Road Asphalt Pavements Analyzed by Airborne Thermal Remote Sensing: Preliminary Results of the Venice Highway
<p>(a) MIVIS scene, outlined in black over a regional map; (b) MIVIS imagery acquired over Venice study area (755 columns × 2956 lines).</p> ">
<p>Flow diagram indicating the steps followed in the methods.</p> ">
<p>Example of an asphalt pavement of the study area with surfacing limestone granules.</p> ">
<p>Examples (a) of new and old emissivity spectra of paving asphalt from the JHU spectral library and (b) of limestone band-depth analysis (intervals 9.59-11.94μm): emissivity continuum-removed absorption peak of a pure limestone spectrum (JHU spectral library), both convolved to MIVIS bandpasses in order to show how its occurrence would affect MIVIS detectability.</p> ">
<p>Object-oriented classification of MIVIS emissivity image. In yellow are depicted the masked highways and exits, they are overlaid on MIVIS channel 13 only for visualization purposes.</p> ">
<p>Estimates of MIVIS SNR in the TIR spectral range calculated on the masked asphalt pavements of the study area.</p> ">
<p><b>(a)</b> In yellow are depicted the two test areas, selected for training the band-depth analysis; <b>(b)</b> Image showing the band-depth analysis results: in red are depicted the detected asphalt pavements showing surface defects thus to be checked for maintenance. Both images are overlaid on MIVIS channel 13 only for visualization purposes.</p> ">
<p>Images showing an example of asphalt pavements with different surface defects within the study area. Image (b) shows MIVIS emissivity BD classification results. Both images are overlaid on MIVIS channel 13 only for visualization purposes.</p> ">
Abstract
:1. Introduction
2. Study area
3. Data and methods
3.1. Image preprocessing
3.2. Image classification
3.2.1. Object-oriented approach
- (i)
- The “find objects” task (i.e. segmentation; [30]) that was divided, in its turn, into four steps: “segment”, “merge”, “refine”, and “compute attributes”. The “segment” and “merge” steps of this task were used to divide the image into segments corresponding to real-world objects and for solving over-segmentation problems and then the adjacent segments were grouped on the basis of their brightness value.
- (ii)
- The “rule-based classification” task (i.e. classification; [30]) was used to extract only the highways and exits objects and then to export them onto a raster image.
3.2.2. Band Depth analysis on asphalt roads
4. Results and discussion
4.1. Object-oriented classification results
4.2. Application requirements and Band-Depth results
5. Conclusions
Acknowledgments
References
- Bassani, C.; Cavalli, R.M.; Cavalcante, F.; Cuomo, V.; Palombo, A.; Pascucci, S.; Pignatti, S. Deterioration status of asbestos-cement roofing sheets assessed by analyzing hyperspectral data. Remote Sensing of Environment 2007, 109, 361–378. [Google Scholar]
- Bassi, P. Chimica applicata ai materiali da costruzione 1993.
- Becker, F.; Li, Z.L. Temperature-Independent Spectral Indices in Thermal Infrared Bands. Remote Sensing of Environment 1990, 32, 17–33. [Google Scholar]
- Ben-Dor, E.; Levin, N.; Saaroni, H. A spectral based recognition of the urban environment using the visible and near-infrared spectral region (0.4–1.1 m). A case study over Tel-Aviv. International Journal of Remote Sensing 2001, 22(11), 2193–2218. [Google Scholar]
- Bianchi, R.; Marino, C. M.; Pignatti, S. Airborne hyperspectral remote sensing in Italy. Proceedings of Recent Advances in Remote Sensing and Hyperspectral Remote Sensing, Rome, Italy, September 23-30; 1994; pp. 29–37. [Google Scholar]
- Boskovitz, V.; Guterman, H. An adaptive neuro-fuzzy system for automatic image segmentation and edge detection. IEEE Transactions on fuzzy systems 2002, 10, 247–262. [Google Scholar]
