Cuffless Blood Pressure Estimation Based on Monte Carlo Simulation Using Photoplethysmography Signals
<p>Workflow diagram of the proposed model.</p> "> Figure 2
<p>Proposed finger model.</p> "> Figure 3
<p>Absorption coefficients of the subdermal layers [<a href="#B23-sensors-22-01175" class="html-bibr">23</a>].</p> "> Figure 4
<p>Pressure–diameter relation of the artery.</p> "> Figure 5
<p>Flowchart of the MCS in this study.</p> "> Figure 6
<p>Block diagram of proposed hardware for data acquisition.</p> "> Figure 7
<p>PPG signal examples.</p> "> Figure 8
<p>Workflow diagram for calibration.</p> "> Figure 9
<p>Photon fluence in the voxel-based finger model 3D view.</p> "> Figure 10
<p>Photon fluence in the voxel-based finger model XY-plane view.</p> "> Figure 11
<p>Fitted scatter plot of the calibration of the public dataset and MC photon intensity.</p> "> Figure 12
<p>SBP estimation (public dataset).</p> "> Figure 13
<p>DBP estimation (public dataset).</p> "> Figure 14
<p>Error grid analysis plot of the MAP (public dataset).</p> "> Figure 15
<p>SBP estimation (self-made dataset).</p> "> Figure 16
<p>DBP estimation (self-made dataset).</p> "> Figure 17
<p>Error grid analysis plot of the MAP (self-made dataset).</p> "> Figure 18
<p>SBP estimation (self-made dataset).</p> "> Figure 19
<p>DBP estimation (self-made dataset).</p> "> Figure 20
<p>Error grid analysis plot of the MAP (self-made dataset).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proposed Model
2.2. Bio-Optical Properties
2.2.1. Properties of the Proposed Finger Layers
2.2.2. Artery Properties
2.3. Monte Carlo Simulation (MCS)
2.4. Blood Pressure Range Selection for MCS
2.5. Data Selection and Acquisition
2.5.1. Public Dataset
2.5.2. Self-Made Dataset
2.6. Data Processing and Calibration
3. Results
3.1. MCS and Calibration Accuracy
3.2. Blood Pressure Estimation (Public Dataset)
3.3. Blood Pressure Estimation (Self-Made Dataset)
3.3.1. Transmission-Type MCS
3.3.2. Reflection-Type MCS
3.4. Compliance with Standards
3.5. Comparisons with Related Works
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Heart Association. Available online: https://www.heart.org/en/ (accessed on 19 November 2021).
- Tamura, T.; Maeda, Y.; Sekine, M.; Yoshida, M. Wearable Photoplethysmographic Sensors—Past and Present. Electronics 2014, 3, 282–302. [Google Scholar] [CrossRef]
- Hossain, S.; Gupta, S.S.; Kwon, T.-H.; Kim, K.-D. Derivation and Validation of Gray-Box Models to Estimate Noninvasive in-Vivo Percentage Glycated Hemoglobin Using Digital Volume Pulse Waveform. Sci. Rep. 2021, 11, 12169. [Google Scholar] [CrossRef] [PubMed]
- Alqaraawi, A.; Alwosheel, A.; Alasaad, A. Heart Rate Variability Estimation in Photoplethysmography Signals Using Bayesian Learning Approach. Healthc. Technol. Lett. 2016, 3, 136–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen Gupta, S.; Kwon, T.-H.; Hossain, S.; Kim, K.-D. Towards Non-Invasive Blood Glucose Measurement Using Machine Learning: An All-Purpose PPG System Design. Biomed. Signal Process. Control 2021, 68, 102706. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Firouzmand, M.; Charmi, M.; Hemmati, M.; Moghadam, M.; Ghorbani, Y. Blood Pressure Estimation from Appropriate and Inappropriate PPG Signals Using A Whole-Based Method. Biomed. Signal Process. Control 2019, 47, 196–206. [Google Scholar] [CrossRef]
