Study of the Effect of Temperature on the Production of Carrageenan-Based Buccal Films and Optimization of the Process Parameters
<p>Graphical illustration of the thickness measurements of the polymer films.</p> "> Figure 2
<p>Deformation curve of films without API at 60 and 80 °C (Film 3 and 4).</p> "> Figure 3
<p>Deformation curve of films containing diclofenac sodium (Film 6) and lidocaine hydrochloride (Film 7).</p> "> Figure 4
<p>Graphical illustration of the breaking hardness of the polymer films.</p> "> Figure 5
<p>Response surface of breaking hardness ((<b>a</b>): temperature and carrageenan concentration; (<b>b</b>): glycerine concentration and temperature).</p> "> Figure 6
<p>Mucoadhesion force measurements of films containing diclofenac-sodium (Film 6) and lidocaine hydrochloride (Film 7).</p> "> Figure 7
<p>Graphical illustration of the mucoadhesion force of the polymer films.</p> "> Figure 8
<p>Response surface of mucoadhesion force.</p> "> Figure 9
<p>FTIR spectra of polymer films.</p> "> Figure 10
<p>FTIR spectra of polymer films containing active agents: (<b>a</b>) diclofenac sodium; (<b>b</b>) lidocaine hydrochloride.</p> "> Figure 11
<p>Graphical illustration of the loss on drying of the polymer films.</p> "> Figure 12
<p>Dissolution curve of films containing diclofenac sodium (Film 6) and lidocaine hydrochloride (Film 7).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Film Thickness
2.2. Breaking Hardness Test
2.3. In Vitro Mucoadhesion Test
2.4. Fourier-Transform Infrared Spectroscopy (FTIR) Measurement
2.5. Loss on Drying
2.6. Dissolution Test
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Preparation and Formulation of Polymer Films
3.2.2. Film Thickness Measurement
3.2.3. Breaking Hardness Measurement
3.2.4. In Vitro and Ex Vivo Mucoadhesion Test
3.2.5. Fourier-Transform Infrared Spectroscopy (FTIR) Measurement
3.2.6. Loss on Drying Measurement
3.2.7. Dissolution Test
3.2.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shipp, L.; Liu, F.; Kerai-Varsani, L.; Okwuosa, T.C. Buccal films: A review of therapeutic opportunities, formulations & relevant evaluation approaches. J. Control. Release 2022, 352, 1071–1092. [Google Scholar] [PubMed]
- Di Prima, G.; Campisi, G.; De Caro, V. Amorphous Ropinirole-Loaded Mucoadhesive Buccal Film: A Potential Patient-Friendly Tool to Improve Drug Pharmacokinetic Profile and Effectiveness. J. Pers. Med. 2020, 10, 242. [Google Scholar] [CrossRef]
- Nair, A.B.; Kumria, R.; Harsha, S.; Attimarad, M.; Al-Dhubiab, B.E.; Alhaider, I.A. In vitro techniques to evaluate buccal films. J. Control. Release 2013, 166, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Salamat-Miller, N.; Chittchang, M.; Johnston, T.P. The use of mucoadhesive polymers in buccal drug delivery. Adv. Drug Deliv. Rev. 2005, 57, 1666–1691. [Google Scholar] [CrossRef]
- Pilicheva, B.; Uzunova, Y.; Marudova, M. Polyelectrolyte Multilayer Films as a Potential Buccal Platform for Drug Delivery. Polymers 2022, 14, 734. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Boanteg, J. Effects of Cyclodextrins (β and γ) and L-Arginine on Stability and Functional Properties of Mucoadhesive Buccal Films Loaded with Omeprazole for Pediatric Patients. Polymers 2018, 10, 157. [Google Scholar] [CrossRef]
