The Role of Antioxidant Plant Extracts’ Composition and Encapsulation in Dietary Supplements and Gemmo-Derivatives, as Safe Adjuvants in Metabolic and Age-Related Conditions: A Review
<p>Biological activities of some dietary food supplements.</p> "> Figure 2
<p>Gemmotherapy depiction and its patterns of application.</p> "> Figure 3
<p>Conventional and green methods used for obtaining gemmotherapy extracts.</p> "> Figure 4
<p>Antioxidant mechanisms of plant extracts administered in form of dietary supplements and gemmo-derivatives.</p> "> Figure 5
<p>The microencapsulation of antioxidant bioactive compounds from fruits by spray drying, highlighting the variables of the process (adapted from [<a href="#B104-pharmaceuticals-17-01738" class="html-bibr">104</a>]).</p> "> Figure 6
<p>Obtaining lipid nanocarriers for antioxidant plant extracts’ encapsulation.</p> "> Figure 7
<p>Vacuum-assisted loading method of plant extract into mesoporous silica [<a href="#B112-pharmaceuticals-17-01738" class="html-bibr">112</a>].</p> "> Figure 8
<p>Antioxidant plant extract loaded onto nanoparticles by grinding in one-pot step.</p> ">
Abstract
:1. Introduction
2. Dietary Supplements, Authentication, and Nutrivigilance
2.1. Dietary Supplements vs. Functional Food
2.2. Dietary Supplements’ Authentication
2.3. The Concept of Nutrivigilance
3. Gemmotherapy Extracts (Gemmo-Derivatives)
3.1. Gemmo-Derivatives’ Definition
3.2. Gemmo-Derivatives’ Preparation
3.3. Standardization of Gemmo-Derivatives and Biological Role in Metabolic and Age-Related Conditions
4. Mechanisms of Redox and Inflammation Control
5. Clinical Trials
6. Encapsulation Techniques for Safe and Efficient Delivery of Dietary Supplements and Gemmo-Derivatives
6.1. Microencapsulation Techniques
6.2. Nanoencapsulation Techniques
6.3. Challenges and Limitations of Encapsulation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bohm, E.W.; Buonfiglio, F.; Voigt, A.M.; Bachmann, P.; Safi, T.; Pfeiffer, N.; Gericke, A. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol. 2023, 68, 102967. [Google Scholar] [CrossRef]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The chemistry of reactive oxygen species (ROS) revisiting: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Tumilaar, S.G.; Hardianto, A.; Dohi, H.; Kurnia, D. A comprehensive review of free radicals, oxidative stress, and antioxidants: Overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. J. Chem. 2024, 2024, 5594386. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [PubMed]
- Gatell-Tortajada, J. Oral supplementation with a nutraceutical formulation containing omega-3 fatty acids, vitamins, minerals, and antioxidants in a large series of patients with dry eye symptoms: Results of a prospective study. Clin. Interv. Aging 2016, 11, 571–578. [Google Scholar] [CrossRef]
- Banerjee, M.; Chawla, R.; Kumar, A. Antioxidant supplements in age-related macular degeneration: Are they actually beneficial? Ther. Adv. Ophthalmol. 2021, 13, 25158414211030418. [Google Scholar] [CrossRef]
- Scuteri, D.; Rombolà, L.; Watanabe, C.; Sakurada, S.; Corasaniti, M.T.; Bagetta, G.; Tonin, P.; Russo, R.; Nucci, C.; Morrone, L.A. Impact of nutraceuticals on glaucoma: A systematic review. Prog. Brain Res. 2020, 257, 141–154. [Google Scholar]
- Jurja, S.; Negreanu–Pirjol, T.; Roncea, F.; Negreanu-Pirjol, B.S.; Sirbu, R.; Lepadatu, A.C.; Miresan, H. Correlation between antioxidant activity of vegetal supplement and age related maculopathy. In Proceedings of the 14th International Multidisciplinary Scientific GeoConferences, Surveying Geology & Mining Ecology Management—SGEM 2014, Albena, Bulgaria, 17–26 June 2014; Volume I, pp. 321–328. [Google Scholar]
- Romanian Ministry of Health. Order No. 1069/2007 for the Approval of the Norms on Food Supplements, with Subsequent Amendments and Additions, Published in: Official Bulletin No. 455 of 5 July 2007. Available online: https://cms-lawnow.com/en/ealerts/2021/04/romania-regulates-new-conditions-for-food-supplements (accessed on 24 October 2024).
- Directive 2008/100/EC of 28 October 2008 amending Council Directive 90/496/EEC on nutrition labelling for foodstuffs as regards recommended daily allowances, energy conversion factors and definitions. Off. J. Eur. Commun. 2008, 285, 9–12.
- Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the approximation of the laws of the Member States relating to food supplements transpose in Romania by Law no. 56/2021. Off. Law J. 2002, 183, 0051–0057.
- The United States Congress. Dietary Supplement Health and Education Act of 1994. Available online: www.gpo.gov (accessed on 24 October 2024).
- Stoia, M.; Oancea, S. Herbal dietary supplements consumption in Romania from the perspective of public health and education. Acta Med. Transilv. 2013, 2, 216–219. [Google Scholar]
- Marcus, D.M. Dietary supplements: What’s in a name? What’s in the bottle? Drug Test. Anal. 2016, 8, 410–412. [Google Scholar] [CrossRef]
- Wunsch, N.G. Regional Breakdown of the Size of the Global Dietary Supplements Market for the Period 2018–2026. 2022. Available online: www.statista.com (accessed on 24 October 2024).
