A Review of Gas Measurement Set-Ups
<p>Classification of gas-sensing methods; reprinted with permission from [<a href="#B59-sensors-22-02557" class="html-bibr">59</a>].</p> "> Figure 2
<p>The main parameters that must be controlled in the stand for measuring the sensor response of semiconductor gas sensors.</p> "> Figure 3
<p>Schematic diagram of the set-up for the measurement of H<sub>2</sub>S hydrate dissociation in the presence of liquid water. V1, V2, DLC, and PT represent the inlet valve, outlet valve, data logging computer, and pressure transducer, respectively. V3, V4, V5, V6, V7, V8, and V9 represent control valves. SP1 is a high-pressure syringe pump containing degassed water, and SP2 is the high-pressure syringe pump containing H<sub>2</sub>S fluid. Reprinted with permission from [<a href="#B45-sensors-22-02557" class="html-bibr">45</a>].</p> "> Figure 4
<p>(<b>a</b>) Experimental chamber, not showing the humidifying circuit. Reprinted with permission from [<a href="#B69-sensors-22-02557" class="html-bibr">69</a>]; (<b>b</b>) The humidification circuit. Reprinted with permission from [<a href="#B69-sensors-22-02557" class="html-bibr">69</a>]; (<b>c</b>) Top: General view of the measuring chamber with sensor printed circuit board (PCB), gas cylindrical chamber with inner diameter of 30 mm, fluidic connections and dew point sensor. Zoom: top view of the sensor PCB with the pressure and temperature sensor and the first microcantilever in front of a permanent magnet. Bottom left: the second cantilever is placed on the rear side of the PCB. Actuation occurs by supplying a small alternating current (AC) intensity over the metal coil on the cantilever tip. Bottom right: sensor PCB and dew point sensor mounted in a pressure-tight measuring chamber (numbers in the scale correspond to cm). Reprinted with permission from [<a href="#B83-sensors-22-02557" class="html-bibr">83</a>].</p> "> Figure 5
<p>(<b>a</b>) Schematic diagram of proposed gas-sensor unit. Reprinted from [<a href="#B68-sensors-22-02557" class="html-bibr">68</a>] under CC BY-NC licence; (<b>b</b>) Photograph of the proposed gas-sensor set-up. Reprinted from [<a href="#B68-sensors-22-02557" class="html-bibr">68</a>] under CC BY-NC licence.</p> "> Figure 5 Cont.
<p>(<b>a</b>) Schematic diagram of proposed gas-sensor unit. Reprinted from [<a href="#B68-sensors-22-02557" class="html-bibr">68</a>] under CC BY-NC licence; (<b>b</b>) Photograph of the proposed gas-sensor set-up. Reprinted from [<a href="#B68-sensors-22-02557" class="html-bibr">68</a>] under CC BY-NC licence.</p> "> Figure 6
<p>Top: top and side view of the silicon microcantilevers from SCL-Sensor. Tech. (PRSA-L300-F50-TL-PCB) [<a href="#B85-sensors-22-02557" class="html-bibr">85</a>] used in this study. The cantilevers have a length of 300 µm a width of 110 µm and a thickness of between 2.5 to 4 µm. Bottom: Scanning electron microscope (SEM) images of the cantilever top surface and details of the heater coil. Reprinted with permission from [<a href="#B83-sensors-22-02557" class="html-bibr">83</a>].</p> "> Figure 7
<p>(<b>a</b>) Plan of the gas-sensor measurement set-up. Reprinted with permission from [<a href="#B17-sensors-22-02557" class="html-bibr">17</a>]; (<b>b</b>) Plan of the system measuring the electrical responses of a thin-film gas sensor. Reprinted with permission from [<a href="#B78-sensors-22-02557" class="html-bibr">78</a>]; (<b>c</b>) Schematic drawing of the volumetric gas-mixing method. Reprinted with permission from [<a href="#B17-sensors-22-02557" class="html-bibr">17</a>].</p> "> Figure 8
<p>(<b>a</b>) Humidification set-up (bubbler and gas cooler). Reprinted with permission from [<a href="#B17-sensors-22-02557" class="html-bibr">17</a>]; (<b>b</b>) Plan of the linear measurement chamber. Reprinted with permission from [<a href="#B17-sensors-22-02557" class="html-bibr">17</a>]; (<b>c</b>) Plan of the circular measurement chamber. Reprinted with permission from [<a href="#B17-sensors-22-02557" class="html-bibr">17</a>]; (<b>d</b>) Schematic flow of the measurement cycle. Reprinted with permission from [<a href="#B17-sensors-22-02557" class="html-bibr">17</a>].</p> "> Figure 9
<p>(<b>a</b>) Schematic diagram of active sensing system. Reprinted with permission from [<a href="#B52-sensors-22-02557" class="html-bibr">52</a>]; (<b>b</b>) Schematic representation of the measurement set-up. Reprinted with permission from [<a href="#B83-sensors-22-02557" class="html-bibr">83</a>]; (<b>c</b>) Schematic view of the portable cigarette odour measuring system. Reprinted with permission from [<a href="#B66-sensors-22-02557" class="html-bibr">66</a>].</p> "> Figure 9 Cont.
