Research on Detection of Ultra-Low Concentration Anthrax Protective Antigen Using Graphene Field-Effect Transistor Biosensor
<p>Optical micrographs of Gr−FET sensors combined with monoclonal antibodies. (<b>a</b>) A single chip containing three Gr−FET sensors (5× magnification). (<b>b</b>) A single Gr−FET sensor (50× magnification).</p> "> Figure 2
<p>Schematic diagram of Debye lengths corresponding to different concentrations of PBS.</p> "> Figure 3
<p>Comparison of the affinity of Anti-PA and PA with different concentrations of PBS solution.</p> "> Figure 4
<p>Schematic illustration of the functionalization process of the Gr−FET with Anti-PA. (<b>a</b>) Cleaning process of the Gr−FET device. (<b>b</b>) PBASE fixed onto the graphene surface as a crosslinker. (<b>c</b>) Anti-PA covalently bound to the crosslinker as a biosensing element. (<b>d</b>) Tween-20 used as a blocking agent to block excess active sites.</p> "> Figure 5
<p>Electrical signal changes in the Gr−FET device during functionalization of monoclonal antibodies. (<b>a</b>) Changes in the transfer characteristic curve of the Gr−FET device during the functionalization process. (<b>b</b>) Changes in I<sub>DS</sub>–V<sub>DS</sub> of the Gr−FET device during the functionalization process.</p> "> Figure 6
<p>Detection of different concentrations of PA using the Gr−FET biosensor combined with monoclonal antibodies. (<b>a</b>–<b>c</b>) The transfer characteristics of the Gr−FET biosensor during the 1st, 2nd, and 3rd detections of different PA concentrations, respectively. (<b>d</b>) Linear fitting relationship between the PA concentration and V<sub>Dirac</sub>, with a 95% confidence interval.</p> "> Figure 7
<p>Effect of formic acid dissociation on the repeated detection of PA using Gr−FET biosensors with binding monoclonal antibodies.</p> "> Figure 8
<p>Electrical signal changes detected by the Gr−FET biosensor combined with monoclonal antibodies for different biomarkers.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Equipment
2.1.1. Experimental Materials
2.1.2. Experimental Instruments
2.2. Experimental Method
2.2.1. Preparation of Detection Device
2.2.2. Detection of Affinity Changes
2.2.3. Functionalized Sensing Materials
2.2.4. Signal Acquisition of Biosensor
3. Results and Discussion
3.1. Physical and Optical Microscopic Characterization of the Detection Device and Sensing Area
3.2. Determination of the Optimal Dilution Concentration
3.3. Changes in Electrical Characteristics during Functionalization Process
3.4. Determining the Detection Limit
3.5. Verification of Specificity
3.6. Verification of Reproducibility
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kwon, E.H.; Reisler, R.B.; Cardile, A.P.; Cieslak, T.J.; D’Onofrio, M.J.; Hewlett, A.L.; Martins, K.A.; Ritchie, C.; Kortepeter, M.G. Distinguishing Respiratory Features of Category A/B Potential Bioterrorism Agents from Community-Acquired Pneumonia. Health Secur. 2018, 16, 224–238. [Google Scholar] [CrossRef] [PubMed]
- Carlson, C.J.; Kracalik, I.T.; Ross, N.; Alexander, K.A.; Hugh-Jones, M.E.; Fegan, M.; Elkin, B.T.; Epp, T.; Shury, T.K.; Zhang, W.; et al. The Global Distribution of Bacillus Anthracis and Associated Anthrax Risk to Humans, Livestock and Wildlife. Nat. Microbiol. 2019, 4, 1337–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, C.J.; Getz, W.M.; Kausrud, K.L.; Cizauskas, C.A.; Blackburn, J.K.; Bustos Carrillo, F.A.; Colwell, R.; Easterday, W.R.; Ganz, H.H.; Kamath, P.L.; et al. Spores and Soil from Six Sides: Interdisciplinarity and the Environmental Biology of Anthrax (Bacillus Anthracis): The Environmental Biology of Bacillus Anthracis. Biol. Rev. 2018, 93, 1813–1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragan, A.I.; Albrecht, M.T.; Pavlovic, R.; Keane-Myers, A.M.; Geddes, C.D. Ultra-Fast Pg/Ml Anthrax Toxin (Protective Antigen) Detection Assay Based on Microwave-Accelerated Metal-Enhanced Fluorescence. Anal. Biochem. 2012, 425, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Tournier, J.-N.; Rougeaux, C. Anthrax Toxin Detection: From In Vivo Studies to Diagnostic Applications. Microorganisms 2020, 8, 1103. [Google Scholar] [CrossRef] [PubMed]