- Turck, D.; Bokn, T.; Cámara, M.; Castenmille, J.; Henauw, S.; Hirsch-Ernst, K.I.; Jos, A.; MaciuK, A.; Mangelsdorf, I.; McNulty, B.; et al. Guidance for establishing and applying tolerable upper intake levels for vitamins and essential mineral. EFSA J. 2022, 20, e200102. [Google Scholar] [CrossRef]
- Martirosyan, D.M.; Singh, J. A new definition of functional food by FFC: What makes a new definition unique? Funct. Foods Health Dis. 2015, 5, 209–223. [Google Scholar] [CrossRef]
- Boggia, R.; Zunin, P.; Turrini, F. Functional foods and food supplements. Appl. Sci. 2020, 10, 8538. [Google Scholar] [CrossRef]
- Ross, S. Functional foods: The Food and Drug Administration perspective. Am. J. Clin. Nutr. 2000, 71, 1735S–1738S. [Google Scholar] [CrossRef]
- Muredzi, P. Food Is Medicine—An Introduction to Nutraceuticals; Lambert Academic Publishing: Saarbrücken, Germany, 2013. [Google Scholar]
- Moghe, S.B.; Jain, S.; Srivastava, V. Functional Foods and Nutraceuticals; Vikas Publishing House Pvt. Ltd.: Noida, India, 2018. [Google Scholar]
- Puri, V.; Nagpal, M.; Singh, I.; Singh, M.; Dhingra, G.A.; Huanbutta, K.; Dheer, D.; Ameya, S.; Sangnim, T. A Comprehensive Review on Nutraceuticals: Therapy Support and Formulation Challenges. Nutrients 2022, 14, 4637. [Google Scholar] [CrossRef] [PubMed]
- Simmler, C.; Graham, J.G.; Chen, S.-N.; Pauli, G.F. Integrated analytical assets aid botanical authenticity and adulteration management. Fitoterapia 2018, 129, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Pawar, R.; Handy, S.; Cheng, R.; Shyong, N.; Grundel, E. Assessment of the authenticity of herbal dietary supplements: Comparison of chemical and DNA barcoding methods. Planta Med. 2017, 83, 921–936. [Google Scholar] [CrossRef] [PubMed]
- British Pharmacopoeia Commission. DNA Barcoding as a Tool for Botanical Identification of Herbal Drugs. In British Pharmacopoeia Supplementary; Chapter SC VII D; TSO: London, UK, 2018. [Google Scholar]
- Ichim, M.C. The DNA-Based Authentication of Commercial Herbal Products Reveals Their Globally Widespread Adulteration. Front. Pharmacol. 2019, 10, 1227. [Google Scholar] [CrossRef] [PubMed]
- Directive 2010/84/EU and Regulation (EU) No. 1235/2010, amending, as regards pharmacovigilance, Directive 2001/83/EC and, respectively, Regulation (EC) No. 724/2004. Off. J. Eur. Commun. 2010, 348, 74–99.
- Temple, N.J. The marketing of dietary supplements: A Canadian perspective. Curr. Nutr. Rep. 2013, 2, 167–173. [Google Scholar] [CrossRef]
- Buşuricu, F.; Margaritti, D.; Negreanu-Pirjol, T.; Tomos, S.; Blebea, N.; Stoicescu, I.; Negreanu-Pirjol, B.S. The role of nutrivigilance for consumer safety. Tech. BioChemMed 2023, 7, 46–51. [Google Scholar]
- French Agency for Food Environmental and Occupational Health & Safety (ANSES). National Nutrivigilance Scheme. Available online: https://www.anses.fr/fr/system/files/ANSES-Ft-BilanNutrivigilance2018EN.pdf (accessed on 21 September 2021).
- World Health Organization. The Safety of Medicines in Public Health Programmes: Pharmacovigilance an Essential Tool; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Morgovan, C.; Ghibu, S.; Juncan, A.M.; Rus, L.L.; Butucă, A.; Vonica, L.; Muntean, A.; Moş, L.; Gligor, F.; Olah, N.K. Nutrivigilance: A new activity in the field of dietary supplements. Farmacia 2019, 67, 537–544. [Google Scholar] [CrossRef]
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES). Opinion of the French Agency for Food, Environmental and Occupational Health & Safety on the Assessment of Risks Concerning the Consumption of So-Called “Energy Drinks”. Available online: https://www.anses.fr/en/system/files/NUT2012sa0212EN.pdf (accessed on 24 October 2024).
- Rubio, C.; Cámara, M.; Giner, R.M.; González-Muñoz, M.J.; López-García, E.; Morales, F.J.; Moreno-Arribas, M.V.; Portillo, M.P.; Bethencourt, E. Caffeine, D-glucuronolactone and Taurine Content in Energy Drinks: Exposure and Risk Assessment. Nutrients 2022, 14, 5103. [Google Scholar] [CrossRef] [PubMed]
- Busuricu, F.; Schroder, V.; Margaritti, D.; Anghel, A.H.; Tomos, S. Nutritional quality of some non-alcoholic beverages from the Romanian market. Tech. BioChemMed 2022, 3, 1–6. [Google Scholar] [CrossRef]
- Busuricu, F.; Schroder, V.; Margaritti, D.; Nadolu, D.; Anghel, A.H. Preliminary study regarding sodium benzoate and other food dyes sinergic action using BSLA citotoxicity test. Sci. Pap. Ser. D Anim. Sci. 2019, LXII, 410–416. [Google Scholar]
- Anjali; Garg, V.; Dhiman, A.; Dutt, R.; Ranga, S. Health benefits of nutraceuticals. Pharma. Innov. J. 2018, 7, 178–181. [Google Scholar]
- Mechanick, J.I. The rational use of dietary supplements and nutraceuticals in clinical medicine. Mt Sinai J Med. 2005, 72, 161–165. [Google Scholar] [PubMed]
- Heutte, N. Indications De La Gemmotherapie Dans Le Cadre De La Pratique Officinale (Indications For Gemmotherapy In Pharmacy Practice). Ph.D. Thesis, Université de Caen, Normandie, France, 2024. Available online: https://dumas.ccsd.cnrs.fr/dumas-04651847v1 (accessed on 24 October 2024).