<p>(<b>a</b>) Schematic diagram of active sensing system. Reprinted with permission from [<a href="#B52-sensors-22-02557" class="html-bibr">52</a>]; (<b>b</b>) Schematic representation of the measurement set-up. Reprinted with permission from [<a href="#B83-sensors-22-02557" class="html-bibr">83</a>]; (<b>c</b>) Schematic view of the portable cigarette odour measuring system. Reprinted with permission from [<a href="#B66-sensors-22-02557" class="html-bibr">66</a>].</p> "> Figure 10
<p>(<b>a</b>) The developed gas-sensing system with the EC-coated QCM sensor; (<b>b</b>) Preparation of sampling gas; (<b>c</b>) The measured frequency changes of the sensor for citrus samples at different times. Reprinted with permission from [<a href="#B63-sensors-22-02557" class="html-bibr">63</a>].</p> "> Figure 11
<p>(<b>a</b>) Equivalent electrical circuit for the sensor. Reprinted with permission from [<a href="#B89-sensors-22-02557" class="html-bibr">89</a>] Copyright 2021 Elsevier; (<b>b</b>) Typical measured frequency response. Reprinted with permission from [<a href="#B89-sensors-22-02557" class="html-bibr">89</a>] Copyright 2021 Elsevier; (<b>c</b>) Process of each sampling: electromagnetic directional valve change gas path at 3 and 6 min. Reprinted with permission from [<a href="#B66-sensors-22-02557" class="html-bibr">66</a>]; (<b>d</b>) Resistance response of a Pd activated SnO<sub>2</sub> thin-film semiconductor gas sensor for 1000 ppm (0.1%) H<sub>2</sub> pulses in synthetic air at different temperatures. Note the high sensitivity, fast response and recovery at 180 °C and ability of low temperature (80–120 °C) operation. Reprinted with permission from [<a href="#B16-sensors-22-02557" class="html-bibr">16</a>] Copyright 2021 Elsevier.</p> "> Figure 12
<p>At time t<sub>1</sub> an analyte gas is introduced; resistance of the sensor decreases in an oxidative (reductive) interaction until a critical time t<sub>2</sub> when there exists no significant change. The measurement is continued until t<sub>3</sub> to ensure completed diffusion or segregation of the analyte into the bulk or onto the surface of the sensor material. When the analyte gas is switched off at t<sub>3</sub>, the resistance starts to increase (decrease) until time t<sub>4</sub>. The resistances at the specified times are R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> and R<sub>4</sub> in the oxidative curves (<b>a</b>) while they are primed in the reductive curves (<b>b</b>) Reprinted with permission from [<a href="#B95-sensors-22-02557" class="html-bibr">95</a>] Copyright 2021 Elsevier.</p> "> Figure 13
<p>Experimental apparatus for detecting the dynamic response of a gas sensor. Reprinted with permission from [<a href="#B71-sensors-22-02557" class="html-bibr">71</a>].</p> "> Figure 14
<p>Measuring chamber for simultaneous IS and DRIFTS measurements with the same catalyst film. (<b>a</b>) Scheme of the chamber and measurement configuration; (<b>b</b>) photograph of open chamber; (<b>c</b>) photograph of chamber with dome. Reprinted with permission from [<a href="#B79-sensors-22-02557" class="html-bibr">79</a>].</p> "> Figure 15
<p>Experimental set-up for simultaneous real-time CMUT resonance frequency and the magnitude of electroacoustic impedance measurement and Fourier transform infrared spectroscopy. Reprinted with permission from [<a href="#B90-sensors-22-02557" class="html-bibr">90</a>].</p> "> Figure 16
<p>Development of in situ and operando techniques for gas-sensing studies on semiconducting metal oxides. X: no further works.</p> "> Figure 17
<p>In situ and operando methodology in gas sensing.</p> "> Figure 18
<p>(<b>a</b>) 3D drawing and (<b>b</b>) photograph of operando test chamber with sensor mounted inside it. Reprinted with permission from [<a href="#B127-sensors-22-02557" class="html-bibr">127</a>].</p> ">
Abstract
:1. Introduction
2. Semiconductor Gas Sensors—Electrical Resistance Measurements
2.1. Gas-Sensing Measurement Set-Up Parameters
2.1.1. Discharge and Neutralisation of Gases
2.1.2. Materials Used for the Construction of Measuring Set-Up
2.1.3. Test Chamber, Gas Lines, and Connections
2.1.4. Rate of Gas Flow
2.1.5. Volume of Test Chamber
2.1.6. Mix Chamber
2.1.7. Temperature
2.1.8. Humidity
2.1.9. Pressure
2.2. Examples of Gas-Sensing Set-Ups
2.3. Electrical Resistance Measurements
- —sensor resistance without the presence of gas,
- —sensor resistance in the presence of gas.
- —sensor resistance without the presence of gas,
- —sensor resistance in the presence of gas.
2.4. Static and Dynamic Measurements
2.4.1. Static Measurements
2.4.2. Dynamic Measurements
- In situ measurement is a characteristic of a material measured in operational conditions or conditions significant for operational conditions. The sensing properties of the tested material do not have to be characterised or are characterised in a separate experiment. For example, in 2001, Emiroglu et al. published a paper on in situ diffuse reflectance infrared spectroscopy study of CO adsorption on SnO2 [114]. In 2019, Barauskas et al. [90] performed an in situ experiment in which some of the measurements characterizing the properties of the gas-sensitive material were performed simultaneously with the measurement of sensor properties, and the rest of the research was carried out in a separate experiment [90]. Further examples of in situ experiments are presented in [20,64,70,74,79,115,116].
- Measurement operando is the real-time and operating characteristics of the active sensor element with simultaneous measurement of sensor properties and monitoring of the gas composition surrounding the sensor. In 2012, Sänze et al. [117,118] presented the measurement stand for an operando experiment. In 2014, Sänze et al. presented a detailed operand study of the indium gas ethanol gas detection mechanism by simultaneously measuring the sensor response (DC electrical conductivity), the Raman spectrum of the sensor material, and the Fourier transform infrared (FTIR) spectrum of the phase composition gas. This shows that detailed spectroscopic studies under operating conditions are necessary to explain the operation of gas sensors [119]. Degler et al. in 2015 reported that it is possible to track the surface chemistry of oxygen on SnO2-based gas-sensing materials using Fourier reflectance-transform operando spectroscopy (DRIFTS) [120], and the next year they wrote the first report of a successful measurement of UV/vis spectra recorded from an operating gas sensor [121]. Degler et al. in 2018 published another paper presenting the results of the measurements of the operando spectroscopy to unravel the complex structure—function-relationships which determine the gas sensing properties of Pt loaded SnO2 [122], and in 2019, they prepared a paper on operando research on the temperature-dependent interaction of water vapour with tin dioxide and its effect on gas detection [123]. Another example of an operando experiment on MOX gas sensors is the work of Elger et al. from 2019 [124]—they present the results of the combined operando Raman—gas-phase FTIR spectroscopy of ceria-based gas sensors during ethanol gas sensing. The authors use spectroscopy operando to deduce significant differences between the operating mode of gas sensors and catalysts [124]. In their second work, the authors presented the results of another experiment, which was titled Elucidating the Mechanism of Working SnO2 Gas Sensors Using Combined Operando UV/Vis, Raman, and IR Spectroscopy [125]. In 2019, a paper by Causer et al. was also published, presenting the results of the measurements of an operando investigation of the Hydrogen-Induced Switching of Magnetic Anisotropy at the Co/Pd Interface for Magnetic Hydrogen Gas Sensing [126].