- Chowdhury, M.H.; Shuzan, M.N.I.; Chowdhury, M.E.H.; Mahbub, Z.B.; Uddin, M.M.; Khandakar, A.; Reaz, M.B.I. Estimating Blood Pressure from the Photoplethysmogram Signal and Demographic Features Using Machine Learning Techniques. Sensors 2020, 20, 3127. [Google Scholar] [CrossRef]
- Athaya, T.; Choi, S. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach. Sensors 2021, 21, 1867. [Google Scholar] [CrossRef]
- Jacques, S.L.; Wang, L. Monte Carlo Modeling of Light Transport in Tissues. In Optical-Thermal Response of Laser-Irradiated Tissue; Welch, A.J., Van Gemert, M.J.C., Eds.; Lasers, Photonics, and Electro-Optics; Springer: Boston, MA, USA, 1995; pp. 73–100. ISBN 978-1-4757-6092-7. [Google Scholar]
- Wisotzky, E.L.; Uecker, F.C.; Dommerich, S.; Hilsmann, A.; Eisert, P.; Arens, P. Determination of Optical Properties of Human Tissues Obtained from Parotidectomy in the Spectral Range of 250 to 800 Nm. J. Biomed. Opt. 2019, 24, 1–7. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, Q. Review of Monte Carlo Modeling of Light Transport in Tissues. J. Biomed. Opt. 2013, 18, 050902. [Google Scholar] [CrossRef] [Green Version]
- Periyasamy, V.; Pramanik, M. Advances in Monte Carlo Simulation for Light Propagation in Tissue. IEEE Rev. Biomed. Eng. 2017, 10, 122–135. [Google Scholar] [CrossRef]
- Kachuee, M.; Kiani, M.M.; Mohammadzade, H.; Shabany, M. Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring. IEEE Trans. Biomed. Eng. 2017, 64, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, Y.; Cho, S.-Y.; Correia, R.; Morgan, S.P. Non-Invasive Cuff-Less Blood Pressure Estimation Using a Hybrid Deep Learning Model. Opt. Quantum Electron. 2021, 53, 93. [Google Scholar] [CrossRef]
- Atomi, K.; Kawanaka, H.; Bhuiyan, M.S.; Oguri, K. Cuffless Blood Pressure Estimation Based on Data-Oriented Continuous Health Monitoring System. Comput. Math. Methods Med. 2017, 2017, e1803485. [Google Scholar] [CrossRef]
- Esmaelpoor, J.; Moradi, M.H.; Kadkhodamohammadi, A. A Multistage Deep Neural Network Model for Blood Pressure Estimation Using Photoplethysmogram Signals. Comput. Biol. Med. 2020, 120, 103719. [Google Scholar] [CrossRef]
- Xie, Q.; Wang, G.; Peng, Z.; Lian, Y. Machine Learning Methods for Real-Time Blood Pressure Measurement Based on Photoplethysmography. In Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 19–21 November 2018; pp. 1–5. [Google Scholar]
- Clement, M.; Daniel, G.; Trelles, M. Optimising the Design of a Broad-band Light Source for the Treatment of Skin. J. Cosmet. Laser Ther. 2005, 7, 177–189. [Google Scholar] [CrossRef]
- Ash, C.; Dubec, M.; Donne, K.; Bashford, T. Effect of Wavelength and Beam Width on Penetration in Light-Tissue Interaction Using Computational Methods. Lasers Med. Sci. 2017, 32, 1909–1918. [Google Scholar] [CrossRef] [PubMed]
- Tuchin, V.V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis; Society of Photo-Optical Instrumentation Engineers (SPIE): Bellingham, WA, USA, 2015; ISBN 978-1-62841-516-2. [Google Scholar]
- Chatterjee, S.; Kyriacou, P.A. Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography. Sensors 2019, 19, 789. [Google Scholar] [CrossRef] [Green Version]
- Jacques, S.L. Skin Optics Summary. Available online: https://omlc.org/news/jan98/skinoptics.html (accessed on 30 March 2021).