- Piterà, F.; Nicoletti, M. Gemmotherapy, and the Scientific Foundations of a Modern Meristemotherapy; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2020; pp. 402–406. [Google Scholar]
- Margaritti, D.; Busuricu, F.; Tomos, S. Gemmotherapy, an alternative to treatment of animal disorders. Actual trends on the pharmaceutical market. Sci. Pap. Ser. D Anim. Sci. 2019, LXII, 311–317. [Google Scholar]
- Surcel, M.; Butan, M.; Surcel, D. New concepts targeting the biological and quantum connections in the action mechanism of the gemmmotherapy. Biomed. Sci. 2021, 7, 53–59. [Google Scholar] [CrossRef]
- Di Vito, M.; Gentile, M.; Mattarelli, P.; Barbanti, L.; Micheli, L.; Mazzuca, C.; Garzoli, S.; Titubante, M.; Vitali, A.; Cacaci, M.; et al. Phytocomplex Influences Antimicrobial and Health Properties of Concentrated Glycerine Macerates. Antibiotics 2020, 9, 858. [Google Scholar] [CrossRef]
- Nițu, S. The effectiveness of gemmotherapy in current medical practice. Arad. Med. J. 2015, XVIII, 72–74. [Google Scholar]
- Raiciu, A.D.; Vrabie, D.C.; Negres, S.; Popescu, M.; Crisan, I.; Manea, S.; Dima, S.O. Hystopathological and clinical investigations of five gemmo-derivatives from plants and their biotherapeutical properties. Acad. Res. J. Agri. Sci. Res. 2016, 4, 85–92. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines on Good Agricultural and Collection Practices (GACP) for Medicinal Plants; World Health Organization: Geneva, Switzerland, 2003; Available online: https://iris.who.int/bitstream/handle/10665/42783/9241546271.pdf;jsessionid=34493DDC806327A008C92AE490490F57?sequence=1 (accessed on 24 October 2024).
- Donno, D.; Beccaro, G.L.; Cerutti, A.K.; Mellano, M.G.; Bounous, G. Bud extracts as new phytochemical source for herbal preparations: Quality control and standardization by analytical fingerprint. In Phytochemicals—Isolation, Characterisation and Role in Human Health; Rao, A.V., Rao, L.G., Eds.; InTech: Rijeka, Croatia, 2015; Volume 1, pp. 187–218. [Google Scholar]
- Chemat, F.; Vian, M.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed]
- de Mesquita, L.M.S.; Contieri, L.S.; Silva, F.A.; Bagini, R.H.; Bragagnolo, F.S.; Strieder, M.M.; Sosa, F.H.B.; Schaeffer, N.; Freire, M.G.; Ventura, S.P.M.; et al. Path2Green: Introducing 12 green extraction principles and a novel metric for assessing sustainability in biomass valorization. Green Chem. 2024, 26, 10087–10106. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef]
- Breard, D.; Esselin, H.; Bugeia, L.; Boisard, S.; Guilet, D.; Richomme, P.; Le Ray, A.M.; Ripoll, C. Influence of maceration solvent on chemical composition of gemmotherapy macerates—A case study on Olea europaea young shoots. Nutraceuticals 2023, 3, 574–590. [Google Scholar] [CrossRef]
- Turrini, F.; Donno, D.; Beccaro, G.L.; Pittaluga, A.; Grilli, M.; Zunin, P.; Boggia, R. Bud-derivatives, a novel source of polyphenols and how different extraction processes affect their composition. Foods 2020, 9, 1343. [Google Scholar] [CrossRef]
- Turrini, F.; Donno, D.; Beccaro, G.L.; Zunin, P.; Pittaluga, A.; Boggia, R. Pulsed ultrasound-assisted extraction as an alternative method to conventional maceration for the extraction of the polyphenolic fraction of Ribes nigrum buds: A new category of food supplements proposed by the FINNOVER project. Foods 2019, 8, 466. [Google Scholar] [CrossRef] [PubMed]
- Turrini, F.; Donno, D.; Grasso, F.; Mustorgi, E.; Beccaro, G.L.; Guido, M.; Fior, T.; Grilli, M.; Pittaluga, A.; Boggia, R. EEM fluorescence spectroscopy coupled with HPLC-DAD analysis for the characterization of bud derivative dietary supplements: A preliminary introduction to GEMMAPP, the free data-repository from the FINNOVER project. Appl. Sci. 2023, 13, 8679. [Google Scholar] [CrossRef]
- Bilawal, A.; Ishfaq, M.; Gantumur, M.A.; Qayum, A.; Shi, R.; Fazilani, S.A.; Anwar, A.; Jiang, Z.; Hou, J. A review of the bioactive ingredients of berries and their applications in curing diseases. Food Biosci. 2021, 44, 101407. [Google Scholar] [CrossRef]
- Negreanu-Pirjol, B.-S.; Negreanu-Pirjol, T.; Popoviciu, D.R.; Artem, V.; Ranca, A.; Craciunescu, O.; Prelipcean, A.-M.; Motelica, L.; Vasile, M. Preliminary data regarding bioactive compounds and total antioxidant capacity of some fluid extracts of Lonicera caerulea L. berries. Berries UPB Sci. Bull. Ser. B 2023, 85, 101–116. [Google Scholar]