- When treating the sensor as a whole, the sensor element is a complex device. It consists of many parts, for example, a semiconductor sensor with a measured electrical response that has a sensor layer deposited on a substrate on which in a row there are electrodes (for reading the electrical signal) connected to a transducer. Properly evaluating these interfaces is of utmost importance in understanding the detection mechanism.
- Real-time measurement. One of the basic assumptions when designing sensors is how to react quickly to changes in the gas atmosphere; therefore, a fast measurement response (e.g., spectroscopic) is essential.
- Testing under operating conditions that may vary significantly from ambient conditions (RT and atmospheric pressure) with regard to high temperatures and pressures.
- Simultaneous monitoring of the sensor activity, the output signal from the sensor (measured gas concentration) is transmitted by the sensor as an electrical signal or another type of signal depending on the type of sensor and the technology of the transducers used.
- Online parallel gas composition measurement is of great importance as it plays two roles. The output composition and concentrations provide information about the reaction products and its possible paths, while the input concentration enables the verification of the input data of the sensor (concentration of the detected gas).
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carpenter, M.A.; Mathur, S.; Kolmakov, A. (Eds.) Metal Oxide Nanomaterials for Chemical Sensors; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-5394-9. [Google Scholar]
- A Brief History of Gas Detection. Available online: https://pksafety.com/blog/a-brief-history-of-gas-detection (accessed on 5 February 2021).
- A Short History of Gas Leak Detection. Available online: https://www.dodtec.com/a-short-history-of-gas-leak-detection/ (accessed on 5 February 2021).
- Sir Humphry, D. On the Safety Lamp for Preventing Explosions in Mines, Houses Lighted by Gas, Spirit Warehouses, or Magazines in Ships, et. with Some Researches on Flame; St. Paul’s Church-Yard: London, UK, 1825. [Google Scholar]
- Ruston, S. Humphry Davy in 1816: Letters and the Lamp. Wordsworth Circ. 2017, 48, 6–16. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.J.M.; Edwards, P.P.; Kuznetsov, V.L. Sir Humphry Davy: Boundless Chemist, Physicist, Poet and Man of Action. ChemPhysChem 2008, 9, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Weil, E. An Unpublished Letter by Davy on the Safety-Lamp. Ann. Sci. 1950, 6, 306–307. [Google Scholar] [CrossRef]
- Vertucci, V.M. Protection Device for Gas Detecting Apparatus. U.S. Patent 1,955,897, 24 April 1934. [Google Scholar]
- Brattain, W.H.; Bardeent, J. Surface Properties of Germanium. Bell Syst. Tech. J. 1953, 32, 41. [Google Scholar] [CrossRef]
- Neri, G. First Fifty Years of Chemoresistive Gas Sensors. Chemosensors 2015, 3, 1–20. [Google Scholar] [CrossRef]
- Morrison, S.R. Surface Barrier Effects in Adsorption, Illustrated by Zinc Oxide**Supported in Part by the U.S. Office of Naval Research. Based, in Part, on a Thesis Submitted to the Physics Department. In Advances in Catalysis; Frankenburg, W.G., Komarewsky, V.I., Rideal, E.K., Eds.; Academic Press: New York, NY, USA, 1952; Volume 7, pp. 259–301. [Google Scholar]
- History-FIGARO Engineering. Available online: https://www.figaro.co.jp/en/company/history.html (accessed on 5 February 2021).
- Chung, W.Y.; Sakai, G.; Shimanoe, K.; Miura, N.; Lee, D.D.; Yamazoe, N. A Metal Oxide Gas Sensor. Japan Patent 45-38200, 1962. [Google Scholar]
- Taguchi, N. Japanese Patent No 47-38840, 1966.