- Carlisle, O.; Lucey, P.G.; Sherman, S.B. Thermal infrared weathering trajectories in Hawaiian basalts: results from airborne, field and laboratory observations. Proceedings of the 37th Lunar and Planetary Science Conference, League City, Texas, March 13-17; 2006; 17. [Google Scholar]
- Clark, R.N.; Roush, T.D. Reflectance Spectroscopy: Quantitative Analysis Techniques for Remote Sensing Applications. Journal of Geophysical Research 1984, 89, 6329–6340. [Google Scholar]
- Clark, R.N.; Gallagher, A.J.; Swayze, G.A. Material absorption band depth mapping of imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials. Proceedings of the 3th JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop: JPL Publication, Pasadena, CA,, June 4-5; 1990; 90-54, pp. 176–186. [Google Scholar]
- Clark, R.N. Spectroscopy of rocks and minerals and principles of spectroscopy. In Manual of Remote Sensing. Volume 3: Remote Sensing for the Earth Sciences; Rencz, A.N., Ed.; John Wiley & Sons Inc., 1999; pp. 3–58. [Google Scholar]
- Colwell, R.N. Manual of Remote Sensing; American Society of Photogrammetry and Remote Sensing: Falls Church Eds., 1983; pp. 344–363. Volume 1196. [Google Scholar]
- CONCAWE. Bitumens and bitumen derivatives. In CONservation of Clean Air and Water in Europe (PD 92/104); Brussels, Belgium, December 1992. [Google Scholar]
- Gao, B. An operational method for estimating signal to noise ratios from data acquired with imaging spectrometers. Remote Sensing of Environment 1993, 43, 23–33. [Google Scholar]
- Gillespie, A.R.; Kahle, A.B.; Palluconi, F.D. Mapping alluvial fans in Death Valley, CA, using multispectral thermal infrared images. Geophysical Research Letters 1984, 11(11), 1153–1156. [Google Scholar]
- Gillespie, A.R. Spectral mixture analysis of multispectral thermal infrared images. Remote Sensing of Environment 1992, 42, 137–145. [Google Scholar]
- Gillespie, A.R.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A Temperature and Emissivity Separation Algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Images. IEEE Transactions on Geoscience and Remote Sensing 1998, 36(4), 1113–1126. [Google Scholar]
- Gillespie, A.R.; Rokugawa, S.; Hook, S.; Matsunaga, T.; Kahle, A.B. ASTER Temperature/Emissivity Separation Algorithm Theoretical Basis (Version 2.4). In Algorithm Theoretical Basis Document.; Washington, DC: NASA, Contract Number NAS5-31372; 1999. [Google Scholar]
- Gu, D.G.; Gillespie, A.R.; Kahle, A.B.; Palluconi, F.D. Autonomous Atmospheric Compensation (AAC) of high-resolution hyperspectral thermal infrared remote-sensing imagery. IEEE Transactions Geoscience Remote Sensing 2000, 38(6), 2557–2570. [Google Scholar]
- Haas, R.; Hudson, W. R.; Zaniewski, J. Modern Pavement Management; Krieger Publishing Company: Malabar, FL, 1994. [Google Scholar]
- Heiden, U.; Roessner, S.; Segl, K.; Kaufmann, H. Analysis of spectral signatures of urban surfaces for their area-wide identification using hyperspectral HyMap data. Proceedings of IEEE -ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, Rome, Italy, November 8-9; 2001; pp. 173–177. [Google Scholar]
- Heiden, U.; Segl, K.; Roessner, S.; Kaufmann, H. Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data. Remote Sensing of Environment 2007, 111, 537–552. [Google Scholar]
- Hepner, G.F.; Chen, J. Investigation of imaging spectroscopy for discriminating urban land covers and surface materials. Proceedings of AVIRIS Earth Science and Applications Workshop, Palo Alto, CA, 27 Feb - 2 Mar; 2001. [Google Scholar]
- Herold, M.; Gardner, M.; Roberts, D. Spectral resolution requirements for mapping urban areas. IEEE Transactions on Geoscience and Remote Sensing 2003, 41(9), 1907–1919. [Google Scholar]