- Ejaz, A.; Waliat, S.; Afzaal, M.; Saeed, F.; Ahmad, A.; Din, A.; Ateeq, H.; Asghar, A.; Shah, Y.A.; Rafi, A.; et al. Biological activities, therapeutic potential, and pharmacological aspects of blackcurrants (Ribes nigrum L.): A comprehensive review. Food Sci. Nutr. 2023, 11, 5799–5817. [Google Scholar] [CrossRef] [PubMed]
- Ruiz del Castillo, M.L.; Dobson, G. Varietal differences in terpene composition of blackcurrant (Ribes nigrum L. ) berries by solid phase microextraction/gas chromatography. J. Sci. Food Agric. 2002, 82, 1510–1515. [Google Scholar]
- Donno, D.; Boggia, R.; Zunin, P.; Ceritti, A.K.; Guido, M.; Mellano, M.G.; Prgomet, Z.; Beccaro, G.L. Phytochemical fingerprint and chemometrics for natural food preparation pattern recognition: An innovative technique in food supplement quality control. J. Food Sci. Technol. 2015, 53, 1071–1083. [Google Scholar] [CrossRef] [PubMed]
- Donno, D.; Mellano, M.G.; Cerutti, A.K.; Beccaro, G.L. Biomolecules and natural medicine preparations: Analysis of new sources of bioactive compounds from Ribes and Rubus spp. Buds. Pharmaceuticals 2016, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Charpentier, T.; Boisard, S.; Le Ray, A.M.; Breard, D.; Chabrier, A.; Esselin, H.; Guilet, D.; Ripoll, C.; Richomme, P. A descriptive chemical composition of concentrated bud macerates through an optimized SPE-HPLC-UV-MS2 method—Application to Alnus glutinosa, Ribes nigrum, Rosa canina, Rosmarinus officinalis and Tilia tomentosa. Plants 2022, 11, 144. [Google Scholar] [CrossRef]
- Donno, D.; Beccaro, G.L.; Mellano, M.G.; Cerutti, A.K.; Marconi, V.; Bounous, G. Botanicals in Ribes nigrum bud-preparations: An analytical fingerprinting to evaluate the bioactive contribution to total phytocomplex. Pharm. Biol. 2013, 51, 1282–1292. [Google Scholar] [CrossRef]
- Hejja, M.; Mihok, E.; Alaya, A.; Jolji, M.; Gyorgy, E.; Meszaros, N.; Turcus, V.; Olah, N.K.; Mathe, E. Specific antimicrobial activities revealed by comparative evaluation of selected gemmotherapy extracts. Antibiotics 2024, 13, 181. [Google Scholar] [CrossRef] [PubMed]
- Téglás, T.; Mihok, E.; Cziaky, Z.; Olah, N.K.; Nyakas, C.; Mathe, E. The flavonoid rich black currant (Ribes nigrum) ethanolic gemmotherapy extract elicits neuroprotective effect by preventing microglial body swelling in hippocampus and reduces serum TNF-α level: A pilot study. Molecules 2023, 28, 3571. [Google Scholar] [CrossRef]
- Cord, D.; Popescu, M.; Burghiu Hobeanu, I.; Sandulovici, R.C.; Raiciu, A.D. The anti-inflammatory effect of the Ribes nigrum species. Rom. J. Med. Pract. 2017, 12, 97–103. [Google Scholar] [CrossRef]
- Donno, D.; Turrini, F.; Boggia, R.; Guido, M.; Gamba, G.; Mellano, M.G.; Riondato, I.; Beccaro, G.L. Vitis vinifera L. Pruning Waste for Bud-Preparations as Source of Phenolic Compounds–Traditional and Innovative Extraction Techniques to Produce New Natural Products. Plants 2021, 10, 2233. [Google Scholar] [CrossRef] [PubMed]
- Donno, D.; Beccaro, G.L.; Carlen, C.; Ançay, A.; Cerutti, A.K.; Mellano, M.G.; Bounous, G. Analytical fingerprint and chemometrics as phytochemical composition control tools in food supplement analysis: Characterization of raspberry bud preparations of different cultivars. J. Sci. Food Agric. 2015, 96, 3157–3168. [Google Scholar] [CrossRef]
- Fu, Z.; Wei, Z.; Miao, M. Effects of total flavonoids of raspberry on perimenopausal model in mice. Saudi J. Biol. Sci. 2017, 25, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Solcan, M.B.; Fizesan, I.; Vlase, L.; Vlase, A.M.; Rusu, M.E.; Mates, L.; Petru, A.E.; Crestin, I.V.; Tomuta, I.; Popa, D.S. Phytochemical profile and biological activities of extracts obtained from young shoots of blackcurrant (Ribes nigrum L.), European blueberry (Vaccinium myrtillus L.), and mountain cranberry (Vaccinium vitis-idaea L.). Horticulturae 2023, 9, 1163. [Google Scholar] [CrossRef]
- Militaru, A.V.; Simedrea, I.; Alexoi, I.; Peev, C.; Bernad, E.; Toma, C.C. Plant extracts from meristematic tissues (foliar buds and shoots): Antioxidant and therapeutic action. Stud. Univ. Vasile Goldis Life Sci. 2010, 20, 45–47. [Google Scholar]
- Matos, A.L.; Bruno, D.F.; Ambrosio, A.F.; Santos, P.F. The benefits of flavonoids in diabetic retinopathy. Nutrients 2020, 12, 3169. [Google Scholar] [CrossRef]
- González de Llano, D.; Moreno-Arribas, M.V.; Bartolomé, B. Cranberry polyphenols and prevention against urinary tract infections: Relevant considerations. Molecules 2020, 25, 3523. [Google Scholar] [CrossRef]