- Tachugi, N. Gas Detecting Element and Methods of Making It. U.S. Patent 3 644 795, 1972. [Google Scholar]
- Mizsei, J. Forty Years of Adventure with Semiconductor Gas Sensors. Procedia Eng. 2016, 168, 221–226. [Google Scholar] [CrossRef]
- Endres, H.-E.; Jander, H.D.; Göttler, W. A Test System for Gas Sensors. Sens. Actuators B Chem. 1995, 23, 163–172. [Google Scholar] [CrossRef]
- Singh, T.; Bonne, U. Gas Sensors. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-12-803581-8. [Google Scholar]
- Gracheva, I.E.; Maksimov, A.I.; Moshnikov, V.A.; Plekh, M.E. A Computer-Aided Setup for Gas-Sensing Measurements of Sensors Based on Semiconductor Nanocomposites. Instrum. Exp. Tech. 2008, 51, 462–465. [Google Scholar] [CrossRef]
- Kneer, J.; Eberhardt, A.; Walden, P.; Ortiz Pérez, A.; Wöllenstein, J.; Palzer, S. Apparatus to Characterize Gas Sensor Response under Real-World Conditions in the Lab. Rev. Sci. Instrum. 2014, 85, 055006. [Google Scholar] [CrossRef]
- Smulko, J. The Measurement Setup for Gas Detection by Resistance Fluctuations of Gas Sensors. In Proceedings of the 2006 IEEE Instrumentation and Measurement Technology, Sorrento, Italy, 24–27 April 2006. [Google Scholar]
- Nasiri, N.; Clarke, C. Nanostructured Gas Sensors for Medical and Health Applications: Low to High Dimensional Materials. Biosens. 2019, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Moseley, P.T. Solid State Gas Sensors. Meas. Sci. Technol. 1997, 8, 223–237. [Google Scholar] [CrossRef]
- Dai, J.; Ogbeide, O.; Macadam, N.; Sun, Q.; Yu, W.; Li, Y.; Su, B.-L.; Hasan, T.; Huang, X.; Huang, W. Printed Gas Sensors. Chem. Soc. Rev. 2020, 49, 1756–1789. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.B.A.; Rodrigues, J.J.P.C.; Rabêlo, R.A.L.; Kumar, N.; Kozlov, S. IoT-Enabled Gas Sensors: Technologies, Applications, and Opportunities. JSAN 2019, 8, 57. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, Y.-C.; Yao, D.-J. Intelligent Gas-Sensing Systems and Their Applications. J. Micromech. Microeng. 2018, 28, 093001. [Google Scholar] [CrossRef]
- Feng, S.; Farha, F.; Li, Q.; Wan, Y.; Xu, Y.; Zhang, T.; Ning, H. Review on Smart Gas Sensing Technology. Sensors 2019, 19, 3760. [Google Scholar] [CrossRef] [Green Version]
- Mane, S.A.; Nadargi, D.Y.; Nadargi, J.D.; Aldossary, O.M.; Tamboli, M.S.; Dhulap, V.P. Design, Development and Validation of a Portable Gas Sensor Module: A Facile Approach for Monitoring Greenhouse Gases. Coatings 2020, 10, 1148. [Google Scholar] [CrossRef]
- Fahad, H.M.; Shiraki, H.; Amani, M.; Zhang, C.; Hebbar, V.S.; Gao, W.; Ota, H.; Hettick, M.; Kiriya, D.; Chen, Y.-Z.; et al. Room Temperature Multiplexed Gas Sensing Using Chemical-Sensitive 3.5-Nm-Thin Silicon Transistors. Sci. Adv. 2017, 3, e1602557. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Geng, Z.; Xue, N.; Liu, C.; Ma, T. A Mini-System Integrated with Metal-Oxide-Semiconductor Sensor and Micro-Packed Gas Chromatographic Column. Micromachines 2018, 9, 408. [Google Scholar] [CrossRef] [Green Version]
- Asthana, N.; Bahl, R. IoT device for sewage gas monitoring and alert system. In Proceedings of the 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT), Chennai, India, 25–26 April 2019; pp. 1–7. [Google Scholar]
- Knobelspies, S.; Bierer, B.; Ortiz Perez, A.; Wöllenstein, J.; Kneer, J.; Palzer, S. Low-Cost Gas Sensing System for the Reliable and Precise Measurement of Methane, Carbon Dioxide and Hydrogen Sulfide in Natural Gas and Biomethane. Sens. Actuators B Chem. 2016, 236, 885–892. [Google Scholar] [CrossRef]
- Zohora, S.E.; Khan, A.M.; Srivastava, A.K.; Hundewale, N. Electronic Noses Application to Food Analysis Using Metal Oxide Sensors: A Review. Int. J. Soft Comput. Eng. 2013, 3, 199–205. [Google Scholar]
- Cui, S.; Wang, J.; Wang, X. Fabrication and Design of a Toxic Gas Sensor Based on Polyaniline/Titanium Dioxide Nanocomposite Film by Layer-by-Layer Self-Assembly. RSC Adv. 2015, 5, 58211–58219. [Google Scholar] [CrossRef]
- Gardner, J.W.; Bartlett, P.N. A Brief History of Electronic Noses. Sens. Actuators B Chem. 1994, 18, 210–211. [Google Scholar] [CrossRef]
- Riegel, J. Exhaust Gas Sensors for Automotive Emission Control. Solid State Ion. 2002, 15, 783–800. [Google Scholar] [CrossRef]
- Moos, R. A Brief Overview on Automotive Exhaust Gas Sensors Based on Electroceramics. Int. J. Appl. Ceram. Technol. 2005, 2, 401–413. [Google Scholar] [CrossRef]
- Cheung, W.-F.; Lin, T.-H.; Lin, Y.-C. A Real-Time Construction Safety Monitoring System for Hazardous Gas Integrating Wireless Sensor Network and Building Information Modeling Technologies. Sensors 2018, 18, 436. [Google Scholar] [CrossRef] [Green Version]
- Papadakis, N. Solid State Transcutaneous Blood Gas Sensors. U.S. Patent No 4,534,356, 13 August 1985. [Google Scholar]
- Tripathi, K.M.; Sachan, A.; Castro, M.; Choudhary, V.; Sonkar, S.K.; Feller, J.F. Green Carbon Nanostructured Quantum Resistive Sensors to Detect Volatile Biomarkers. Sustain. Mater. Technol. 2018, 16, 1–11. [Google Scholar] [CrossRef]
- Tripathi, K.M.; Kim, T.; Losic, D.; Tung, T.T. Recent Advances in Engineered Graphene and Composites for Detection of Volatile Organic Compounds (VOCs) and Non-Invasive Diseases Diagnosis. Carbon 2016, 110, 97–129. [Google Scholar] [CrossRef]
- Sunny, A.I.; Zhao, A.; Li, L.; Kanteh Sakiliba, S.K. Low-Cost IoT-Based Sensor System: A Case Study on Harsh Environmental Monitoring. Sensors 2020, 21, 214. [Google Scholar] [CrossRef]
- Kumar, A.; Kingson, T.M.G.; Verma, R.P.; Kumar, A.; Mandal, R.; Dutta, S.; Chaulya, S.K.; Prasad, G.M. Application of Gas Monitoring Sensors in Underground Coal Mines and Hazardous Areas. Int. J. Comput. Technol. Electron. Eng. 2013, 3, 9–23. [Google Scholar]
- Widodo, S.; Amin, M.M.; Sutrisman, A. The Design of The Monitoring Tools Of Clean Air Condition And Dangerous Gas CO, CO2 CH4 In Chemical Laboratory By Using Fuzzy Logic Based On Microcontroller. E3S Web Conf. 2018, 31, 10008. [Google Scholar] [CrossRef] [Green Version]
- Adeniyi, K.I.; Wan, H.H.; Deering, C.E.; Bernard, F.; Chisholm, M.A.; Marriott, R.A. High-Pressure Hydrogen Sulfide Experiments: How Did Our Safety Measures and Hazard Control Work during a Failure Event? Safety 2020, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Eugster, W.; Kling, G.W. Performance of a Low-Cost Methane Sensor for Ambient Concentration Measurements in Preliminary Studies. Atmos. Meas. Tech. 2012, 5, 1925–1934. [Google Scholar] [CrossRef] [Green Version]
- Lőrinczi, A.; Fagadar-Cosma, E.; Socol, G.; Mihăilescu, A.; Matei, E.; Sava, F.; Ştefan, M. SnSe2-Zn-Porphyrin Nanocomposite Thin Films for Threshold Methane Concentration Detection at Room Temperature. Chemosensors 2020, 8, 134. [Google Scholar] [CrossRef]
- Global Gas Sensor Market Size & Share Report, 2021–2028. Available online: https://www.grandviewresearch.com/industry-analysis/gas-sensors-market (accessed on 6 February 2021).