- Herold, M.; Roberts, D.A.; Gardner, M.E.; Dennison, P.E. Spectrometry for urban area remote sensing. Development and analysis of a spectral library from 350 to 2400 nm. Remote Sensing of Environment 2004, (91), 304–319. [Google Scholar]
- Herold, M.; Roberts, D. Spectral characteristics of asphalt road aging and deterioration: implications for remote-sensing applications. Applied Optics 2005, 44(20), 4327–4334. [Google Scholar]
- Hook, S.J.; Gabell, A.R.; Green, A.A.; Kealy, P.S. A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies. Remote Sensing of Environment 1992, 42, 123–135. [Google Scholar]
- Hook, S. J.; Abbott, E. A.; Grove, C.; Kahle, A. B.; Palluconi, F. D. Use of multispectral thermal infrared data in geological studies. In Manual of Remote Sensing. Volume 3: Remote Sensing for the Earth Sciences; Rencz, A.N., Ed.; John Wiley & Sons Inc., 1999; pp. 59–110. [Google Scholar]
- Hook, S. J.; Meyers, J. J.; Thome, K. J.; Fitzgerald, M.; Kahle, A. B. The MODIS/ASTER airborne simulator (MASTER) – a new instrument for earth science studies. Remote Sensing of Environment 2001, 76(1), 93–102. [Google Scholar]
- Jensen, J.R.; Cowen, D.C. Remote Sensing of Urban/Suburban Infrastructure and Socio-economic Attributes. Photogrammetric Engineering and Remote Sensing 1999, 65(5), 611–622. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing PerspectiveUpper Saddle River, NJ: Prentice Hall, 3rd Ed. ed; 2005; p. 526. [Google Scholar]
- Johnson, B.R. scene atmospheric compensation: Application to SEBASS data collected at the ARM site, Part I. Aerospace Corporation technical report, ATR-99 (8407)-1 1998. [Google Scholar]
- Kahle, A.B.; Rowan, L.C. Evaluation of multispectral middle infrared aircraft images for lithologic mapping in the East Tintic Mountains, Utah. Geology 1980, 8, 234–239. [Google Scholar]
- Kahle, A.B.; Goetz, A.F. Mineralogic information from a new airborne thermal infrared multispectral scanner. Science 1983, 222, 24–27. [Google Scholar]
- Kahle, A.B.; Palluconi, F.D.; Christensen, P.R. Thermal emission spectroscopy: application to Earth and Mars. In Remote geochemical analysis: elemental and mineralogical composition; Pieters, C.M., Englert, P.A.J., Eds.; Cambridge University Press, 1993; pp. 99–120. [Google Scholar]
- Kealy, P.S.; Hook, S.J. Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovery of land surface temperatures. IEEE Transactions on Geoscience and Remote Sensing 1993, 31, 1155–1164. [Google Scholar]
- Kirkland, L.E.; Kenneth, C.H.; Salisbury, J.W. Thermal Infrared spectral band detection limits for unidentified surface materials. Applied Optics 2001, 40(27), 4852–4864. [Google Scholar]
- Kirkland, L.; Kenneth, H.; Keim, E.; Adams, P.; Salisbury, J.; Hackwell, J.; Treiman, A. First use of an airborne thermal infrared hyperspectral scanner for compositional mapping. Remote Sensing of Environment 2002, 80, 447–459. [Google Scholar]
- Kirkland, L.E.; Herr, K.C.; Adams, P.M. Infrared stealthy surfaces: Why TES and THEMIS may miss some substantial mineral deposits on Mars and implications for remote sensing of planetary surfaces. Journal of Geophysical Research 2003, 108(E12), 5137. [Google Scholar]
- Kokaly, R.F.; Clark, R.N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment 1999, 67, 267–287. [Google Scholar]
- Kruse, F.A.; Boardman, J.W.; Huntington, J.F. Fifteen years of hyperspectral data: Northern Grapevine Mountains, Nevada. In Proceedings of the 8th JPL Airborne Earth Science Workshop: JPL Publication; Volume 99-17, Jet Propulsion Lab: Pasadena, CA, 1999; pp. 247–256. [Google Scholar]
- Kruse, F.A.; Boardman, J.W.; Huntington, J.F. Comparison of Airborne Hyperspectral Data and EO-1 Hyperion for Mineral Mapping. IEEE Transactions on Geoscience and Remote Sensing 2003, 41(6), 1388–1400. [Google Scholar]
- ITT Visual Information Solutions. ENVI - Environment for Visualizing Images, Version 4.4. 2008. Available at: www.ittvis.com/envi/.