- Mihai, E.; Negreanu-Pirjol, B.-S.; Craciunescu, O.; Ciucan, T.; Iosageanu, A.; Seciu-Grama, A.-M.; Prelipcean, A.-M.; Utoiu, E.; Coroiu, V.; Ghenea, A.-M.; et al. In Vitro Hypoglycemic Potential, Antioxidant and Prebiotic Activity after Simulated Digestion of Combined Blueberry Pomace and Chia Seed Extracts. Processes 2023, 11, 1025. [Google Scholar] [CrossRef]
- Ahmad, A.; Ahsan, H. Biomarkers of inflammation and oxidative stress in ophthalmic disorders. J. Immunoass. Immunochem. 2020, 41, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Negreanu-Pirjol, B.S.; Oprea, O.C.; Negreanu-Pirjol, T.; Roncea, F.N.; Prelipcean, A.M.; Craciunescu, O.; Iosageanu, A.; Artem, V.; Ranca, A.; Motelica, L.; et al. Health benefits of antioxidant bioactive compounds in the fruits and leaves of Lonicera caerulea L. and Aronia melanocarpa (Michx.) Elliot. Antioxidants 2023, 12, 951. [Google Scholar] [CrossRef] [PubMed]
- Siddeeg, A.; AlKehayez, N.M.; Abu-Hiamed, H.A.; Al-Sanea, E.A.; Al-Farga, A.M. Mode of action and determination of antioxidant activity in the dietary sources: An overview. Saudi J. Biol. Sci. 2020, 28, 1633–1644. [Google Scholar] [CrossRef]
- Hrelia, S.; Angeloni, C. New mechanisms of action of natural antioxidants in health and disease II. Antioxidants. 2021, 10, 1200. [Google Scholar] [CrossRef]
- Rochette, L.; Zeller, M.; Cottin, Y.; Vergely, C. Diabetes, oxidative stress and therapeutic strategies. Biochim. Biophys. Acta 2014, 1840, 2709–2729. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Trans. Targ. Ther. 2024, 9, 53. [Google Scholar] [CrossRef]
- Fatima, M.T.; Bhat, A.A.; Nisar, S.; Fakhro, K.A.; Akil, A.S.A.S. The role of dietary antioxidants in type 2 diabetes and neurodegenerative disorders: An assessment of the benefit profile. Heliyon 2023, 9, e12698. [Google Scholar] [CrossRef] [PubMed]
- Craciunescu, O.; Seciu-Grama, A.-M.; Mihai, E.; Utoiu, E.; Negreanu-Pirjol, T.; Lupu, C.E.; Artem, V.; Ranca, A.; Negreanu-Pirjol, B.-S. The Chemical Profile, Antioxidant, and Anti-Lipid Droplet Activity of Fluid Extracts from Romanian Cultivars of Haskap Berries, Bitter Cherries, and Red Grape Pomace for the Management of Liver Steatosis. Int. J. Mol. Sci. 2023, 24, 16849. [Google Scholar] [CrossRef]
- Bajaj, S.; Khan, A. Antioxidants and diabetes. Indian J. Endocrinol. Metab. 2012, 16, S267–S271. [Google Scholar] [CrossRef]
- Tuell, D.S.; Los, E.A.; Ford, G.A.; Stone, W.L. The role of natural antioxidant products that optimize redox status in the prevention and management of type 2 diabetes. Antioxidants 2023, 12, 1139. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.; Balachandran, B.; Shen, H.; Logan, A.; Rao, L. In vitro and in vivo antioxidant properties of the plant-based supplement Greens+. Int. J. Mol. Sci. 2011, 12, 4896–4908. [Google Scholar] [CrossRef] [PubMed]
- Salahuddin, P.; Khan, R.H.; Furkan, M.; Uversky, V.N.; Islam, Z.; Fatima, M.T. Mechanisms of amyloid proteins aggregation and their inhibition by antibodies, small molecule inhibitors, nano-particles and nano-bodies. Int. J. Biol. Macromol. 2021, 186, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, R.; Jannat, K.; Choi, D.K. Development of dietary small molecules as multi-targeting treatment strategies for Alzheimer’s disease. Redox Biol. 2024, 71, 103105. [Google Scholar] [CrossRef]
- Dinte, E.; Vostinaru, O.; Samoila, O.; Sevastre, B.; Bodoki, E. Ophthalmic nanosystems with antioxidants for the prevention and treatment of eye diseases. Coatings 2020, 10, 36. [Google Scholar] [CrossRef]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Juan, C.A.; Plou, F.J.; Pérez-Lebena, E. Antioxidant Metabolism Pathways in Vitamins, Polyphenols, and Selenium: Parallels and Divergences. Int. J. Mol. Sci. 2024, 25, 2600. [Google Scholar] [CrossRef] [PubMed]
- Hunyadi, A. The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med. Res. Rev. 2019, 39, 2505–2533. [Google Scholar] [CrossRef] [PubMed]
- Dammak, A.; Pastrana, C.; Martin-Gil, A.; Carpena-Torres, C.; Peral Cerda, A.; Simovart, M.; Alarma, P.; Huete-Toral, F.; Carracedo, G. Oxidative stress in the anterior ocular diseases: Diagnostic and treatment. Biomedicines 2023, 11, 292. [Google Scholar] [CrossRef]
- Nunes, X.P.; Silva, F.S.; da Souza Almeida, J.R.G.; de Lima, J.T.; de Araújo Ribeiro, L.A.; Junior, L.J.Q.; Filho, J.M.B. Biological oxidations and antioxidant activity of natural products. In Phytochemicals as Nutraceuticals—Global Approaches to Their Role in Nutrition and Health; IntechOpen: London, UK, 2011; pp. 1–22. [Google Scholar]
