Magnetically Tunable Micro-Ring Resonators for Massive Magneto-Optical Modulation in Dense Wavelength Division Multiplexing Systems
<p>(<b>a</b>) Schematic 3D of the MO-MRR and (<b>b</b>) a zoom-in of the highlighted region in (<b>a</b>).</p> "> Figure 2
<p>Transmittances in the MO-MRR for non-magnetized (black dashed curve) and magnetized to <math display="inline"><semantics> <mrow> <mo>−</mo> <mi mathvariant="bold">M</mi> </mrow> </semantics></math> (blue solid curve) and <math display="inline"><semantics> <mrow> <mo>+</mo> <mi mathvariant="bold">M</mi> </mrow> </semantics></math> (red solid curve). The points I and III symbolize a possible coding for bit 1, whilst the points II and IV may coding the bit 0, as depicted in the inset.</p> "> Figure 3
<p>Normalized <span class="html-italic">H</span>-field in the MO-MRR. (<b>a</b>) The system in non-resonance condition (I & III) and (<b>b</b>) in resonance condition (II & IV). In (<b>c</b>), an inset from (<b>a</b>) at the straight MRR section, where one can see the guided wave and the evanescent field along the MO ring. (<b>d</b>) the cross-section view of the MO-MRR for TM mode.</p> "> Figure 4
<p>Resonances for <math display="inline"><semantics> <mrow> <mo>±</mo> <mi mathvariant="bold">M</mi> </mrow> </semantics></math> with small differences between the widths <math display="inline"><semantics> <msub> <mi>W</mi> <mn>2</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>W</mi> <mn>1</mn> </msub> </semantics></math>. (<b>a</b>) Variations with steps of <math display="inline"><semantics> <mrow> <mo>±</mo> <mn>5</mn> </mrow> </semantics></math>% from 0% to <math display="inline"><semantics> <mrow> <mo>±</mo> <mn>10</mn> </mrow> </semantics></math>% and (<b>b</b>) variation from <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mo>+</mo> <mn>4</mn> </mrow> </semantics></math>% with steps of 1%. (<b>c</b>) A linear fitting of <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>λ</mi> </mrow> </semantics></math> as function of <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mn>2</mn> </msub> <mo>/</mo> <msub> <mi>W</mi> <mn>1</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 5
<p>(<b>a</b>) Schematic representation of multiple MO-MRRs side-coupled to a single Si-waveguide for massive MO modulation in DWDM applications. (<b>b</b>–<b>i</b>) MO modulation in DWDM for different combinations of <math display="inline"><semantics> <mrow> <mo>(</mo> <msubsup> <mi>λ</mi> <mrow> <mn>1</mn> </mrow> <mrow> <mo>±</mo> <mi mathvariant="bold">M</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>λ</mi> <mrow> <mn>2</mn> </mrow> <mrow> <mo>±</mo> <mi mathvariant="bold">M</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>λ</mi> <mrow> <mn>3</mn> </mrow> <mrow> <mo>±</mo> <mi mathvariant="bold">M</mi> </mrow> </msubsup> <mo>)</mo> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Theory and Modeling