- Meglinski, I.V.; Matcher, S.J. Quantitative Assessment of Skin Layers Absorption and Skin Reflectance Spectra Simulation in the Visible and Near-Infrared Spectral Regions. Physiol. Meas. 2002, 23, 741–753. [Google Scholar] [CrossRef]
- Langewouters, G.J.; Zwart, A.; Busse, R.; Wesseling, K.H. Pressure-Diameter Relationships of Segments of Human Finger Arteries. Clin. Phys. Physiol. Meas. 1986, 7, 43–55. [Google Scholar] [CrossRef]
- Boonya-ananta, T.; Rodriguez, A.J.; Ajmal, A.; Du Le, V.N.; Hansen, A.K.; Hutcheson, J.D.; Ramella-Roman, J.C. Synthetic Photoplethysmography (PPG) of the Radial Artery through Parallelized Monte Carlo and Its Correlation to Body Mass Index (BMI). Sci. Rep. 2021, 11, 2570. [Google Scholar] [CrossRef]
- Friebel, M.; Roggan, A.; Müller, G.J.; Meinke, M.C. Determination of Optical Properties of Human Blood in the Spectral Range 250 to 1100 Nm Using Monte Carlo Simulations with Hematocrit-Dependent Effective Scattering Phase Functions. J. Biomed. Opt. 2006, 11, 034021. [Google Scholar] [CrossRef] [PubMed]
- van Gemert, M.J.; Verdaasdonk, R.; Stassen, E.G.; Schets, G.A.; Gijsbers, G.H.; Bonnier, J.J. Optical Properties of Human Blood Vessel Wall and Plaque. Lasers Surg. Med. 1985, 5, 235–237. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Fang, Q. Hybrid Mesh and Voxel Based Monte Carlo Algorithm for Accurate and Efficient Photon Transport Modeling in Complex Bio-Tissues. Biomed. Opt. Express 2020, 11, 6262–6270. [Google Scholar] [CrossRef]
- Ren, N.; Liang, J.; Qu, X.; Li, J.; Lu, B.; Tian, J. GPU-Based Monte Carlo Simulation for Light Propagation in Complex Heterogeneous Tissues. Opt. Express 2010, 18, 6811–6823. [Google Scholar] [CrossRef] [PubMed]
- Henyey, L.G.; Greenstein, J.L. Diffuse Radiation in the Galaxy. Astrophys. J. 1941, 93, 70–83. [Google Scholar] [CrossRef]
- Uen, S.; Asghari, S.; Nickenig, G.; Mengden, T. Early Morning Surge and Dipping Status of Blood Pressure: Are These of Predictive Value for Silent Myocardial Ischemia? J. Clin. Hypertens. 2009, 11, 351–357. [Google Scholar] [CrossRef]
- Verdecchia, P.; Angeli, F.; Mazzotta, G.; Garofoli, M.; Ramundo, E.; Gentile, G.; Ambrosio, G.; Reboldi, G. Day-Night Dip and Early-Morning Surge in Blood Pressure in Hypertension. Hypertension 2012, 60, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Chen, Z.; Liu, G.; Elgendi, M. PPG-BP Database. 2018. Available online: https://doi.org/10.6084/m9.figshare.5459299 (accessed on 26 October 2021).
- Cho, K.; Tian, M.; Lan, Y.; Zhao, X.; Yan, L.L. Validation of the Omron HEM-7201 Upper Arm Blood Pressure Monitor, for Self-Measurement in a High-Altitude Environment, According to the European Society of Hypertension International Protocol Revision 2010. J. Hum. Hypertens. 2013, 27, 487–491. [Google Scholar] [CrossRef]
- Elgendi, M. Optimal Signal Quality Index for Photoplethysmogram Signals. Bioengineering 2016, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, R.; Natarajan, B.; Warren, S. Two-Stage Approach for Detection and Reduction of Motion Artifacts in Photoplethysmographic Data. IEEE Trans. Biomed. Eng. 2010, 57, 1867–1876. [Google Scholar] [CrossRef] [Green Version]
- HEM-7130-Blood Pressure Monitors (Upper Arm)-Omron Healthcare Asia Pacific. Available online: https://www.omronhealthcare-ap.com/ap/product/10-hem-7130 (accessed on 30 November 2021).