- Morales, J.O.; McConville, J.T. Manufacture and characterization of mucoadhesive buccal films. Eur. J. Pharm. Biopharm. 2011, 77, 187–199. [Google Scholar] [CrossRef]
- Collins, L.M.C.; Dawes, C.J. The surface area of the adult human mouth and the thickness of salivary film covering the teeth and oral mucosa. Dent. Res. 1987, 66, 1300–1302. [Google Scholar] [CrossRef]
- Gottnek, M.; Hódi, K.; Regdon, G., Jr. Szájnyálkahártyán alkalmazható mukoadhezív filmek I. rész: A szájnyálkahártya és a nyál anatómiai. élettani áttekintése. Gyógyszerészet 2013, 57, 24–31. [Google Scholar]
- Lee, J.W.; Park, J.H.; Robinson, J.R. Bioadhesive-based dosage forms: The next Generation. J. Pharm. Sci. 2000, 89, 850–866. [Google Scholar] [CrossRef]
- Stablein, M.J.; Meyer, J. The vascular system and blood supply. In The Structure of Function of Oral Mucosa; Meyer, J., Squier, C.A., Gerson, S.J., Eds.; Pergamon Press: Oxford, UK, 1984; pp. 237–256. [Google Scholar]
- Fox, P.C. Acquired salivary dysfunction. Drugs and radiation. Ann. N. Y. Acad. Sci. 1998, 842, 132–137. [Google Scholar] [CrossRef]
- Harris, D.; Robinson, J.R. Drug delivery via the mucous membranes of the oral cavity. J. Pharm. Sci. 1992, 81, 1–10. [Google Scholar] [CrossRef]
- Hassan, N.; Ahad, A.; Ali, M.; Ali, J. Chemical permeation enhancers for transbuccal drug delivery. Expert Opin. Drug Deliv. 2010, 7, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Gottnek, M.; Hódi, K.; Regdon, G., Jr. Szájnyálkahártyán alkalmazható mukoadhezív filmek II. rész: A mukoadhézió mechanizmusa. a mucin funkciói. Penetráció a szájnyálkahártyán keresztül. a nyálkahártya barrier funkciója. Gyógyszerészet 2013, 57, 69–75. [Google Scholar]
- Sandri, G.; Ruggeri, M.; Rossi, S.; Bonferoni, M.C.; Vigani, B.; Ferrari, F. (Trans)buccal drug delivery. In Nanotechnology for Oral Drug Delivery; Academic Press: Cambridge, MA, USA, 2020; pp. 225–250. [Google Scholar]
- Laurén, P.; Paukkonen, H.; Lipiäinen, T.; Dong, Y.; Oksanen, T.; Räikkönen, H.; Ehlers, H.; Laaksonen, P.; Yliperttula, M.; Laaksonen, T. Pectin and mucin enhance the bioadhesion of drug loaded nanofibrillated cellulose films. Pharm. Res. 2018, 35, 145. [Google Scholar] [CrossRef]
- Bruschi, M.L.; de Souza Ferreira, S.B.; Bassi da Silva, J. Mucoadhesive and mucus-penetrating polymers for drug delivery. In Nanotechnology for Oral Drug Delivery; Academic Press: Cambridge, MA, USA, 2020; pp. 77–141. [Google Scholar]
- Gottnek, M.; Hódi, K.; Regdon, G., Jr. Szájnyálkahártyán alkalmazható mukoadhezív filmek IV. rész: Bukkális mukoadhezív filmekben alkalmazott hatóanyagok. Mukoadhezív filmek előállítása és vizsgálata. Gyógyszerészet 2013, 57, 323–329. [Google Scholar]
- Ma, X.; Chen, J.; Xu, D.; Lin, J.; Ren, C.; Long, Z. Influence of processing conditions of polymer film on dropwise condensation heat transfer. Int. J. Heat. Mass Transf. 2002, 45, 3405–3411. [Google Scholar] [CrossRef]