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in terahertz communications accelerated by photonics. Nat. Photonics 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Ummethala, S.; Harter, T.; Koehnle, K.; Li, Z.; Muehlbrandt, S.; Kutuvantavida, Y.; Kemal, J.; Marin-Palomo, P.; Schaefer, J.; Tessmann, A.; et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat. Photonics 2019, 13, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Reed, G.T.; Mashanovich, G.; Gardes, F.Y.; Thomson, D.J. Silicon optical modulators. Nat. Photonics 2010, 4, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Atabaki, A.H.; Moazeni, S.; Pavanello, F.; Gevorgyan, H.; Notaros, J.; Alloatti, L.; Wade, M.T.; Sun, C.; Kruger, S.A.; Meng, H.; et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 2018, 556, 349–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, L.W.; Ophir, N.; Chen, C.P.; Gabrielli, L.H.; Poitras, C.B.; Bergmen, K.; Lipson, M. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 2014, 5, 3069. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Kuang, K.; Wang, S.; Xu, S.; Liu, H.; Liu, G.N. Dynamic routing and spectrum allocation in elastic optical networks with mixed line rates. J. Opt. Commun. Netw. 2014, 6, 1115–1127. [Google Scholar] [CrossRef]
- Lee, Y.; Mukherjee, B. Traffic engineering in next-generation optical Networks. IEEE Commun. Surv. Tutorials 2004, 6, 16–33. [Google Scholar] [CrossRef]
- Little, B.E.; Chu, S.T.; Haus, H.A.; Foresi, J.; Laine, J. Microring resonator channel dropping filters. J. Light. Technol. 1997, 15, 998–1005. [Google Scholar] [CrossRef]
- Dingel, B. Multifunctional Optical Filter Using Direct-Coupled and Cross-Coupled All-Pass Filters. IEEE Photonics Technol. Lett. 2014, 26, 785–788. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, J.; He, X.; Han, Y.; Zhang, J.; Huang, J.; Chen, D. Plasmonic Filter and Demultiplexer Based on Square Ring Resonator. Appl. Sci. 2018, 8, 462. [Google Scholar] [CrossRef]
- Gad, M.; Ackert, J.; Yevick, D.; Chrostowski, L.; Jessop, P. Ring Resonator Wavelength Division Multiplexing Interleaver. J. Light. Technol. 2011, 29, 2102–2109. [Google Scholar] [CrossRef]
- Seifouri, M.; Fallahi, V.; Olyaee, S. Ultra-high-Q optical filter based on photonic crystal ring resonator. Photonic Netw. Commun. 2018, 35, 225–230. [Google Scholar] [CrossRef]
- Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1678–1687. [Google Scholar] [CrossRef]
- Kimerling, L.C.; Ahn, D.; Apsel, A.B.; Beals, M.; Carothers, D.; Chen, Y.K.; Conway, T.; Gill, D.M.; Grove, M.; Hong, C.Y.; et al. Electronic-photonic integrated circuits on the CMOS platform. In Proceedings of the Silicon Photonics, San Jose, CA, USA, 21–26 January 2006; Volume 6125, p. 612502. [Google Scholar]
- Miller, D.A.B. Optical interconnects to silicon. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1312–1317. [Google Scholar] [CrossRef] [Green Version]
- Jalali, B.; Fathpour, S. Silicon photonics. J. Light. Technol. 2006, 24, 4600–4615. [Google Scholar] [CrossRef]
- Janner, D.; Tulli, D.; García-Granda, M.; Belmonte, M.; Pruneri, V. Micro-structured integrated electro-optic LiNbO3 modulators. Laser Photonics Rev. 2009, 3, 301–313. [Google Scholar] [CrossRef]
- Luo, R.; Jiang, H.; Rogers, S.; Liang, H.; He, Y.; Lin, Q. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express 2017, 25, 24531–24539. [Google Scholar] [CrossRef] [PubMed]
- Liljeberg, T. Silicon photonics and the future of optical connectivity in the data center. In Proceedings of the 2017 IEEE Optical Interconnects Conference (OI), Santa Fe, NM, USA, 5–7 June 2017; pp. 1–2. [Google Scholar]
- Yang, H.; Wang, Y.; Tiu, Z.C.; Tan, S.J.; Yuan, L.; Zhang, H. All-optical modulation technology based on 2D layered materials. Micromachines 2022, 13, 92. [Google Scholar] [CrossRef]
- Xu, Q.; Schmidt, B.; Pradhan, S.; Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 2005, 435, 325–327. [Google Scholar] [CrossRef]