- Santos Fernandes, S.; Coelho, M.S.; de las Mercedes, S.M.M. Bioactive Compounds as Ingredients of Functional Foods: Polyphenols, Carotenoids, Peptides From Animal and Plant Sources. In Bioactive Compounds; Segura Campos, M.R., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 129–142. [Google Scholar]
- Gok, I. Bioactive compounds modulating inflammation and oxidative stress in some traditional functional foods and beverages. In Current Advances for Development of Functional Foods Modulating Inflammation and Oxidative Stress; Hernández-Ledesma, B., Martínez-Villaluenga, C., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 1–16. [Google Scholar]
- Martirosyan, D.M.; Sanchez, S.S. Quantum theory of functional food science: Establishment of dosage of bioactive compounds in functional food products. Funct. Food Sci. 2022, 3, 79–93. [Google Scholar]
- Hoseini, A.; Namazi, G.; Farrokhian, A.; Reiner, Z.; Aghadavod, E.; Bahmani, F.; Asemi, Z. The effects of resveratrol on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease. Food Funct. 2019, 10, 6042–6051. [Google Scholar] [CrossRef] [PubMed]
- Keenan, T.D.L.; Agrón, E.; Keane, P.A.; Domalpally, A.; Chew, E.Y. Oral antioxidant and lutein/zeaxanthin supplements slow geo-graphic atrophy progression to the fovea in age-related macular degeneration. Ophthalmology 2024, in press. [Google Scholar] [CrossRef]
- Jurja, S.; Negreanu-Pirjol, T.; Vasile, M.; Hincu, M.M.; Coviltir, V.; Negreanu-Pirjol, B.S. Xanthophyll pigments dietary supplements administration and retinal health in the context of increasing life expectancy trend. Front. Nutr. 2023, 10, 1226686. [Google Scholar] [CrossRef]
- Balta, C.; Herman, H.; Ciceu, A.; Mladin, B.; Rosu, M.; Sasu, A.; Peteu, V.E.; Voicu, S.N.; Balas, M.; Gherghiceanu, M.; et al. Phytochemical profiling and anti-fibrotic activities of the gemmotherapy bud extract of Coryllus avellana in a model of liver fibrosis on diabetic mice. Biomedicines 2023, 11, 1771. [Google Scholar] [CrossRef]
- Raiciu, A.D.; Popescu, M.; Manea, S.; Dima, S.O. Antioxidant activity and phyto-therapeutic properties of gemmo-derivatives obtained from Rosmarinus officinalis, Vaccinium myrtillus, Salix alba, Ribes nigrum and Betula pubescens. Rev. Chim. 2016, 67, 1936–1939. [Google Scholar]
- Ghasemi-Dehnoo, M.; Amini-Khoei, H.; Lorigooini, Z.; Rafieian-Kopaei, M. Oxidative stress and antioxidants in diabetes mellitus. Asian Pac. J. Trop. Med. 2020, 13, 431–438. [Google Scholar]
- Li, C.; Miao, X.; Li, F.; Wang, S.; Liu, Q.; Wang, Y.; Sun, J. Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy. Oxidative Med. Cell. Long. 2017, 2017, 9702820. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Yoo, W.S.; Choi, M.; Chung, I.; Yoo, J.M.; Choi, W.S. Increased O-GlcNAcylation of NF-kappaB enhances retinal ganglion cell death in Streptozotocin-induced diabetic retinopathy. Curr. Eye Res. 2016, 41, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Kowluru, R.A. Role of matrix metalloproteinase-9 in the development of diabetic retinopathy and its regulation by Hras. Investig. Ophthalmol. Vis. Sci. 2010, 51, 4320–4326. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Vaishnav, A.; Chauhan, S.; Lalbiaknguri, S.; Lal, J.; Singh, N.S.C.; Pati, B.K. Encapsulation techniques for enhancing the stability and bioavailability of food: A review. Int. J. Adv. Biochem. Res. 2024, 8, 16–23. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, G.; Li, D.; Xu, J.; McClements, D.J.; Li, Y. Advances in emulsion-based delivery systems for nutraceuticals: Utilization of interfacial engineering approaches to control bioavailability. Adv. Food Nutr. Res. 2023, 104, 139–178. [Google Scholar]
- Antipova, A.S.; Martirosova, E.I.; Palmina, N.; Bogdanova, N.G.; Zelikina, D.V.; Chebotarev, S.A.; Balakina, E.S.; Komarova, A.P.; Anokhina, M.S.; Kasparov, V.V. Stability and bioavailability of a combination of hydrophobic and hydrophilic nutriceutics in their liposomal form encapsulated by food biopolymers. In Biotechnology: State of the Art and Perspectives; Nova Biomedical: Waltham, MA, USA, 2022; pp. 189–191. [Google Scholar]
- Gali, L.; Pirozzi, A.; Donsi, F. Biopolymer- and lipid-based carriers for the delivery of plant-based ingredients. Pharmaceutics 2023, 15, 927. [Google Scholar] [CrossRef]