- Freier, T.; Kunze, C.; Schmitz, K.P. Solvent removal from solution-cast films of biodegradable polymers. J. Mater. Sci. 2001, 20, 1929–1931. [Google Scholar]
- Khan, S.; Boateng, J.S.; Mitchell, J.; Trivedi, V. Formulation, Characterisation and Stabilisation of Buccal Films for Paediatric Drug Delivery of Omeprazole. Aaps Pharmscitech 2015, 16, 800–810. [Google Scholar] [CrossRef]
- Yuguchi, Y.; Thuy, T.T.T.; Urakawa, H.; Kajiwara, K. Structural Characteristics of Carrageenan Gels: Temperature and Concentration Dependence. Food Hydrocoll. 2002, 16, 515–522. [Google Scholar] [CrossRef]
- Salave, S.; Rana, D.; Sharma, A.; Bharathi, K.; Gupta, R.; Khode, S.; Benival, D.; Kommineni, N. Polysaccharide Based Implantable Drug Delivery: Development Strategies, Regulatory Requirements, and Future Perspectives. Polysaccharides 2022, 3, 625–654. [Google Scholar] [CrossRef]
- Pacheco-Quito, E.-M.; Ruiz-Caro, R.; Veiga, M.-D. Carrageenan: Drug Delivery Systems and Other Biomedical Applications. Mar. Drugs 2020, 18, 583. [Google Scholar] [CrossRef] [PubMed]
- Tari, O.; Kara, S.; Pekcan, O. Critical Exponents of Kappa-carrageenan in the Coil-Helix and Helix-Coil Hysteresis Loops. J. Macromol. Sci. B 2009, 48, 812–822. [Google Scholar] [CrossRef]
- Vigani, B.; Rossi, S.; Gentile, M.; Sandri, G.; Bonferoni, M.C.; Cavalloro, V.; Martino, E.; Collina, S.; Ferrari, F. Development of a Mucoadhesive and an In Situ Gelling Formulation Based on κ-Carrageenan for Application on Oral Mucosa and Esophagus Walls. II. Loading of a Bioactive Hydroalcoholic Extract. Mar. Drugs 2019, 17, 153. [Google Scholar] [CrossRef]
- Li, L.; Ni, R.; Shao, Y.; Mao, S. Carrageenan and its applications in drug delivery. Carbohydr. Polym. 2014, 103, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Thommes, M.; Kleinebudde, P. Use of Kappa-Carrageenan as Alternative Pelletisation Aid to Microcrystalline Cellulose in Extrusion/Spheronization. II. Influence of Drug and Filler Type. Eur. J. Pharm. Biopharm. 2006, 63, 68–75. [Google Scholar] [CrossRef]
- Tejada, G.; Lamas, M.C.; Svetaz, L.; Salomón, C.J.; Alvarez, V.A.; Leonardi, D. Effect of drug incorporation technique and polymer combination on the performance of biopolymeric antifungal buccal films. Int. J. Pharm. 2018, 5, 431–442. [Google Scholar] [CrossRef]
- Volod’ko, A.V.; Davydova, V.N.; Petrova, V.A.; Romanov, D.P.; Pimenova, E.A.; Yermak, I.M. Comparative Analysis of the Functional Properties of Films Based on Carrageenans, Chitosan, and Their Polyelectrolyte Complexes. Mar. Drugs 2021, 19, 704. [Google Scholar] [CrossRef] [PubMed]
- Kianfar, F.; Antonijevic, M.D.; Chowdhry, B.Z.; Boateng, J.S. Formulation Development of a Carrageenan Based Delivery System for Buccal Drug Delivery Using Ibuprofen as a Model Drug. J. Biomater. Nanobiotechnol. 2011, 2, 582–595. [Google Scholar] [CrossRef]
- Kianfar, F.; Chowdhry, B.Z.; Antonijevic, M.D.; Boateng, J.S. Novel films for drug delivery via the buccal mucosa using model soluble and insoluble drugs. Drug Dev. Ind. Pharm. 2012, 38, 1207–1220. [Google Scholar] [CrossRef] [PubMed]
