Sagnac with Double-Sense Twisted Low-Birefringence Standard Fiber as Vibration Sensor
<p>Schematic diagram of the OFSI.</p> "> Figure 2
<p>Dependence of Sagnac transmission on (<b>a</b>) angle <math display="inline"><semantics> <mi>α</mi> </semantics></math> of QWR in the Sagnac loop, (<b>b</b>) loop length (for <math display="inline"><semantics> <mi>α</mi> </semantics></math> = 0). The traces are calculated by using Equation (<a href="#FD1-sensors-22-08557" class="html-disp-formula">1</a>), with <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>14</mn> <mi>π</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>0.13</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1.45</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Dependence of Sagnac transmission on refractive index in the loop, for different values of QWR angle <math display="inline"><semantics> <mi>α</mi> </semantics></math>. Double arrows illustrate the amplitude of transmission variations resulting from a given index fluctuation. The symbol (*) denotes multiplication.</p> "> Figure 4
<p>All frequencies detected during ∼1 s by OFSI for several average power values adjusted by QWR angle <math display="inline"><semantics> <mi>α</mi> </semantics></math> (see <a href="#sensors-22-08557-f001" class="html-fig">Figure 1</a>).</p> "> Figure 5
<p>All frequencies detected in our setup for several average power adjusted by the angle <math display="inline"><semantics> <mi>α</mi> </semantics></math> of QWR (see <a href="#sensors-22-08557-f001" class="html-fig">Figure 1</a>). Inset a zoom of frequencies at 2 kHz.</p> "> Figure 6
<p>Low-response region for frequencies detected during 1 s in our setup for several average power measured at the output and adjusted by the angle <math display="inline"><semantics> <mi>α</mi> </semantics></math> of QWR (see <a href="#sensors-22-08557-f001" class="html-fig">Figure 1</a>).</p> "> Figure 7
<p>The OFSI response decays gradually at high frequencies. Specifically, the signal disappears at ∼17, ∼16.5, and ∼16 kHz, for blue, red, and black traces, respectively.</p> "> Figure 8
<p>Response of OFSI for a sweep of frequencies from 0 kHz to 23 kHz over 30 s for several average power values adjusted by the angle <math display="inline"><semantics> <mi>α</mi> </semantics></math> of the QWR (see <a href="#sensors-22-08557-f001" class="html-fig">Figure 1</a>).</p> "> Figure 9
<p>All frequencies detected in our setup for several values of average power adjusted by the angle <math display="inline"><semantics> <mi>α</mi> </semantics></math> of QWR (see <a href="#sensors-22-08557-f001" class="html-fig">Figure 1</a>). The inset shows a zoom on frequencies around 0.26 kHz.</p> "> Figure 10
<p>Frequency-dependent response of the system for several average power adjusted by the angle <math display="inline"><semantics> <mi>α</mi> </semantics></math> of QWR (see <a href="#sensors-22-08557-f001" class="html-fig">Figure 1</a>): (<b>a</b>) in the 2 kHz region, (<b>b</b>) around 11.2 kHz; (<b>c</b>) at high frequencies.</p> "> Figure 11
<p>Influence on transmission response of (<b>a</b>) polarizer transmission and LD output power in the 12 kHz region, and of (<b>b</b>) LD output power at high frequencies.</p> "> Figure 12
<p>Temporal response of a 10 m loop OFSI. Blue trace = 10 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">W</mi> </mrow> </semantics></math>, red trace = 30 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">W</mi> </mrow> </semantics></math>, and black trace = 60 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">W</mi> </mrow> </semantics></math> of average power at the output.</p> "> Figure 13