- Lhermitte, S.; Verbesselt, J.; Jonckheere, I.; Nackaerts, K.; van Aardt, J.A.N.; Verstraeten, W.W.; Coppin, P. Hierarchical image segmentation based on similarity of NDVI time series. Remote Sensing of Environment 2007, 112, 506–521. [Google Scholar]
- Li, J.; Chapman, M.A. Terrestrial mobile mapping systems towards real-time geospatial data collection; Geospatial Information Technology for Emergency Response. ISBN978-0-415-42247-5, ISPRS Book Series; Volume 6, Taylor & Francis: London, 2008; pp. 103–119. [Google Scholar]
- Li, Z.L.; Becker, F.; Stoll, M. P.; Wan, Z. Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images. Remote Sensing of Environment 1999, 69, 197–214. [Google Scholar]
- Mathieu, R.; Aryal, J.; Chong, A.K. Object-Based Classification of Ikonos Imagery for Mapping Large-Scale Vegetation Communities in Urban Areas. Sensors 2007, 7, 2860–2880. [Google Scholar]
- Palluconi, F. D.; Meeks, G.R. Thermal infrared Multispectral scanner (TIMS): an investigarot's guide to TIMS data. In JPL Publication; Volume 85-32, Jet Propulsion Laboratory: Pasadena, CA, 1985. [Google Scholar]
- Puzinauskas, V.P.; Corbett, L.W. Differences between petroleum asphalt, coal-tar pitch, and road tar. Asphalt Institute (RR 78-1) 1978. [Google Scholar]
- Ramsey, M.S.; Christensen, P.R. Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. Journal of Geophysical Research 1998, 103, 577–596. [Google Scholar]
- Realmuto, V.J. Separating the Effects of Temperature and Emissivity: Emissivity Spectrum Normalization. In Proceedings 2th TIMS Workshop, JPL Publication; Volume 90-55, pp. 31–35. Jet Propulsion Laboratory: Pasadena, CA, 1990. [Google Scholar]
- Roessner, S.; Segl, K.; Heiden, U.; Kaufmann, H. Automated differentiation of urban surfaces based on airborne hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing 2001, 39(7), 1525–1532. [Google Scholar]
- Richter, R.; Müller, A.; Habermeyer, M.; Dech, S.; Segl, K.; Kaufmann, H. Spectral and radiometric requirements for the airborne thermal imaging spectrometer ARES. International Journal of Remote Sensing 2005, 26(15), 3149–3162. [Google Scholar]
- Ruff, S.W.; Christensen, P.R.; Barbera, P.W.; Anderson, D.L. Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration. Journal of Geophysical Research 1997, 102(14), 899–913. [Google Scholar]
- Sabine, C.; Realmuto, V.J.; Taranik, J.V. Quantitative estimation of granitoid composition from Thermal Infrared Multispectral Scanner (TIMS) data, desolation wilderness, Northern Sierra Nevada, California. Journal of Geophysical Research 1994, 99(B3), 4261–4271. [Google Scholar]
- Salisbury, J.W.; Walter, L. S.; Vergo, N.; D'Aria, D.M. Infrared Spectra of Minerals (2.1- 25 micrometers).; Johns Hopkins University Press, 1991. [Google Scholar]
- Segl, K.; Heiden, U.; Roessner, S.; Kaufmann, H. Fusion of spectral and shape features for identification of urban surface cover types using reflective and thermal hyperspectral data. ISPRS Journal of Journal of Photogrammetry & Remote Sensing 2003, 58, 99–112. [Google Scholar]
- SITEB. Quaderno tecnico per la manutenzione delle pavimentazioni stradali.; SitebSì, srl., Ed.; 2004. [Google Scholar]
- Small, C. Scaling Properties of Urban Reflectance Spectra. Proceeding of AVIRIS Earth Science and Applications Workshop, Pasadena, CA, 27 Feb - 2 Mar; 2001. [Google Scholar]
- Small, C. High spatial resolution spectral mixture analysis of urban reflectance. Remote Sensing of Environment 2003, 88, 170–186. [Google Scholar]
- Speight, J.G. Asphalt. In Kirk-Othmer's Encyclopedia of Chemical Technology; Kroschwitz, J.L., Howe-Grant, M., Eds.; John Wiley & Sons Inc., 1992; pp. 689–724. [Google Scholar]
- Stuckens, J.; Coppin, P. R.; Bauer, M. E. Intergrating contextual information with per-pixel classifications for improved land cover classifications. Remote Sensing of Environment 2000, 71, 282–296. [Google Scholar]
- Tao, C.V.; Li, J. Advances in Mobile Mapping Technology; ISPRS book Series; Vol. 4, Taylor & Frances: London, ISBN 978-0-415-42723-4; 2007; p. 176. [Google Scholar]
- Usher, J.M. Remote sensing applications in transportation modelling. Remote Sensing Technologies Center Final Report. 2000. http://www.rstc.msstate.edu/publications/proposal1999-2001.html.