- Boateng, J.S.; Pawar, H.V.; Tetteh, J. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. Int. J. Pharm. 2013, 441, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, A.; Gottnek, M.; Regdon, G., Jr.; Pintye-Hódi, K. New equipment for measurement of the force of adhesion of mucoadhesive films. J. Adhes. Sci. Technol. 2015, 29, 1360–1367. [Google Scholar] [CrossRef]
- Pamlényi, K.; Kristó, K.; Jójárt-Laczkovich, O.; Regdon, G., Jr. Formulation and Optimization of Sodium Alginate Polymer Film as a Buccal Mucoadhesive Drug Delivery System Containing Cetirizine Dihydrochloride. Pharmaceutics 2021, 13, 619. [Google Scholar] [CrossRef] [PubMed]
- Pamlényi, K.; Regdon, G., Jr.; Jójárt-Laczkovich, O.; Nemes, D.; Bácskay, I.; Kristó, K. Formulation and characterization of pramipexole containing buccal films for using in Parkinson’s disease. Eur. J. Pharm. Sci 2023, 187, 106491. [Google Scholar] [CrossRef] [PubMed]
- Pamlényi, K.; Kristó, K.; Sovány, T.; Regdon, G., Jr. Development and evaluation of bioadhesive buccal films based on sodium alginate for allergy therapy. Heliyon 2022, 8, e10364. [Google Scholar] [CrossRef]
- Kristó, K.; Módra, S.; Hornok, V.; Süvegh, K.; Ludasi, K.; Aigner, Z.; Kelemen, A.; Sovány, T.; Pintye-Hódi, K.; Regdon, G., Jr. Investigation of Surface Properties and Free Volumes of Chitosan-Based Buccal Mucoadhesive Drug Delivery Films Containing Ascorbic Acid. Pharmaceutics 2022, 14, 345. [Google Scholar] [CrossRef] [PubMed]
- Sanyang, M.L.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Sahari, J. Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata) Starch. Polymers 2015, 7, 1106–1124. [Google Scholar] [CrossRef]
- Göbel, A.; da Silva, J.B.; Cook, M.; Breitkreutz, J. Development of buccal film formulations and their mucoadhesive performance in biomimetic models. Int. J. Pharm. 2021, 610, 121233. [Google Scholar] [CrossRef]
- Boddupalli, B.M.; Mohammed, Z.N.; Nath, R.A.; Banji, D. Mucoadhesive drug delivery system: An overview. J. Adv. Pharm. Technol. Res. 2010, 1, 381–387. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salehpour, S.; Dubé, M.A. Reaction monitoring of glycerol step-growth polymerization using ATR-FTIR spectroscopy. Macromol. React. Eng. 2019, 13, 1800121. [Google Scholar] [CrossRef]
- Eleftheriadis, G.K.; Ritzoulis, C.; Bouropoulos, N.; Tzetzis, D.; Andreadis, D.A.; Boetker, J.; Fatouros, D.G. Unidirectional drug release from 3D printed mucoadhesive buccal films using FDM technology: In vitro and ex vivo evaluation. Eur. J. Pharm. Biopharm. 2019, 144, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Baus, R.A.; Haug, M.F.; Leichner, C.; Jelkmann, M.; Bernkop-Schnürch, A. In Vitro–In Vivo Correlation of Mucoadhesion Studies on Buccal Mucosa. Mol. Pharm. 2019, 16, 2719–2727. [Google Scholar] [CrossRef]
- Elsupikhe, R.F.; Shameli, K.; Ahmad, M.B.; Ibrahim, N.A.; Zainudin, N. Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan. Nanoscale Res. Lett. 2015, 10, 302. [Google Scholar] [CrossRef] [PubMed]