- Gas Sensor Market Size, Share|Industry Trends and Growth by 2027. Available online: https://www.alliedmarketresearch.com/gas-sensors-market (accessed on 6 February 2021).
- Shen, W.-C.; Shih, P.-J.; Tsai, Y.-C.; Hsu, C.-C.; Dai, C.-L. Low-Concentration Ammonia Gas Sensors Manufactured Using the CMOS–MEMS Technique. Micromachines 2020, 11, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seiyama, T.; Kato, A.; Fujiishi, K.; Nagatani, M. A New Detector for Gaseous Components Using Semiconductive Thin Films. Anal. Chem. 1962, 34, 1502–1503. [Google Scholar] [CrossRef]
- Nakamoto, T.; Okazaki, N.; Mornzumi, T. High Speed Active Gas/Odor Sensing System Using Adaptive Control Theory. Sens. Actuators B Chem. 1997, 41, 183–188. [Google Scholar] [CrossRef]
- Sberveglieri, G.; Faglia, G.; Groppelli, S.; Nelli, P.; Camanzi, A. A New Technique for Growing Large Surface Area SnO2 Thin Film (RGTO Technique). Semicond. Sci. Technol. 1990, 5, 1231–1233. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of Individual Gas Molecules Adsorbed on Graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef]
- Chetna; Kumar, S.; Garg, A.; Chowdhuri, A.; Dhingra, V.; Chaudhary,, S.; Kapoor, A. Zinc Oxide Doped Graphene Oxide Films for Gas Sensing Applications. AIP Conf. 2016, 1728, 020579. [Google Scholar]
- D’Olimpio, G.; Farias, D.; Kuo, C.-N.; Ottaviano, L.; Lue, C.S.; Boukhvalov, D.W.; Politano, A. Tin Diselenide (SnSe2) Van Der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical Sensors. Materials 2022, 15, 1154. [Google Scholar] [CrossRef]
- Li, J.-H.; Wu, J.; Yu, Y.-X. DFT Exploration of Sensor Performances of Two-Dimensional WO3 to Ten Small Gases in Terms of Work Function and Band Gap Changes and I-V Responses. Appl. Surf. Sci. 2021, 546, 149104. [Google Scholar] [CrossRef]
- Pineda-Reyes, A.M.; Herrera-Rivera, M.R.; Rojas-Chávez, H.; Cruz-Martínez, H.; Medina, D.I. Recent Advances in ZnO-Based Carbon Monoxide Sensors: Role of Doping. Sensors 2021, 21, 4425. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A Survey on Gas Sensing Technology. Sensors 2012, 12, 9635–9665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, F.; Song, A.; Hu, Y. Research on Electronic Nose System Based on Continuous Wide Spectral Gas Sensing. Microchem. J. 2018, 140, 1–7. [Google Scholar] [CrossRef]
- Prudent Practices in the Laboratory: Handling and Management of Chemical Hazards, Updated Version; National Academies Press: Washington, DC, USA, 2011; p. 12654. ISBN 978-0-309-13864-2.
- Zhang, Y.; Li, S.; Zhang, J.; Pan, Z.; Min, D.; Li, X.; Song, X.; Liu, J. High-Performance Gas Sensors with Temperature Measurement. Sci. Rep. 2013, 3, 1267. [Google Scholar] [CrossRef]
- Wen, T.; Sang, M.; Wang, M.; Han, L.; Gong, Z.; Tang, X.; Long, X.; Xiong, H.; Peng, H. Rapid Detection of D-Limonene Emanating from Citrus Infestation by Bactrocera Dorsalis (Hendel) Using a Developed Gas-Sensing System Based on QCM Sensors Coated with Ethyl Cellulose. Sens. Actuators B Chem. 2021, 328, 129048. [Google Scholar] [CrossRef]
- Barauskas, D.; Pelenis, D.; Vanagas, G.; Viržonis, D.; Baltrušaitis, J. Methylated Poly(Ethylene)Imine Modified Capacitive Micromachined Ultrasonic Transducer for Measurements of CO2 and SO2 in Their Mixtures. Sensors 2019, 19, 3236. [Google Scholar] [CrossRef] [Green Version]
- Machappa, T.; Sasikala, M.; Prasad, M.V.N.A. Design of Gas Sensor Setup and Study of Gas (LPG) Sensing Behavior of Conducting Polyaniline/Magnesium Chromate (MgCrO4) Composites. IEEE Sens. J. 2010, 10, 807–813. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, H.; Sun, W.; Lu, N.; Yan, M.; Wu, Y.; Hua, Z.; Fan, S. Development of a Low-Cost Portable Electronic Nose for Cigarette Brands Identification. Sensors 2020, 20, 4239. [Google Scholar] [CrossRef]
