therapeutic approach in cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H304–H319. [Google Scholar] [CrossRef]
- Wen, L.; Cheng, X.; Fan, Q.; Chen, Z.; Luo, Z.; Xu, T.; He, M.; He, H. TanshinoneⅡA inhibits excessive autophagy and protects myocardium against ischemia/reperfusion injury via 14-3-3eta/Akt/Beclin1 pathway. Eur. J. Pharmacol. 2023, 954, 175865. [Google Scholar] [CrossRef]
- Jones, S.P.; Zachara, N.E.; Ngoh, G.A.; Hill, B.G.; Teshima, Y.; Bhatnagar, A.; Hart, G.W.; Marban, E. Cardioprotection by N-acetylglucosamine linkage to cellular proteins. Circulation 2008, 117, 1172–1182. [Google Scholar] [CrossRef]
- Lunde, I.G.; Aronsen, J.M.; Kvaloy, H.; Qvigstad, E.; Sjaastad, I.; Tonnessen, T.; Christensen, G.; Gronning-Wang, L.M.; Carlson, C.R. Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure. Physiol. Genom. 2012, 44, 162–172. [Google Scholar] [CrossRef]
- Mannino, M.P.; Hart, G.W. The Beginner’s Guide to O-GlcNAc: From Nutrient Sensitive Pathway Regulation to Its Impact on the Immune System. Front. Immunol. 2022, 13, 828648. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, T.; Furukawa, Y.; Hayashi, T.; Nomura, A.; Yokoe, S.; Moriwaki, K.; Kato, R.; Ijiri, Y.; Yamaguchi, T.; Izumi, Y.; et al. Augmented O-GlcNAcylation attenuates intermittent hypoxia-induced cardiac remodeling through the suppression of NFAT and NF-kappaB activities in mice. Hypertens. Res. 2019, 42, 1858–1871. [Google Scholar] [CrossRef]
- Ding, F.; Yu, L.; Wang, M.; Xu, S.; Xia, Q.; Fu, G. O-GlcNAcylation involvement in high glucose-induced cardiac hypertrophy via ERK1/2 and cyclin D2. Amino Acids 2013, 45, 339–349. [Google Scholar] [CrossRef]
- Gelinas, R.; Mailleux, F.; Dontaine, J.; Bultot, L.; Demeulder, B.; Ginion, A.; Daskalopoulos, E.P.; Esfahani, H.; Dubois-Deruy, E.; Lauzier, B.; et al. AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nat. Commun. 2018, 9, 374. [Google Scholar] [CrossRef] [PubMed]
- Weng, L.; Chen, T.H.; Zheng, Q.; Weng, W.H.; Huang, L.; Lai, D.; Fu, Y.S.; Weng, C.F. Syringaldehyde promoting intestinal motility with suppressing alpha-amylase hinders starch digestion in diabetic mice. Biomed. Pharmacother. 2021, 141, 111865. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, S.; Mateen, S.; Kausar, T.; Naeem, S.S.; Hasan, A.; Abidi, M.; Nayeem, S.M.; Faizy, A.F.; Moin, S. Effect of syringic acid and syringaldehyde on oxidative stress and inflammatory status in peripheral blood mononuclear cells from patients of myocardial infarction. Naunyn Schmiedebergs Arch. Pharmacol. 2020, 393, 691–704. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.X.; Mei, Y.N.; Shen, Z.; Zhu, J.F.; Xing, S.H.; Yang, H.M.; Liang, G.; Zheng, X.H. A chalcone-syringaldehyde hybrid inhibits triple-negative breast cancer cell proliferation and migration by inhibiting CKAP2-mediated FAK and STAT3 phosphorylation. Phytomedicine 2022, 101, 154087. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.X.; Cheng, K.C.; Liu, I.M.; Niu, H.S. Myricetin Increases Circulating Adropin Level after Activation of Glucagon-like Peptide 1 (GLP-1) Receptor in Type-1 Diabetic Rats. Pharmaceuticals 2022, 15, 173. [Google Scholar] [CrossRef]
- Watkins, S.J.; Borthwick, G.M.; Arthur, H.M. The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Dev. Biol. Anim. 2011, 47, 125–131. [Google Scholar] [CrossRef]
- Ullah, I.; Park, H.Y.; Kim, M.O. Anthocyanins protect against kainic acid-induced excitotoxicity and apoptosis via ROS-activated AMPK pathway in hippocampal neurons. CNS Neurosci. Ther. 2014, 20, 327–338. [Google Scholar] [CrossRef]
- Lo, S.H.; Hsu, C.T.; Niu, H.S.; Niu, C.S.; Cheng, J.T.; Chen, Z.C. Ginsenoside Rh2 Improves Cardiac Fibrosis via PPARdelta-STAT3 Signaling in Type 1-Like Diabetic Rats. Int. J. Mol. Sci. 2017, 18, 1364. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.P.; Shen, D.; Che, Y.; Jin, Y.G.; Wang, S.S.; Wu, Q.Q.; Zhou, H.; Meng, Y.Y.; Yuan, Y. Corosolic acid ameliorates cardiac hypertrophy via regulating autophagy. Biosci. Rep. 2019, 39, BSR20191860. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.C.; Chang, W.T.; Li, Y.; Cheng, Y.Z.; Cheng, J.T.; Chen, Z.C. GW0742 activates peroxisome proliferator-activated receptor delta to reduce free radicals and alleviate cardiac hypertrophy induced by hyperglycemia in cultured H9c2 cells. J. Cell Biochem. 2018, 119, 9532–9542. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Hsu, C.-T.; Yang, T.-T.; Cheng, K.-C. Syringaldehyde Alleviates Cardiac Hypertrophy Induced by Hyperglycemia in H9c2 Cells Through GLP-1 Receptor Signals. Pharmaceuticals 2025, 18, 110. https://doi.org/10.3390/ph18010110
Li Y, Hsu C-T, Yang T-T, Cheng K-C. Syringaldehyde Alleviates Cardiac Hypertrophy Induced by Hyperglycemia in H9c2 Cells Through GLP-1 Receptor Signals. Pharmaceuticals. 2025; 18(1):110. https://doi.org/10.3390/ph18010110
Chicago/Turabian StyleLi, Yingxiao, Chao-Tien Hsu, Ting-Ting Yang, and Kai-Chun Cheng. 2025. "Syringaldehyde Alleviates Cardiac Hypertrophy Induced by Hyperglycemia in H9c2 Cells Through GLP-1 Receptor Signals" Pharmaceuticals 18, no. 1: 110. https://doi.org/10.3390/ph18010110
APA StyleLi, Y., Hsu, C.-T., Yang, T.-T., & Cheng, K.-C. (2025). Syringaldehyde Alleviates Cardiac Hypertrophy Induced by Hyperglycemia in H9c2 Cells Through GLP-1 Receptor Signals. Pharmaceuticals, 18(1), 110. https://doi.org/10.3390/ph18010110