- Vaughan, R.G.; Wendy, M.C.; Taranik, J.V. SEBASS hyperspectral thermal infrared data: surface emissivity measurement and mineral mapping. Remote Sensing of Environment 2003, 85, 48–63. [Google Scholar]
- Vincent, R. K.; Thomson, F. Spectral composition imaging of silicate rocks. Journal of Geophysical Research 1972, 77, 2465–2472. [Google Scholar]
- Vincent, R.K.; Thomson, F.; Watson, K. Recognition of exposed quartz sand and sandstone by two-channel infrared imagery. Journal of Geophysical Research 1972, 77, 2473–2477. [Google Scholar]
- Walker, D.; Entine, L.; Kummer, S. Pavement surface evaluation and rating. Asphalt PASER manual. Wisconsin Transportation Information Center, 2002. Available at: http://epdfiles.engr.wisc.edu/.
- Watson, K. Spectral ratio method for measuring emissivity. Remote Sensing of Environment 1992, 42, 113–116. [Google Scholar]
- Welch, R. Spatial resolution requirements for urban studies. International Journal of Remote Sensing 1982, 3(2), 139–146. [Google Scholar]
- Young, S. J. In scene atmospheric compensation: Application to SEBASS data collected at the ARM Site. Part II. Aerospace Corporation technical report, ATR-99 (8407)-II 1998. [Google Scholar]
Spectral coverage | VIS: 0.43-0.83 μm (channels 1-20) | Bandwidth | 20 nm | SNR (min, max) | 6 - 366 |
NIR: 1.15-1.55 μm (channels 21-28) | 50 nm | 80 - 1062 | |||
SWIR: 1.98-2.47 μm (channels 29-92) | 8 nm | 4 - 191 | |||
TIR: 8.18-12.70 μm (channels 93-102) | 340-540 nm | 150 - 1500 | |||
FOV and IFOV | 71° and 2 mrad | Cross-track pixels | 755 | ||
Angular | 1.64 | Digitalization accuracy | 12 bit |
©2008 by MDPI Reproduction is permitted for noncommercial purposes.
Share and Cite
Pascucci, S.; Bassani, C.; Palombo, A.; Poscolieri, M.; Cavalli, R. Road Asphalt Pavements Analyzed by Airborne Thermal Remote Sensing: Preliminary Results of the Venice Highway. Sensors 2008, 8, 1278-1296. https://doi.org/10.3390/s8021278
Pascucci S, Bassani C, Palombo A, Poscolieri M, Cavalli R. Road Asphalt Pavements Analyzed by Airborne Thermal Remote Sensing: Preliminary Results of the Venice Highway. Sensors. 2008; 8(2):1278-1296. https://doi.org/10.3390/s8021278
Chicago/Turabian StylePascucci, Simone, Cristiana Bassani, Angelo Palombo, Maurizio Poscolieri, and Rosa Cavalli. 2008. "Road Asphalt Pavements Analyzed by Airborne Thermal Remote Sensing: Preliminary Results of the Venice Highway" Sensors 8, no. 2: 1278-1296. https://doi.org/10.3390/s8021278
APA StylePascucci, S., Bassani, C., Palombo, A., Poscolieri, M., & Cavalli, R. (2008). Road Asphalt Pavements Analyzed by Airborne Thermal Remote Sensing: Preliminary Results of the Venice Highway. Sensors, 8(2), 1278-1296. https://doi.org/10.3390/s8021278