- Das, T.; Jyoti Sut, D.; Gupta, V.; Gohain, L.; Kakoty, P.; Kakoty, N.M. A Mobile Robot for Hazardous Gas Sensing. In Proceedings of the 2020 International Conference on Computational Performance Evaluation (ComPE), Shillong, India, 2–4 July 2020; pp. 62–66. [Google Scholar]
- Afzal, M.; Naik, P.S.; Nadaf, L.I. Cost Effective Experimental Setup for Gas Sensing Applications. J. Appl. Chem. 2015, 8, 37–44. [Google Scholar]
- Harvey, I.; Coles, G.; Watson, J. The Development of an Environmental Chamber for the Characterization of Gas Sensors. Sens. Actuators 1989, 16, 393–405. [Google Scholar] [CrossRef]
- Simons, T.; Simon, U. Zeolites as Nanoporous, Gas-Sensitive Materials for in Situ Monitoring of DeNOx-SCR. Beilstein J. Nanotechnol. 2012, 3, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Kato, Y.; Takamatsu, K.; Udaka, T.; Nakahara, T.; Matsuura, Y.; Yoshikawa, K. Toward the Realization of an Intelligent Gas Sensing System Utilizing a Non-Linear Dynamic Response. Sens. Actuators B Chem. 2000, 71, 192–196. [Google Scholar] [CrossRef]
- Kim, B.-J.; Kim, J.-S. Gas Sensing Characteristics of MEMS Gas Sensor Arrays in Binary Mixed-Gas System. Mater. Chem. Phys. 2013, 138, 366–374. [Google Scholar] [CrossRef]
- Kwon, D. Low-power and reliable gas sensing system based on recurrent neural networks. Sens. Actuators B Chem. 2021, 340, 129258. [Google Scholar] [CrossRef]
- Hijazi, M. Sensitive and selective ammonia gas sensor based on molecularly functionalized tin dioxide working at room temperature. Ph.D. Thesis, Université de Lyon, Lyon, France, 2017. [Google Scholar]
- Monsonís, J.S. New Fabrication Methodologies for the Development of Low Power Gas Sensors Based on Semiconducting Nanowires. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2016. [Google Scholar]
- Kennedy, M.K.; Kruis, F.E.; Fissan, H.; Mehta, B.R. Fully Automated, Gas Sensing, and Electronic Parameter Measurement Setup for Miniaturized Nanoparticle Gas Sensors. Rev. Sci. Instrum. 2003, 74, 4908–4915. [Google Scholar] [CrossRef]
- Järvinen, T.; Lorite, G.S.; Rautio, A.-R.; Juhász, K.L.; Kukovecz, Á.; Kónya, Z.; Kordas, K.; Toth, G. Portable Cyber-Physical System for Indoor and Outdoor Gas Sensing. Sens. Actuators B Chem. 2017, 252, 983–990. [Google Scholar] [CrossRef] [Green Version]
- Sberveglieri, G.; Groppelli, S.; Nelli, P.; Camanzi, A. Bismuth-Doped Tin Oxide Thin-Film Gas Sensors. Sens. Actuators B Chem. 1991, 3, 183–189. [Google Scholar] [CrossRef]
- Simons, T.; Chen, P.; Rauch, D.; Moos, R.; Simon, U. Sensing Catalytic Conversion: Simultaneous DRIFT and Impedance Spectroscopy for in Situ Monitoring of NH3–SCR on Zeolites. Sens. Actuators B Chem. 2016, 224, 492–499. [Google Scholar] [CrossRef]
- Comini, E.; Cristalli, A.; Faglia, G.; Sberveglieri, G. Light Enhanced Gas Sensing Properties of Indium Oxide and Tin Dioxide Sensors. Sens. Actuators B Chem. 2000, 65, 260–263. [Google Scholar] [CrossRef]
- Müller, G.; Friedberger, A.; Kreisl, P.; Ahlers, S.; Schulz, O.; Becker, T. A MEMS Toolkit for Metal-Oxide-Based Gas Sensing Systems. Thin Solid Films 2003, 436, 34–45. [Google Scholar] [CrossRef]
- Casanova-Cháfer, J.; García-Aboal, R.; Atienzar, P.; Llobet, E. Gas Sensing Properties of Perovskite Decorated Graphene at Room Temperature. Sensors 2019, 19, 4563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huber, C.; Pina, M.P.; Jos, J. A Multiparameter Gas-Monitoring System Combining Functionalized and Non-Functionalized Microcantilevers. Micromachines 2020, 11, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipovic, L.; Selberherr, S. CMOS-Compatible Gas Sensors. In Proceedings of the 2019 IEEE 31st International Conference on Microelectronics (MIEL), Nis, Serbia, 16–18 September 2019; pp. 9–16. [Google Scholar]
- Self-Sensing Tipless Cantilevers. SCL-Sensor.Tech. Available online: https://www.sclsensortech.com/self-sensing-cantilevers-tipless/ (accessed on 15 March 2022).