- Sun, J.; Kumar, R.; Sakib, M.; Driscoll, J.B.; Jayatilleka, H.; Rong, H. A 128 Gb/s PAM4 Silicon Microring Modulator With Integrated Thermo-Optic Resonance Tuning. J. Light. Technol. 2019, 37, 110–115. [Google Scholar] [CrossRef]
- Petrosyan, D.; Malakyan, Y.P. Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration. Phys. Rev. A 2004, 70, 023822. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, S.L.; Carothers, K.; Showghi, S.A.; Pyun, J.; Norwood, R.A. Magneto-optic Modulator Fabricated Using Polymer-Coated Magnetic Nanoparticles with 4.75dB Extinction Ratio. In Proceedings of the OSA Advanced Photonics Congress 2021, Optica Publishing Group, Washington, DC, USA, 26–29 July 2021; p. NoF2C.2. [Google Scholar]
- Hu, S.; Song, J.; Guo, Z.; Jiang, H.; Deng, F.; Dong, L.; Chen, H. Omnidirectional nonreciprocal absorber realized by the magneto-optical hypercrystal. Opt. Express 2022, 30, 12104–12119. [Google Scholar] [CrossRef] [PubMed]
- Dong, P.; Liao, S.; Feng, D.; Liang, H.; Zheng, D.; Shafiiha, R.; Kung, C.C.; Qian, W.; Li, G.; Zheng, X.; et al. Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator. Opt. Express 2009, 17, 22484–22490. [Google Scholar] [CrossRef] [PubMed]
- Phare, C.T.; Daniel Lee, Y.H.; Cardenas, J.; Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics 2015, 9, 511–514. [Google Scholar] [CrossRef]
- Shekhawat, D.; Mehra, R. Design of Ultra-Compact and Highly-Sensitive Graphene Assisted Silicon Micro-Ring Resonator Modulator for Switching Applications. Silicon 2021, 14, 4383–4390. [Google Scholar] [CrossRef]
- Andrade, B.N.O.; Carvalho, W.O.F.; Beltrán-Mejía, F.; Mejía-Salazar, J.R. Polarization-Insensitive Optical Modulator Based on Single-Layer Graphene Sheets. IEEE Trans. Nanotechnol. 2021, 20, 883–888. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Q.; Wood, M.G.; Reano, R.M. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica 2014, 1, 112–118. [Google Scholar] [CrossRef]
- Padmaraju, K.; Chan, J.; Chen, L.; Lipson, M.; Bergman, K. Thermal stabilization of a microring modulator using feedback control. Opt. Express 2012, 20, 27999–28008. [Google Scholar] [CrossRef]
- Yamahara, H.; Feng, B.; Seki, M.; Adachi, M.; Sarker, M.S.; Takeda, T.; Kobayashi, M.; Ishikawa, R.; Ikuhara, Y.; Cho, Y.; et al. Flexoelectric nanodomains in rare-earth iron garnet thin films under strain gradient. Commun. Mater. 2021, 2, 95. [Google Scholar] [CrossRef]
- Mollaee, M.; Zhu, X.; Jenkins, S.; Zong, J.; Temyanko, E.; Norwood, R.; Chavez-Pirson, A.; Li, M.; Zelmon, D.; Peyghambarian, N. Magneto-optical properties of highly Dy3+ doped multicomponent glasses. Opt. Express 2020, 28, 11789–11796. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, Q.; Wang, C.; Fakhrul, T.; Liu, S.; Deng, L.; Huang, D.; Pintus, P.; Bowers, J.; Ross, C.A.; et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics. Optica 2019, 6, 473–478. [Google Scholar] [CrossRef]
- Pintus, P.; Huang, D.; Morton, P.A.; Shoji, Y.; Mizumoto, T.; Bowers, J.E. Broadband TE Optical Isolators and Circulators in Silicon Photonics Through Ce:YIG Bonding. J. Light. Technol. 2019, 37, 1463–1473. [Google Scholar] [CrossRef] [Green Version]