<p>Response of a 10 m loop OFSI: (<b>a</b>) All frequencies detected during ∼2.5 s for several average output power values adjusted by the QWR (See <a href="#sensors-22-08557-f001" class="html-fig">Figure 1</a>), inset shows a close-up on 9 kHz. (<b>b</b>) close-up on region from 15 kHz to 20 kHz. Black trace = 10 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">W</mi> </mrow> </semantics></math>, red trace = 30 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">W</mi> </mrow> </semantics></math>, blue trace = 60 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">W</mi> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Experimental Setup and Principles
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DAQ | Data Acquisition |
DOFS | Distributed Optical Fiber Sensor |
FRL | Fiber Ring Laser |
HWR | Half Wave Retarder |
LD | Laser Diode |
OFSI | Optical Fiber Sagnac Interferometer |
OTDR | Optical Time Domain Reflectometry |
PC | Polarization Controller |
PM | Polarization Maintaining |
QWR | Quarter Wave Retarder |
References
- Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- Lee, B.H.; Kim, Y.H.; Park, K.S.; Eom, J.B.; Kim, M.J.; Rho, B.S.; Choi, H.Y. Interferometric Fiber Optic Sensors. Sensors 2012, 12, 2467–2486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortimore, D. Fiber loop reflectors. J. Light. Technol. 1988, 6, 1217–1224. [Google Scholar] [CrossRef]
- Fang, X.; Claus, R.O. Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer. Opt. Lett. 1995, 20, 2146–2148. [Google Scholar] [CrossRef] [PubMed]
- Grattan, K.; Sun, T. Fiber optic sensor technology: An overview. Sens. Actuators A Phys. 2000, 82, 40–61. [Google Scholar] [CrossRef]
- Starodumov, A.; Zenteno, L.; Monzon, D.; Boyain, A. All-fiber polarization-independent narrow band wavelength-division multiplexer. Opt. Commun. 1997, 138, 31–34. [Google Scholar] [CrossRef]
- Santiago-Hernandez, H.; Pottiez, O.; Paez-Aguirre, R.; Ibarra-Villalon, H.E.; Tenorio-Torres, A.; Duran-Sanchez, M.; Ibarra-Escamilla, B.; Kuzin, E.A.; Hernandez-Garcia, J.C. Generation and characterization of erbium-Raman noise-like pulses from a figure-eight fibre laser. Laser Phys. 2015, 25, 045106. [Google Scholar] [CrossRef]
- Ibarra-Escamilla, B.; Santiago-Hernández, H.; Rodriguez-Morales, L.A.; Armas-Rivera, I.; Pottiez, O.; Durán-Sánchez, M.; Beltran-Pérez, G.; Hernández-Arriaga, M.V.; Kuzin, E.A. Characterization of supercontinuum process pumped by amplified dissipative solitons. Phys. Scr. 2019, 94, 105506. [Google Scholar] [CrossRef]
- Hu, S.; Zhan, L.; Song, Y.; Li, W.; Luo, S.; Xia, Y. Switchable multiwavelength erbium-doped fiber ring laser with a multisection high-birefringence fiber loop mirror. IEEE Photonics Technol. Lett. 2005, 17, 1387–1389. [Google Scholar] [CrossRef]
- Rodríguez-Morales, L.A.; Armas-Rivera, I.; Avazpour, M.; Beltran-Pérez, G.; Santiago-Hernandez, H.; Ibarra-Escamilla, B.; Durán-Sánchez, M.; Pottiez, O.; Kuzin, E.A. Experimental investigation of polarization-imbalanced nonlinear loop mirror with double-sense twisted fiber as a filter to clean up solitons. J. Opt. 2017, 20, 015502. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, H.; Liu, X.; Bai, Q.; Zhang, H.; Gao, Y.; Jin, B. A Comprehensive Study of Optical Fiber Acoustic Sensing. IEEE Access 2019, 7, 85821–85837. [Google Scholar] [CrossRef]