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [Green Version]
- Dufour, N.; Veyrac, Y.; Menini, P.; Blanc, F.; Talhi, C.; Franc, B.; Ganibal, C.; Dufour, N.; Wartelle, C.; Aguir, K. Increasing the Sensitivity and Selectivity of Metal Oxide Gas Sensors by Controlling the Sensitive Layer Polarization. In Proceedings of the 2012 IEEE Sensors, Taipei, China, 28–31 October 2012; pp. 1–4. [Google Scholar]
- Ahlers, S.; Müller, G.; Doll, T. A Rate Equation Approach to the Gas Sensitivity of Thin Film Metal Oxide Materials. Sens. Actuators B Chem. 2005, 107, 587–599. [Google Scholar] [CrossRef]
- Amrani, M.E.H.; Dowdeswell, R.M.; Payne, P.A.; Persaud, K.C. An Intelligent Gas Sensing System. Sens. Actuators B Chem. 1997, 44, 512–516. [Google Scholar] [CrossRef]
- Barauskas, D.; Park, S.J.; Pelenis, D.; Vanagas, G.; Lee, J.J.; Viržonis, D.; Jones, C.W.; Baltrusaitis, J. CO2 and SO2 Interactions with Methylated Poly(Ethylenimine)-Functionalized Capacitive Micromachined Ultrasonic Transducers (CMUTs): Gas Sensing and Degradation Mechanism. ACS Appl. Electron. Mater. 2019, 1, 1150–1161. [Google Scholar] [CrossRef]
- Wali, R.P. An Electronic Nose to Differentiate Aromatic Flowers Using a Real-Time Information-Rich Piezoelectric Resonance Measurement. Procedia Chem. 2012, 6, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Gurlo, A.; Riedel, R. In Situ and Operando Spectroscopy for Assessing Mechanisms of Gas Sensing. Angew. Chem. Int. Ed. 2007, 46, 3826–3848. [Google Scholar] [CrossRef]
- Nakata, S.; Okunishi, H.; Inooka, S. Gas-Sensing System Based on the Cyclic Temperature Further Characterization by the Second Harmonic Perturbation. Anal. Chim. Acta 2004, 517, 153–159. [Google Scholar] [CrossRef]
- Baschirotto, A.; Capone, S.; Damico, A.; Dinatale, C.; Ferragina, V.; Ferri, G.; Francioso, L.; Grassi, M.; Guerrini, N.; Malcovati, P. A Portable Integrated Wide-Range Gas Sensing System with Smart A/D Front-End. Sens. Actuators B Chem. 2008, 130, 164–174. [Google Scholar] [CrossRef]
- Mwakikunga, B.W. A Classification and Ranking System on the H2 Gas Sensing Capabilities of Nanomaterials Based on Proposed Coefficients of Sensor Performance and Sensor Efficiency Equations. Sens. Actuators B Chem. 2013, 184, 170–178. [Google Scholar] [CrossRef]
- Windischmann, H.; Mark, P. A Model for the Operation of a Thin-Film SnO Conductance-Modulation Carbon Monoxide Sensor. J. Electrochem. Soc. 1979, 126, 627. [Google Scholar] [CrossRef]
- Schulz, M.; Bohn, E.; Heiland, G. Messung von Fremdgasen in Der Luft Mit Halbleitersensoren/Measurement of Extraneous Gases in Air by Means of Semiconducting Sensors. Tm-Tech. Mess. 1979, 514–524, 405–414. [Google Scholar] [CrossRef]
- Williams, D.E.; Moseley, P.T. Progress in the Development of Solid State Gas Sensors. Meas. Control 1988, 21, 48–51. [Google Scholar] [CrossRef]
- Madou, M.J.; Morrison, S.R. Chemical Sensing with Solid State Devices, 1st ed.; Academic Press: Cambridge, MA, USA, 1989; ISBN 978-0-323-13985-4. [Google Scholar]
- Sberveglieri, G. (Ed.) Gas Sensors: Principles, Operation and Developments; Springer: Dordrecht, The Netherlands, 1992; ISBN 978-94-010-5214-6. [Google Scholar]
- Batzill, M.; Diebold, U. Characterizing Solid State Gas Responses Using Surface Charging in Photoemission: Water Adsorption on SnO2 (101). J. Phys. Condens. Matter 2006, 18, L129–L134. [Google Scholar] [CrossRef]
- Bell, N.A.; Brooks, J.S.; Forder, S.D.; Robinson, J.K.; Thorpe, S.C. Backscatter Fe-57 Mössbauer Studies of Iron(II) Phthalocyanine. Polyhedron 2002, 21, 115–118. [Google Scholar] [CrossRef]
- Hunger, M.; Weitkamp, J. In Situ IR, NMR, EPR, and UV/Vis Spectroscopy: Tools for New Insight into the Mechanisms of Heterogeneous Catalysis. Angew. Chem. Int. Ed. 2001, 40, 2954–2971. [Google Scholar] [CrossRef]
- Haw, J.F. In-Situ Spectroscopy in Heterogeneous Catalysis; Wiley-VCH Verlag GmbH.: Weinheim, Germany, 2002. [Google Scholar]
- Weckhuysen, B.M. In Situ Spectroscopy of Catalysts. ChemInform 2005, 36, 350. [Google Scholar] [CrossRef] [Green Version]
- Baerns, M. (Ed.) Basic Principles in Applied Catalysis; Springer Series in Chemical Physics; Springer: Berlin, Heidelberg, 2004; Volume 75, ISBN 978-3-642-07310-6. [Google Scholar]
- Weckhuysen, B.M. Snapshots of a Working Catalyst: Possibilities and Limitations of in Situ Spectroscopy in the Field of Heterogeneous Catalysis. Chem. Commun. 2002, 2, 97–110. [Google Scholar] [CrossRef] [Green Version]
- Weckhuysen, B.M. Determining the Active Site in a Catalytic Process: Operando Spectroscopy Is More than a Buzzword. Phys. Chem. Chem. Phys. 2003, 5, 4351. [Google Scholar] [CrossRef]
- Brückner, A. Monitoring Transition Metal Ions (TMI) in Oxide Catalysts during (Re)Action: The Power of Operando EPR. Phys. Chem. Chem. Phys. 2003, 5, 4461–4472. [Google Scholar] [CrossRef]
- Bañares, M.A. Operando Methodology: Combination of in Situ Spectroscopy and Simultaneous Activity Measurements under Catalytic Reaction Conditions. Catal. Today 2005, 100, 71–77. [Google Scholar] [CrossRef]