- Verberk, W.J.; Mieke, S. Are Blood Pressure Monitors Affected by High Altitude? Heart Asia 2016, 8, 52–53. [Google Scholar] [CrossRef] [Green Version]
- ESP32-PICO-V3|Espressif Systems. Available online: https://www.espressif.com/en/producttype/esp32-pico-v3 (accessed on 8 June 2021).
- BIOFY®, SFH 7050|OSRAM Opto Semiconductors. Available online: https://www.osram.com/ecat/BIOFY%C2%AE%20SFH%207050/com/en/class_pim_web_catalog_103489/prd_pim_device_2220012/ (accessed on 8 June 2021).
- AFE4404 Data Sheet, Product Information and Support | TI.Com. Available online: https://www.ti.com/product/AFE4404?utm_source=google&utm_medium=cpc&utm_campaign=asc-null-null-GPN_EN-cpc-pf-google-kr&utm_content=AFE4404&ds_k=AFE4404&DCM=yes&gclid=CjwKCAjwqvyFBhB7EiwAER786Z7PSeVdW881lxC2-YnEcKPQZIJu03022zAtaCWsXd16veK9Ei3PjRoCfr0QAvD_BwE&gclsrc=aw.ds (accessed on 8 June 2021).
- Elgendi, M.; Norton, I.; Brearley, M.; Abbott, D.; Schuurmans, D. Systolic Peak Detection in Acceleration Photoplethysmograms Measured from Emergency Responders in Tropical Conditions. PLoS ONE 2013, 8, e76585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, C.A.; Hossain, S.; Kwon, T.-H.; Kim, K.-D. Noninvasive In Vivo Estimation of Blood-Glucose Concentration by Monte Carlo Simulation. Sensors 2021, 21, 4918. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Non-Ionizing Radiation Protection. ICNIRP Statement on far infrared radiation exposure. Health Phys. 2006, 91, 630–645. [Google Scholar] [CrossRef]
- Saugel, B.; Grothe, O.; Nicklas, J.Y. Error Grid Analysis for Arterial Pressure Method Comparison Studies. Anesth. Analg. 2018, 126, 1177–1185. [Google Scholar] [CrossRef]
- Papaioannou, T.G.; Protogerou, A.D.; Vrachatis, D.; Konstantonis, G.; Aissopou, E.; Argyris, A.; Nasothimiou, E.; Gialafos, E.J.; Karamanou, M.; Tousoulis, D.; et al. Mean Arterial Pressure Values Calculated Using Seven Different Methods and Their Associations with Target Organ Deterioration in a Single-Center Study of 1878 Individuals. Hypertens. Res. 2016, 39, 640–647. [Google Scholar] [CrossRef]
- White, W.B.; Berson, A.S.; Robbins, C.; Jamieson, M.J.; Prisant, L.M.; Roccella, E.; Sheps, S.G. National Standard for Measurement of Resting and Ambulatory Blood Pressures with Automated Sphygmomanometers. Hypertension 1993, 21, 504–509. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, E.; Petrie, J.; Littler, W.A.; de Swiet, M.; Padfield, P.L.; Altman, D.; Bland, M.; Coats, A.; Atkins, N. The British Hypertension Society Protocol for the Evaluation of Blood Pressure Measuring Devices. J. Hypertens. 1993, 11, S43–S62. [Google Scholar]
Blood Pressure Category | SBP [mmHg] | DBP [mmHg] |
---|---|---|