- Murai, T.; Shoji, Y.; Nishiyama, N.; Mizumoto, T. Nonvolatile magneto-optical switches integrated with a magnet stripe array. Opt. Express 2020, 28, 31675–31685. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, W.O.F.; Mejía-Salazar, J.R. Magneto-optical micro-ring resonators for dynamic tuning of add/drop channels in dense wavelength division multiplexing applications. Opt. Lett. 2021, 46, 2396–2399. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, L.; Bi, L. Silicon Integrated Dysprosium Substituted Ce:YIG Thin Films for Integrated Optical Isolator Applications. In Proceedings of the 2019 Asia Communications and Photonics Conference (ACP), Chengdu, China, 2–5 November 2019; pp. 1–2. [Google Scholar]
- Du, Q.; Wang, C.; Zhang, Y.; Zhang, Y.; Fakhrul, T.; Zhang, W.; Gonçalves, C.; Blanco, C.; Richardson, K.; Deng, L.; et al. Monolithic On-chip Magneto-optical Isolator with 3 dB Insertion Loss and 40 dB Isolation Ratio. ACS Photonics 2018, 5, 5010–5016. [Google Scholar] [CrossRef]
- Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T.; De Vos, K.; Kumar Selvaraja, S.; Claes, T.; Dumon, P.; Bienstman, P.; Van Thourhout, D.; Baets, R. Silicon microring resonators. Laser Photonics Rev. 2012, 6, 47–73. [Google Scholar] [CrossRef]
- Mulyanti, B.; Menon, P.S.; Shaari, S.; Hariyadi, T.; Hasanah, L.; Haroon, H. Design and optimization of coupled Microring Resonators (MRRs) in silicon-on-insulator. Sains Malays. 2014, 43, 247–252. [Google Scholar]
- Floess, D.; Giessen, H. Nonreciprocal hybrid magnetoplasmonics. Rep. Prog. Phys. 2018, 81, 116401. [Google Scholar] [CrossRef] [Green Version]
- Onbasli, M.C.; Beran, L.; Zahradník, M.; Kučera, M.; Antoš, R.; Mistrík, J.; Dionne, G.F.; Veis, M.; Ross, C.A. Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm. Sci. Rep. 2016, 6, 23640. [Google Scholar] [CrossRef] [Green Version]
- Li, H.H. Refractive index of silicon and germanium and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data 1980, 9, 561–658. [Google Scholar] [CrossRef]
- Malitson, I.H. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 1965, 55, 1205–1209. [Google Scholar] [CrossRef]
- Senior, J.M.; Jamro, M.Y. Optical Fiber Communications: Principles and Practice; Pearson Education: London, UK, 2009. [Google Scholar]
- Yuan, Y.; Sorin, W.V.; Huang, Z.; Zeng, X.; Liang, D.; Kumar, A.; Palermo, S.; Fiorentino, M.; Beausoleil, R.G. A 100 Gb/s PAM4 Two-Segment Silicon Microring Resonator Modulator Using a Standard Foundry Process. ACS Photonics 2022, 9, 1165–1171. [Google Scholar] [CrossRef]
- Palermo, S.; Yu, K.; Roshan-Zamir, A.; Wang, B.; Li, C.; Seyedi, M.A.; Fiorentino, M.; Beausoleil, R. PAM4 silicon photonic microring resonator-based transceiver circuits. In Proceedings of the Optical Interconnects XVII. International Society for Optics and Photonics, SPIE, San Francisco, CA, USA, 28 January–2 February 2017; Volume 10109, pp. 97–103. [Google Scholar]
- Zhang, Y.; Zhang, H.; Li, M.; Feng, P.; Wang, L.; Xiao, X.; Yu, S. 200 Gbit/s Optical PAM4 Modulation Based on Silicon Microring Modulator. In Proceedings of the 2020 European Conference on Optical Communications (ECOC), Brussels, Belgium, 6–10 December 2020; pp. 1–4. [Google Scholar]
- Mizumoto, T.; Baets, R.; Bowers, J.E. Optical nonreciprocal devices for silicon photonics using wafer-bonded magneto-optical garnet materials. MRS Bull. 2018, 43, 419–424. [Google Scholar] [CrossRef]
- ITU-T. Spectral Grids for WDM Applications: DWDM Frequency Grid. 2020. Available online: https://www.itu.int/rec/T-REC-G.694.1/ (accessed on 28 September 2022).