- Varshney, A.; Puranik, N.; Kumar, M.; Pal, V.; Padmaja, J.; Goel, A.K. An ELISA Using a Recombinant Chimera of Protective Antigen and Lethal Factor for Serodiagnosis of Cutaneous Anthrax in India. Biologicals 2019, 57, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Makdasi, E.; Laskar, O.; Glinert, I.; Alcalay, R.; Mechaly, A.; Levy, H. Rapid and Sensitive Multiplex Assay for the Detection of B. Anthracis Spores from Environmental Samples. Pathogens 2020, 9, 164. [Google Scholar] [CrossRef] [Green Version]
- Solano, M.I.; Woolfitt, A.R.; Boyer, A.E.; Lins, R.C.; Isbell, K.; Gallegos-Candela, M.; Moura, H.; Pierce, C.L.; Barr, J.R. Accurate and Selective Quantification of Anthrax Protective Antigen in Plasma by Immunocapture and Isotope Dilution Mass Spectrometry. Analyst 2019, 144, 2264–2274. [Google Scholar] [CrossRef]
- Cohen, N.; Zahavy, E.; Zichel, R.; Fisher, M. An Internal Standard Approach for Homogeneous TR–FRET Immunoassays Facilitates the Detection of Bacteria, Biomarkers, and Toxins in Complex Matrices. Anal. Bioanal. Chem. 2016, 408, 5179–5188. [Google Scholar] [CrossRef]
- Cohen, N.; Mechaly, A.; Mazor, O.; Fisher, M.; Zahavy, E. Rapid Homogenous Time-Resolved Fluorescence (HTRF) Immunoassay for Anthrax Detection. J. Fluoresc. 2014, 24, 795–801. [Google Scholar] [CrossRef]
- Huan, T.N.; Ganesh, T.; Han, S.-H.; Yoon, M.-Y.; Chung, H. Sensitive Detection of an Anthrax Biomarker Using a Glassy Carbon Electrode with a Consecutively Immobilized Layer of Polyaniline/Carbon Nanotube/Peptide. Biosens. Bioelectron. 2011, 26, 4227–4230. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, N.; Gupta, N.; Gupta, G.; Boopathi, M.; Pal, V.; Goel, A.K. Detection of Protective Antigen, an Anthrax Specific Toxin in Human Serum by Using Surface Plasmon Resonance. Diagn. Microbiol. Infect. Dis. 2013, 77, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.K.; Narayanan, J.; Upadhyay, S.; Goel, A.K. Electrochemical Immunosensor Based on Bismuth Nanocomposite Film and Cadmium Ions Functionalized Titanium Phosphates for the Detection of Anthrax Protective Antigen Toxin. Biosens. Bioelectron. 2015, 74, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Farrow, B.; Hong, S.A.; Romero, E.C.; Lai, B.; Coppock, M.B.; Deyle, K.M.; Finch, A.S.; Stratis-Cullum, D.N.; Agnew, H.D.; Yang, S.; et al. A Chemically Synthesized Capture Agent Enables the Selective, Sensitive, and Robust Electrochemical Detection of Anthrax Protective Antigen. ACS Nano 2013, 7, 9452–9460. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Rim, Y.S.; Wang, I.C.; Li, C.; Zhu, B.; Sun, M.; Goorsky, M.S.; He, X.; Yang, Y. Quasi-Two-Dimensional Metal Oxide Semiconductors Based Ultrasensitive Potentiometric Biosensors. ACS Nano 2017, 11, 4710–4718. [Google Scholar] [CrossRef]
- Singh, N.K.; Mandal, D.; Kar, R. Design of Charge-Plasma-Based Cylindrical-Gate-Nanowire TFET with Low Power and Enhanced Sensitivity for Bio-Sensing. Appl. Phys. A 2021, 127, 347. [Google Scholar] [CrossRef]
- Kim, D.-J.; Sohn, I.Y.; Jung, J.-H.; Yoon, O.J.; Lee, N.-E.; Park, J.-S. Reduced Graphene Oxide Field-Effect Transistor for Label-Free Femtomolar Protein Detection. Biosens. Bioelectron. 2013, 41, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Pan, Y.; Shao, W.; Lin, Q.; Zhao, X. Graphene-Based Fully Integrated Portable Nanosensing System for on-Line Detection of Cytokine Biomarkers in Saliva. Biosens. Bioelectron. 