Normal | Less than 120 | Less than 80 |
Elevated | 120–129 | Less than 80 |
Hypertension stage 1 | 130–139 | 80–89 |
Hypertension stage 2 | 140 or higher | 90 or higher |
Hypertensive crisis | Higher than 180 | Higher than 120 |
Layer | Thickness [mm] |
---|---|
Stratum corneum | 0.02 |
Epidermis | 0.25 |
Papillary dermis | 0.1 |
Upper blood net dermis | 0.08 |
Reticular dermis | 0.2 |
Deep blood net dermis | 0.3 |
Fat | 0.55 |
Muscle | 1.5 |
Bone | 2 |
Layer | Blood Volume Fraction, | Water Volume Fraction, |
---|---|---|
Stratum corneum | 0 | 5 |
Epidermis | 0 | 20 |
Papillary dermis | 5 | 50 |
Upper blood net dermis | 20 | 60 |
Reticular dermis | 4 | 70 |
Deep blood net dermis | 10 | 70 |
Fat | 0 | 70 |
Muscle | 0 | 70 |
Bone | 0 | 0 |
Layers | [mm−1] | [mm−1] | Anisotropy, g | Refractive Index, n | ||
---|---|---|---|---|---|---|
905 nm | 940 nm | 905 nm | 940 nm | |||
Stratum corneum | 0.11350 | 0.09745 | 100 | 0.86 | 1.5 | |
Epidermis | 0.16825 | 0.21397 | 45 | 0.8 | 1.34 | |
Papillary dermis | 0.09631 | 0.23308 | 30 | 0.9 | 1.4 | |
Upper blood net dermis | 0.09864 | 0.24202 | 35 | 0.95 | 1.39 | |
Reticular dermis | 0.09824 | 0.29906 | 25 | 0.8 | 1.4 | |
Deep blood net dermis | 0.10118 | 0.32549 | 30 | 0.95 | 1.38 | |
Fat | 0.0142 | 0.0170 | 6.33 | 5.42 | 0.8 | 1.37 |
Muscle | 0.031 | 0.0401 | 1.83 | 5.81 | 0.5 | 1.37 |
Bone | 0.15 | 0.0457 | 15.2 | 24.70 | 0.92 | 1.37 |
Artery | - | - | 4.85 | 0.8 | 1.39 |
[26]) | [27]) | ||
---|---|---|---|
905 nm | 940 nm | 905 nm | 940 nm |
0.011160 | 0.011778 | 0.014869 | 0.009316 |
SBP [mmHg] | DBP [mmHg] | BMI | Pulse Rate | Age [Years] | |
---|---|---|---|---|---|
Min | 80 | 42 | 14.69 | 52 | 21 |
Max | 182 | 107 | 37.46 | 106 | 86 |
Mean | 127.9 | 71.9 | 23.11 | 73.64 | 57.2 |
SD | 20.33 | 11.09 | 3.99 | 10.71 | 15.84 |
SBP [mmHg] | DBP [mmHg] | BMI | Pulse Rate | Age [Years] | |
---|---|---|---|---|---|
Min | 80 | 42 | 15.94 | 52 | 23 |
Max | 182 | 96 | 35.84 | 103 | 85 |
Mean | 124.42 | 69.46 | 23.23 | 73.2 | 54.7 |
SD | 19.65 | 10.46 | 3.88 | 10.87 | 16.35 |
SBP [mmHg] | DBP [mmHg] | BMI | Pulse Rate | Age [Years] | |
---|---|---|---|---|---|
Min | 81 | 62 | 20.76 | 55 | 25 |
Max | 133 | 96 | 34.6 | 108 | 61 |
Mean | 104.57 | 75.8 | 27.87 | 82.47 | 30.4 |
SD | 11.65 | 6.86 | 2.96 | 10.49 | 7.62 |
Metrics | MAE [mmHg] | RMSE [mmHg] | SD [mmHg] | Pearson’s r | R2 |
---|---|---|---|---|---|
SBP | 3.32 | 6.01 | 6.03 | 0.95 | 0.91 |
DBP | 2.02 | 2.65 | 2.64 | 0.97 | 0.94 |
MAP | 1.76 | 2.83 | 2.8 | 0.98 | 0.94 |
Metrics | MAE [mmHg] | RMSE [mmHg] | SD [mmHg] | Pearson’s r | R2 |
---|---|---|---|---|---|
SBP | 2.54 | 4.31 | 4.24 | 0.94 | 0.86 |
DBP | 1.49 | 2.89 | 2.82 | 0.91 | 0.82 |
MAP | 1.51 | 2.52 | 2.41 | 0.95 | 0.90 |