- Gales, R.B.; Ghonaim, H.M.; Gardouh, A.R.; Ghorab, M.M.; Badawy, S.S. Preparation and characterization of polymeric mucoadhesive film for buccal administration. Br. J. Pharm. Res. 2013, 4, 453–476. [Google Scholar] [CrossRef]
- Abu-Huwaij, R.; Assaf, S.; Salem, M.; Sallam, A. Mucoadhesive Dosage form of Lidocaine Hydrochloride: I. Mucoadhesive and Physicochemical Characterization. Drug Dev. Ind. Pharm. 2007, 33, 855–864. [Google Scholar] [CrossRef]
- Buchholcz, G.; Kelemen, A.; Pintye-Hódi, K. Modified-release capsules containing sodium riboflavin 5′-phosphate. Drug Dev. Ind. Pharm. 2014, 40, 1632–1636. [Google Scholar] [CrossRef] [PubMed]
- Jesus, A.R.; Soromenho, M.R.C.; Raposo, L.R.; Esperança, J.M.S.S.; Baptista, P.V.; Fernandes, A.R.; Reis, P.M. Enhancement of water solubility of poorly water-soluble drugs by new biocompatible N-acetyl amino acid N-alkyl cholinium-based ionic liquids. Eur. J. Pharm. Biopharm. 2019, 137, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Žilnik, L.F.; Jazbinšek, A.; Hvala, A.; Vrečer, F.; Klamt, A. Solubility of sodium diclofenac in different solvents. Fluid. Phase Equilib. 2007, 261, 140. [Google Scholar] [CrossRef]
Carrageenan (w/w%) | Glycerine (w/w%) | Temperature (°C) | Diclofenac Sodium (0.5 w/w%) | Lidocaine Hydrochloride (0.5 w/w%) | |
---|---|---|---|---|---|
Film 1 | 1 | 0 | 60 | - | - |
Film 2 | 1 | 0 | 80 | - | - |
Film 3 | 1 | 3 | 60 | - | - |
Film 4 | 1 | 3 | 80 | - | - |
Film 5 | 1.5 | 1.5 | 70 | - | - |
Film 6 | 1.5 | 1.5 | 70 | + | - |
Film 7 | 1.5 | 1.5 | 70 | - | + |
Film 8 | 2 | 0 | 60 | - | - |
Film 9 | 2 | 0 | 80 | - | - |
Film 10 | 2 | 3 | 60 | - | - |
Film 11 | 2 | 3 | 80 | - | - |
Factors | Minimum Level | Maximum Level | Central Point |
---|---|---|---|
Total polymer concentrations (x1) | 1% | 2% | 1.5% |
Concentration of glycerine (x2) | 0% | 3% | 1.5% |
Temperature (x3) | 60 °C | 80 °C | 70 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kristó, K.; Sangestani, A.; Hassan, A.A.A.; Rayya, H.; Pamlényi, K.; Kelemen, A.; Csóka, I. Study of the Effect of Temperature on the Production of Carrageenan-Based Buccal Films and Optimization of the Process Parameters. Pharmaceuticals 2024, 17, 1737. https://doi.org/10.3390/ph17121737
Kristó K, Sangestani A, Hassan AAA, Rayya H, Pamlényi K, Kelemen A, Csóka I. Study of the Effect of Temperature on the Production of Carrageenan-Based Buccal Films and Optimization of the Process Parameters. Pharmaceuticals. 2024; 17(12):1737. https://doi.org/10.3390/ph17121737
Chicago/Turabian StyleKristó, Katalin, Anahita Sangestani, Alharith A. A. Hassan, Hala Rayya, Krisztián Pamlényi, András Kelemen, and Ildikó Csóka. 2024. "Study of the Effect of Temperature on the Production of Carrageenan-Based Buccal Films and Optimization of the Process Parameters" Pharmaceuticals 17, no. 12: 1737. https://doi.org/10.3390/ph17121737
APA StyleKristó, K., Sangestani, A., Hassan, A. A. A., Rayya, H., Pamlényi, K., Kelemen, A., & Csóka, I. (2024). Study of the Effect of Temperature on the Production of Carrageenan-Based Buccal Films and Optimization of the Process Parameters. Pharmaceuticals, 17(12), 1737. https://doi.org/10.3390/ph17121737