- Niculae, G.; Badea, N.; Meghea, A.; Oprea, O.; Lacatusu, I. Co-encapsulation of butyl-methoxydibenzoylmethane and octocrylene into lipid nanocarriers: UV performance, photostability and in vitro release. Photochem. Photobiol. 2013, 89, 1085–1094. [Google Scholar] [CrossRef]
- Ann, T.; Vasyukova, A.; Veiberov, A.; Smirnova, L.; Suvorov, O.; Bukhtoyarov, V.; Bychkov, A. Using of encapsulated ingredients in designof food with high biological value: A systematic review. Proc. Voronezh State Univ. Eng. Technol. 2022, 84, 32–39. [Google Scholar]
- Petrisor, G.; Motelica, L.; Trusca, R.D.; Mirt, A.L.; Vasilievici, G.; Tomescu, J.A.; Manea, C.; Dumbrava, A.S.; Corbu, V.M.; Gheorghe-Barbu, I.; et al. The antimicrobial potency of mesoporous silica nanoparticles loaded with Melissa officinalis extract. Pharmaceutics 2024, 16, 525. [Google Scholar] [CrossRef]
- Lacatusu, I.; Badea, N.; Badea, G.; Oprea, O.; Mihaila, M.A.; Kaya, D.A.; Stan, R.; Meghea, A. Lipid nanocarriers based on natural oils with high activity against oxygen free radicals and tumor cell proliferation. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 56, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Motelica, L.; Ficai, D.; Petrisor, G.; Oprea, O.C.; Trusca, R.D.; Ficai, A.; Andronescu, E.; Hudita, A.; Holban, A.M. Antimicrobial hydroxyethyl-cellulose-based composite films with zinc oxide and mesoporous silica loaded with cinnamon essential oil. Pharmaceutics 2024, 16, 1225. [Google Scholar] [CrossRef]
- Petrisor, G.; Motelica, L.; Ficai, D.; Ilie, C.I.; Trusca, R.D.; Surdu, V.A.; Oprea, O.C.; Mirt, A.L.; Vasilievici, G.; Semenescu, A.; et al. Increasing bioavailability of trans-ferulic acid by encapsulation in functionalized mesoporous silica. Pharmaceutics 2023, 15, 660. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, Y.; Shaddel, R.; Salamatian, M.; Szumny, A. Nanoliposomal Encapsulation of Capparis spinosa Extract and Its Application in Jelly Formulation. Molecules 2024, 29, 2804. [Google Scholar] [CrossRef] [PubMed]
- Andrie, M.; Taurina, W. Nanoencapsulation of ethanol extract of papaya leaf (Carica papaya Linn.) using chitosan and testing its effectiveness as an anti-inflammatory. Int. J. Appl. Pharm. 2024, 6, 264–271. [Google Scholar] [CrossRef]
- Hashem, G.; Ahmed, G.; Fernández-González, A.; Díaz García, M.E. Nano-encapsulation of grape and apple pomace phenolic extract in chitosan and soy protein via nanoemulsification. Food Hydrocoll. 2020, 108, 105806. [Google Scholar]
- da Silva Sacramento, M.; Tavares, M.I.B. Nanoencapsulation of flavonoid bioactives using the nanoprecipitation technique. In Connecting Expertise Multidisciplinary Development for the Future; Seven Editora Acadêmica: São José dos Pinhais, Brazil, 2024. [Google Scholar] [CrossRef]
- Xu, N.; Shanbhag, A.G.; Li, B.; Angkuratipakorn, T.; Decker, E.A. Impact of Phospholipid-Tocopherol Combinations and Enzyme-Modified Lecithin on the Oxidative Stability of Bulk Oil. J. Agric. Food Chem. 2019, 67, 7954–7960. [Google Scholar] [CrossRef]
- Ananingsih, V.K.; Pratiwi, A.R.; Soedarini, B.; Putra, Y.A.S. Formulation of nanoemulsion parijoto fruit extract (Medinilla speciosa) with variation of tweens stabilizers. Front. Nut. 2024, 11, 1398809. [Google Scholar] [CrossRef]
- Gaillard, E.; Dillon, J.; Friedrichs, J.; Xu, T.; Hagen, T.J.; Karumanchi, D.K. Timed Release of Substances to Treat Ocular Disorders. U.S. Patent US9962333B2/2014, 8 May 2018. [Google Scholar]
- Ana, R.D.; Gliszczyńska, A.; Sanchez-Lopez, E.; Garcia, M.L.; Krambeck, K.; Kovacevic, A.; Souto, E.B. Precision Medicines for Retinal Lipid Metabolism-Related Pathologies. J. Pers. Med. 2023, 13, 635. [Google Scholar] [CrossRef]
- Nagaraju, G.P.; Kamal, M.A. Challenges in the Discovery of Novel Therapeutic Agents in Cancer. Curr. Drug Metab. 2019, 20, 1004–1005. [Google Scholar] [CrossRef] [PubMed]
- Robert, P.; Fredes, C. The Encapsulation of Anthocyanins from Berry-Type Fruits. Molecules 2015, 20, 5875–5888. [Google Scholar] [CrossRef] [PubMed]
- Siepmann, J.; Siepmann, F. Fundamentals and Applications of Controlled Release Drug Delivery. In Swelling Controlled Drug Delivery Systems; Springer: Berlin/Heidelberg, Germany, 2012; pp. 153–170. [Google Scholar]
- Park, K. Controlled drug delivery systems: Past forward and future back. J. Control. Release 2014, 190, 3–8. [Google Scholar] [CrossRef]