Metrics | MAE [mmHg] | RMSE [mmHg] | SD [mmHg] | Pearson’s r | R2 |
---|---|---|---|---|---|
SBP | 3.35 | 5.12 | 5.06 | 0.90 | 0.81 |
DBP | 2.07 | 2.88 | 2.83 | 0.91 | 0.82 |
MAP | 2.12 | 2.83 | 2.83 | 0.95 | 0.87 |
No. of Subjects | MAE [mmHg] | SD [mmHg] | ||
---|---|---|---|---|
AAMI [47] | >85 | ≤5 | ≤8 | |
Public dataset | SBP | 100 | 3.32 | 6.03 |
DBP | 2.02 | 2.64 | ||
Self-made dataset (Transmission) | SBP | 30 | 2.54 | 4.24 |
DBP | 1.49 | 2.81 | ||
Self-made dataset (Reflection) | SBP | 30 | 3.35 | 5.06 |
DBP | 2.07 | 2.83 |
Cumulative Error (%) | ||||
---|---|---|---|---|
BHS grading standard [48] | ||||
Grade A | 60% | 85% | 95% | |
Grade B | 50% | 75% | 90% | |
Grade C | 40% | 65% | 85% | |
Public dataset | SBP | 91% | 98% | 98% |
DBP | 96% | 96% | 99% | |
Self-made dataset (Transmission) | SBP | 86.67% | 96.67% | 96.67% |
DBP | 96.67% | 96.67% | 99% | |
Self-made dataset (Reflection) | SBP | 80% | 90% | 96.67% |
DBP | 86.67% | 96.67% | 98% |
Model | Dataset | SBP/DBP/MAP | |||
---|---|---|---|---|---|
MAE [mmHg] | SD [mmHg] | RMSE [mmHg] | Pearson’s r | ||
Proposed (Public dataset) | Public dataset [33] | 3.32/2.02/1.76 | 6.03/2.64/2.8 | 6.01/2.65/2.83 | 0.95/0.97/0.98 |
Proposed (self-made) | Transmission | 2.54/1.49/1.51 | 4.24/2.81/2.41 | 4.31/2.89/2.52 | 0.94/0.91/0.95 |
Reflection | 3.35/2.07/2.12 | 5.83/2.06/2.83 | 5.12/2.88/2.83 | 0.90/0.91/0.95 | |
Chowdhury et al. [7] | Public dataset [33] | 3.02/1.74/- | 9.29/5.54/- | 6.74/3.59/- | 0.95/0.96/- |
Athaya et al. [8] | MIMIC II and MIMIC III | 3.68/1.97/2.17 | 4.42/2.92/3.06 | 5.75/3.52/3.75 | 0.976/0.970/0.976 |
Esmaelpoor et al. [16] | MIMIC II | 4.21/3.24/- | 7.59/5.39/- | 7.57/5.40/- | 0.938/0.942/- |
Xie et al. [17] | Queensland Vital Signs Dataset | 3.97/2.10/- | 5.55/2.84/- | - | 0.95/0.95/- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haque, C.A.; Kwon, T.-H.; Kim, K.-D. Cuffless Blood Pressure Estimation Based on Monte Carlo Simulation Using Photoplethysmography Signals. Sensors 2022, 22, 1175. https://doi.org/10.3390/s22031175
Haque CA, Kwon T-H, Kim K-D. Cuffless Blood Pressure Estimation Based on Monte Carlo Simulation Using Photoplethysmography Signals. Sensors. 2022; 22(3):1175. https://doi.org/10.3390/s22031175
Chicago/Turabian StyleHaque, Chowdhury Azimul, Tae-Ho Kwon, and Ki-Doo Kim. 2022. "Cuffless Blood Pressure Estimation Based on Monte Carlo Simulation Using Photoplethysmography Signals" Sensors 22, no. 3: 1175. https://doi.org/10.3390/s22031175
APA StyleHaque, C. A., Kwon, T.-H., & Kim, K.-D. (2022). Cuffless Blood Pressure Estimation Based on Monte Carlo Simulation Using Photoplethysmography Signals. Sensors, 22(3), 1175. https://doi.org/10.3390/s22031175