- Guerrero-Pérez, M.O.; Bañares, M.A. From Conventional in Situ to Operando Studies in Raman Spectroscopy. Catal. Today 2006, 113, 48–57. [Google Scholar] [CrossRef]
- Wang, Y.; Maity, A.; Sui, X.; Pu, H.; Mao, S.; Singh, N.K.; Chen, J. In Operando Impedance Spectroscopic Analysis on NiO–WO3 Nanorod Heterojunction Random Networks for Room-Temperature H2 S Detection. ACS Omega 2018, 3, 18685–18693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elger; Hess Application of Raman Spectroscopy to Working Gas Sensors: From in Situ to Operando Studies. Sensors 2019, 19, 5075. [CrossRef] [PubMed] [Green Version]
- Emiroglu, S.; Bârsan, N.; Weimar, U.; Hoffmann, V. In Situ Diffuse Reflectance Infrared Spectroscopy Study of CO Adsorption on SnO2. Thin Solid Films 2001, 391, 176–185. [Google Scholar] [CrossRef]
- Bierer, B.; Perez, A.O.; Wöllenstein, J.; Palzer, S. In-Situ Biogas Sensing System for Enabling Spatially Resolved Online Determination of the Gas Composition of the Fermenter. Procedia Eng. 2016, 168, 1634–1637. [Google Scholar] [CrossRef]
- Hodgkinson, J.; Tatam, R.P. Optical Gas Sensing: A Review. Meas. Sci. Technol. 2013, 24, 012004. [Google Scholar] [CrossRef] [Green Version]
- Sänze, S.; Hess, C. 7.3.1 Operando Spectroscopic Study of the EtOH Gas Sensing Mechanism of In2O3. In Proceedings of the IMCS 2012, Nuremberg, Germany, 20–23 May 2012; AMA Service GmbH: Wunstorf, Germany, 2012; pp. 613–615. [Google Scholar]
- Sänze, S.; Gurlo, A.; Hess, C. Monitoring Gas Sensors at Work: Operando Raman-FTIR Study of Ethanol Detection by Indium Oxide. Angew. Chem. Int. Ed. 2013, 52, 3607–3610. [Google Scholar] [CrossRef]
- Sänze, S.; Hess, C. Ethanol Gas Sensing by Indium Oxide: An Operando Spectroscopic Raman-FTIR Study. J. Phys. Chem. C 2014, 118, 25603–25613. [Google Scholar] [CrossRef]
- Degler, D.; Wicker, S.; Weimar, U.; Barsan, N. Identifying the Active Oxygen Species in SnO2 Based Gas Sensing Materials: An Operando IR Spectrsocopy Study. J. Phys. Chem. C 2015, 119, 11792–11799. [Google Scholar] [CrossRef]
- Degler, D.; Barz, N.; Dettinger, U.; Peisert, H.; Chassé, T.; Weimar, U.; Barsan, N. Extending the Toolbox for Gas Sensor Research: Operando UV/Vis Diffuse Reflectance Spectroscopy on SnO2-Based Gas Sensors. Sens. Actuators B Chem. 2016, 224, 256–259. [Google Scholar] [CrossRef]
- Degler, D.; Müller, S.A.; Doronkin, D.E.; Wang, D.; Grunwaldt, J.-D.; Weimar, U.; Barsan, N. Platinum Loaded Tin Dioxide: A Model System for Unravelling the Interplay between Heterogeneous Catalysis and Gas Sensing. J. Mater. Chem. A 2018, 6, 2034–2046. [Google Scholar] [CrossRef]
- Degler, D.; Junker, B.; Allmendinger, F.; Weimar, U.; Barsan, N. Investigations on the Temperature-Dependent Interaction of Water Vapor with Tin Dioxide and Its Implications on Gas Sensing. ACS Sens. 2020, 5, 3207–3216. [Google Scholar] [CrossRef]
- Elger, A.-K.; Baranyai, J.; Hofmann, K.; Hess, C. Direct Operando Spectroscopic Observation of Oxygen Vacancies in Working Ceria-Based Gas Sensors. ACS Sens. 2019, 4, 1497–1501. [Google Scholar] [CrossRef]
- Elger, A.; Hess, C. Elucidating the Mechanism of Working SnO2 Gas Sensors Using Combined Operando UV/Vis, Raman, and IR Spectroscopy. Angew. Chem. Int. Ed. 2019, 58, 15057–15061. [Google Scholar] [CrossRef] [Green Version]
- Causer, G.L.; Kostylev, M.; Cortie, D.L.; Lueng, C.; Callori, S.J.; Wang, X.L.; Klose, F. In Operando Study of the Hydrogen-Induced Switching of Magnetic Anisotropy at the Co/Pd Interface for Magnetic Hydrogen Gas Sensing. ACS Appl. Mater. Interfaces 2019, 11, 35420–35428. [Google Scholar] [CrossRef] [PubMed]
- Valt, M.; Ciana, M.D.; Fabbri, B.; Sali, D.; Gaiardo, A.; Guidi, V. Design and Validation of a Novel Operando Spectroscopy Reaction Chamber for Chemoresistive Gas Sensors. Sens. Actuators B Chem. 2021, 341, 130012. [Google Scholar] [CrossRef]
- Paleczek, A.; Rydosz, A. Review of the Algorithms Used in Exhaled Breath Analysis for the Detection of Diabetes. J. Breath Res. 2022, 16, 026003. [Google Scholar] [CrossRef]
- Yunusa, Z.; Hamidon, M.N.; Kaiser, A.; Awang, Z. Gas Sensors: A Review. Sens. Transducers 2014, 4, 61–75. [Google Scholar]
- Gandhi, M.; Rowley, J.; Nelson, D.; Campbell, C. Gas Detection in Process Industry—The Practical Approach; Symposium Series NO 160; Institution of Chemical Engineers: Edinburgh, UK, 2015; Hazards 25. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuśnik, Ł.; Szafraniak, B.; Paleczek, A.; Grochala, D.; Rydosz, A. A Review of Gas Measurement Set-Ups. Sensors 2022, 22, 2557. https://doi.org/10.3390/s22072557
Fuśnik Ł, Szafraniak B, Paleczek A, Grochala D, Rydosz A. A Review of Gas Measurement Set-Ups. Sensors. 2022; 22(7):2557. https://doi.org/10.3390/s22072557
Chicago/Turabian StyleFuśnik, Łukasz, Bartłomiej Szafraniak, Anna Paleczek, Dominik Grochala, and Artur Rydosz. 2022. "A Review of Gas Measurement Set-Ups" Sensors 22, no. 7: 2557. https://doi.org/10.3390/s22072557
APA StyleFuśnik, Ł., Szafraniak, B., Paleczek, A., Grochala, D., & Rydosz, A. (2022). A Review of Gas Measurement Set-Ups. Sensors, 22(7), 2557. https://doi.org/10.3390/s22072557