- Adepu, S.; Ramakrishna, S. Controlled drug delivery systems: Current status and future directions. Molecules 2022, 26, 5905. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, G.; Ceyhan, T.; Catalkaya, G.; Rajan, L.; Ullah, H.; Daglia, M.; Capanoglu, E. Encapsulated phenolic compounds: Clinical efficacy of a novel delivery method. Phytochem. Rev. 2024, 23, 781–819. [Google Scholar] [CrossRef]
- Bartucci, R.; Paramanandana, A.; Boersma, Y.L.; Olinga, P.; Salvati, A. Comparative study of nanoparticle uptake and impact in murine lung, liver and kidney tissue slices. Nanotoxicology 2020, 14, 847–865. [Google Scholar] [CrossRef]
- Lu, L.; Qi, S.; Chen, Y.; Luo, H.; Huang, S.; Yu, X.; Luo, Q.; Zhang, Z. Targeted immunomodulation of inflammatory monocytes across the blood-brain barrier by curcumin-loaded nanoparticles delays the progression of experimental autoimmune encephalomyelitis. Biomaterials 2020, 245, 119987. [Google Scholar] [CrossRef] [PubMed]
- Adefegha, S.A.; Salawi, A.; Bumrungpert, A.; Khorasani, S.; Torkaman, S.; Mozafari, M.R.; Taghavi, E. Encapsulation of polyphenolic compounds for health promotion and disease prevention: Challenges and opportunities. Nano Micro Biosyst. 2022, 1, 1–12. [Google Scholar]
No. | Supplement | Dose | Results | Reference |
---|---|---|---|---|
1. | Supplement containing resveratrol | Oral intake, 500 mg, daily, 4 weeks | Reduced insulin resistance and decreased HDL cholesterol ratio in patients with diabetes mellitus and coronary heart disease | [95] |
2. | Supplement containing antioxidant vitamins and minerals | Oral intake, 500 mg vitamin C, 400 IU vitamin E, 15 mg β-carotene, 80 mg zinc, daily, 12 months | Decreased progression of dry age-related macular degeneration (AMD), helping to preserve patient’s central vision | [96] |
3. | Supplement containing xanthophyll pigments | Oral intake, 10 mg lutein, 2 mg zeaxanthin, daily, 36 months | Declined progression of vision loss in degenerative retinal patients of 50–60 years of age; provided better control of degenerative processes in patients over 60 years of age, compared to younger group | [97] |
4. | Corylus avellana gemmo-derivative | Gavage administration, 6.711 µg/kg body weight, daily, 14 days | Reduced oxidative stress and liver damage in diabetic male adult mice with CCl4-induced liver fibrosis | [98] |
5. | Vaccinium myrtillus, Rosmarinus officinalis, Salix alba, and Ribes nigrum gemmo-derivatives | Oral intake, 20 mL/kg body weight, daily, 14 days | Prophylactic phytotherapy in sub-acute toxicology studies conducted with white mice | [99] |
6. | Ribes nigrum gemmo-derivative | Oral intake, 250 mL drink of 1:7500 diluted extract, daily, 4 weeks | Decreased microglia activation and TNF-α serum level in LPS-induced neuroinflammation in male Wistar rats | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negreanu-Pirjol, B.-S.; Negreanu-Pirjol, T.; Busuricu, F.; Jurja, S.; Craciunescu, O.; Oprea, O.; Motelica, L.; Oprita, E.I.; Roncea, F.N. The Role of Antioxidant Plant Extracts’ Composition and Encapsulation in Dietary Supplements and Gemmo-Derivatives, as Safe Adjuvants in Metabolic and Age-Related Conditions: A Review. Pharmaceuticals 2024, 17, 1738. https://doi.org/10.3390/ph17121738
Negreanu-Pirjol B-S, Negreanu-Pirjol T, Busuricu F, Jurja S, Craciunescu O, Oprea O, Motelica L, Oprita EI, Roncea FN. The Role of Antioxidant Plant Extracts’ Composition and Encapsulation in Dietary Supplements and Gemmo-Derivatives, as Safe Adjuvants in Metabolic and Age-Related Conditions: A Review. Pharmaceuticals. 2024; 17(12):1738. https://doi.org/10.3390/ph17121738
Chicago/Turabian StyleNegreanu-Pirjol, Bogdan-Stefan, Ticuta Negreanu-Pirjol, Florica Busuricu, Sanda Jurja, Oana Craciunescu, Ovidiu Oprea, Ludmila Motelica, Elena Iulia Oprita, and Florentina Nicoleta Roncea. 2024. "The Role of Antioxidant Plant Extracts’ Composition and Encapsulation in Dietary Supplements and Gemmo-Derivatives, as Safe Adjuvants in Metabolic and Age-Related Conditions: A Review" Pharmaceuticals 17, no. 12: 1738. https://doi.org/10.3390/ph17121738
APA StyleNegreanu-Pirjol, B.-S., Negreanu-Pirjol, T., Busuricu, F., Jurja, S., Craciunescu, O., Oprea, O., Motelica, L., Oprita, E. I., & Roncea, F. N. (2024). The Role of Antioxidant Plant Extracts’ Composition and Encapsulation in Dietary Supplements and Gemmo-Derivatives, as Safe Adjuvants in Metabolic and Age-Related Conditions: A Review. Pharmaceuticals, 17(12), 1738. https://doi.org/10.3390/ph17121738