Ref. | Waveguide | Substrate | Materials for Tunability | Effect | Ring Radius | IL | ER | |
---|---|---|---|---|---|---|---|---|
[47] | Si | Si (CMOS) | p-Si and n-Si | EO | 12 m | 1 dB | 2.4 dB | 0.06 nm |
[28] | Si | SiO | Graphene | EO | 3 m | 1.54 dB | 10.2 dB | 6 nm |
[27] | SiN | SiO | Graphene | EO | 40 m | 6 dB | 28 dB | 0.2 nm |
[30] | LiNbO and Si | SiO | aluminum | EO | 15 m | 4.3 dB | 5.6 dB | 0.066 nm |
[48] | Si | Si (CMOS) | p-Si and n-Si | EO | 8 m | 3–6 dB | 7.78 dB | 0.02 nm |
[22] | Si | SiO | p-Si and n-Si | TO | 10 m | 4–14 dB | 20 dB | 0.05 nm |
[49] | Si | Si (CMOS) | TiN | TO | 8 m | 13 dB | 25 dB | 0.6 nm |
[24] | SiN | SiO | Cobalt nanoparticles | MO | 10 m | 0.6 dB | 4.75 dB | - |
This work | Si | SiO | Ce:YIG | MO | 5.6 m | 5 dB | 46.7 dB | 0.22 nm |
A (nm) | (nm) | (nm) | (nm) | (nm) | IL (dB) | ER (dB) |
---|---|---|---|---|---|---|
561 | 1547.91 | 1548.02 | 1548.13 | 0.22 | 10.95 | 38.85 |
574 | 1548.73 | 1548.84 | 1548.95 | 0.22 | 10.76 | 43.31 |
587 | 1549.54 | 1549.64 | 1549.76 | 0.22 | 11.26 | 42.44 |
600 | 1550.33 | 1550.44 | 1550.55 | 0.22 | 12.34 | 46.70 |
613 | 1551.10 | 1551.21 | 1551.32 | 0.22 | 11.60 | 35.60 |
626 | 1551.87 | 1551.98 | 1552.09 | 0.22 | 11.37 | 33.47 |
639 | 1552.75 | 1552.86 | 1552.97 | 0.22 | 11.83 | 41.19 |
652 | 1553.54 | 1553.65 | 1553.76 | 0.22 | 11.81 | 35.25 |
665 | 1554.33 | 1554.44 | 1554.55 | 0.22 | 11.25 | 29.42 |
678 | 1555.16 | 1555.28 | 1555.39 | 0.23 | 10.92 | 24.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neto, J.V.S.; Carvalho, W.O.F.; Mejía-Salazar, J.R. Magnetically Tunable Micro-Ring Resonators for Massive Magneto-Optical Modulation in Dense Wavelength Division Multiplexing Systems. Sensors 2022, 22, 8163. https://doi.org/10.3390/s22218163
Neto JVS, Carvalho WOF, Mejía-Salazar JR. Magnetically Tunable Micro-Ring Resonators for Massive Magneto-Optical Modulation in Dense Wavelength Division Multiplexing Systems. Sensors. 2022; 22(21):8163. https://doi.org/10.3390/s22218163
Chicago/Turabian StyleNeto, Josino Villela S., William O. F. Carvalho, and Jorge Ricardo Mejía-Salazar. 2022. "Magnetically Tunable Micro-Ring Resonators for Massive Magneto-Optical Modulation in Dense Wavelength Division Multiplexing Systems" Sensors 22, no. 21: 8163. https://doi.org/10.3390/s22218163
APA StyleNeto, J. V. S., Carvalho, W. O. F., & Mejía-Salazar, J. R. (2022). Magnetically Tunable Micro-Ring Resonators for Massive Magneto-Optical Modulation in Dense Wavelength Division Multiplexing Systems. Sensors, 22(21), 8163. https://doi.org/10.3390/s22218163