2019, 134, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Haslam, C.; Damiati, S.; Whitley, T.; Davey, P.; Ifeachor, E.; Awan, S. Label-Free Sensors Based on Graphene Field-Effect Transistors for the Detection of Human Chorionic Gonadotropin Cancer Risk Biomarker. Diagnostics 2018, 8, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Mao, H.; Wu, C.; Tang, L.; Wu, Z.; Sun, H.; Zhang, H.; Zhou, H.; Jia, C.; Jin, Q.; et al. Label-Free Graphene Biosensor Targeting Cancer Molecules Based on Non-Covalent Modification. Biosens. Bioelectron. 2017, 87, 701–707. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Wang, K.; Sun, H.; Zhao, S.; Chen, X.; Qian, D.; Mao, H.; Zhao, J. Novel Graphene Biosensor Based on the Functionalization of Multifunctional Nano-Bovine Serum Albumin for the Highly Sensitive Detection of Cancer Biomarkers. Nano-Micro Lett. 2019, 11, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poortinga, A.T.; Bos, R.; Norde, W.; Busscher, H.J. Electric Double Layer Interactions in Bacterial Adhesion to Surfaces. Surf. Sci. Rep. 2002, 47, 1–32. [Google Scholar] [CrossRef]
- Medina-Bailon, C.; Kumar, N.; Dhar, R.P.S.; Todorova, I.; Lenoble, D.; Georgiev, V.P.; García, C.P. Comprehensive Analytical Modelling of an Absolute PH Sensor. Sensors 2021, 21, 5190. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Jiang, L.; van Geest, E.P.; Lima, L.M.C.; Schneider, G.F. Sensing at the Surface of Graphene Field-Effect Transistors. Adv. Mater. 2017, 29, 1603610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elnathan, R.; Kwiat, M.; Pevzner, A.; Engel, Y.; Burstein, L.; Khatchtourints, A.; Lichtenstein, A.; Kantaev, R.; Patolsky, F. Biorecognition Layer Engineering: Overcoming Screening Limitations of Nanowire-Based FET Devices. Nano Lett. 2012, 12, 5245–5254. [Google Scholar] [CrossRef] [PubMed]
- Chua, J.H.; Chee, R.-E.; Agarwal, A.; Wong, S.M.; Zhang, G.-J. Label-Free Electrical Detection of Cardiac Biomarker with Complementary Metal-Oxide Semiconductor-Compatible Silicon Nanowire Sensor Arrays. Anal. Chem. 2009, 81, 6266–6271. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.-H.; Sarangadharan, I.; Regmi, A.; Chen, Y.-W.; Hsu, C.-P.; Chang, W.-H.; Lee, G.-Y.; Chyi, J.-I.; Chen, C.-C.; Shiesh, S.-C.; et al. Beyond the Debye Length in High Ionic Strength Solution: Direct Protein Detection with Field-Effect Transistors (FETs) in Human Serum. Sci. Rep. 2017, 7, 5256. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Dong, X.; Liu, Y.; Li, L.-J.; Chen, P. Graphene-Based Biosensors for Detection of Bacteria and Their Metabolic Activities. J. Mater. Chem. 2011, 21, 12358. [Google Scholar] [CrossRef]
- Seo, G.; Lee, G.; Kim, M.J.; Baek, S.-H.; Choi, M.; Ku, K.B.; Lee, C.-S.; Jun, S.; Park, D.; Kim, H.G.; et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano 2020, 14, 5135–5142. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Dhar, R.; Pascual Garcia, C.; Georgiev, V.P. (Invited) A Novel Computational Framework for Simulations of Bio-Field Effect Transistors. ECS Trans. 2023, 111, 249–260. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, T.; Chen, J.; Yan, R.; Jiang, H.; Li, H. Research on Detection of Ultra-Low Concentration Anthrax Protective Antigen Using Graphene Field-Effect Transistor Biosensor. Sensors 2023, 23, 5820. https://doi.org/10.3390/s23135820
Liang T, Chen J, Yan R, Jiang H, Li H. Research on Detection of Ultra-Low Concentration Anthrax Protective Antigen Using Graphene Field-Effect Transistor Biosensor. Sensors. 2023; 23(13):5820. https://doi.org/10.3390/s23135820
Chicago/Turabian StyleLiang, Ting, Jingfei Chen, Rui Yan, Huaning Jiang, and Hexi Li. 2023. "Research on Detection of Ultra-Low Concentration Anthrax Protective Antigen Using Graphene Field-Effect Transistor Biosensor" Sensors 23, no. 13: 5820. https://doi.org/10.3390/s23135820
APA StyleLiang, T., Chen, J., Yan, R., Jiang, H., & Li, H. (2023). Research on Detection of Ultra-Low Concentration Anthrax Protective Antigen Using Graphene Field-Effect Transistor Biosensor. Sensors, 23(13), 5820. https://doi.org/10.3390/s23135820