- Liu, X.; Jin, B.; Bai, Q.; Wang, Y.; Wang, D.; Wang, Y. Distributed Fiber-Optic Sensors for Vibration Detection. Sensors 2016, 16, 1164. [Google Scholar] [CrossRef] [Green Version]
- Liang, T.C.; Lin, Y.L. Ground vibrations detection with fiber optic sensor. Opt. Commun. 2012, 285, 2363–2367. [Google Scholar] [CrossRef]
- Kang, J.; Dong, X.; Zhu, Y.; Jin, S.; Zhuang, S. A fiber strain and vibration sensor based on high birefringence polarization maintaining fibers. Opt. Commun. 2014, 322, 105–108. [Google Scholar] [CrossRef]
- Wada, K.; Narui, H.; Yamamoto, D.; Matsuyama, T.; Horinaka, H. Balanced polarization maintaining fiber Sagnac interferometer vibration sensor. Opt. Express 2011, 19, 21467–21474. [Google Scholar] [CrossRef]
- Pan, C.; Liu, X.; Zhu, H.; Shan, X.; Sun, X. Distributed optical fiber vibration sensor based on Sagnac interference in conjunction with OTDR. Opt. Express 2017, 25, 20056–20070. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Liu, X.; Bai, Q.; Wang, P.; Gao, Y.; Zhang, H.; Jin, B. Sagnac Vibration Sensing System With Nested Pulse Method. J. Light. Technol. 2021, 39, 1550–1556. [Google Scholar] [CrossRef]
- Meng, D.; Miao, C.; Li, X.; Li, J.; Shi, J.; Xu, W.; Yang, X.; Xu, D.; Liu, T.; Yao, J. A vibration sensor based on Sagnac interferometer and fiber ring laser for fault diagnosis of bearing. Opt. Fiber Technol. 2021, 64, 102554. [Google Scholar] [CrossRef]
- Da Costa, I.B.V.; Weber, G.H.; Gomes, D.F.; Galvão, J.R.; da Silva, M.J.; Pipa, D.R.; Ozcáriz, A.; Zamarreño, C.R.; Martelli, C.; Cardozo da Silva, J.C. Electric discharge detection and localization using a distributed optical fiber vibration sensor. Opt. Fiber Technol. 2020, 58, 102266. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Gao, Y.; Zhang, H.; Wang, D.; Jin, B. Partial Discharge Ultrasound Detection Using the Sagnac Interferometer System. Sensors 2018, 18, 1425. [Google Scholar] [CrossRef]
- Barlow, A.; Payne, D. The stress-optic effect in optical fibers. IEEE J. Quantum Electron. 1983, 19, 834–839. [Google Scholar] [CrossRef] [Green Version]
- Monerie, M.; Jeunhomme, L. Polarization mode coupling in long single-mode fibres. Opt. Quantum Electron. 1980, 12, 449–461. [Google Scholar] [CrossRef]
- Rodriguez-Morales, L.A.; Santiago-Hernández, H.; Pottiez, O.; Bracamontes-Rodríguez, Y.E.; Ibarra-Escamilla, B.; Durán-Sánchez, M.; Hernández-Arriaga, M.V.; Avazpour, M.; Beltrán-Pérez, G.; Kuzin, E.A. Dual-wavelength quasi-mode-locked regimes of an Er-doped fiber ring laser. OSA Contin. 2018, 1, 416–425. [Google Scholar] [CrossRef]
- Kuzin, E.A.; Korneev, N.; Haus, J.W.; Ibarra-Escamilla, B. Theory of nonlinear loop mirrors with twisted low-birefringence fiber. J. Opt. Soc. Am. B 2001, 18, 919–925. [Google Scholar] [CrossRef]
- Pottiez, O.; Kuzin, E.; Ibarra-Escamilla, B.; Méndez-Martínez, F. Easily tuneable nonlinear optical loop mirror including low-birefringence, highly twisted fibre with invariant output polarisation. Opt. Commun. 2004, 229, 147–159. [Google Scholar] [CrossRef]
- McIntyre, P.; Snyder, A.W. Light propagation in twisted anisotropic media: Application to photoreceptors. J. Opt. Soc. Am. 1978, 68, 149–157. [Google Scholar] [CrossRef]
- Thurston, R. Elastic waves in rods and optical fibers. J. Sound Vib. 1992, 159, 441–467. [Google Scholar] [CrossRef]
- Sittig, E.K.; Coquin, G.A. Visualization of Plane-Strain Vibration Modes of a Long Cylinder Capable of Producing Sound Radiation. J. Acoust. Soc. Am. 1970, 48, 1150–1159. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santiago-Hernández, H.; Beltrán-González, A.B.; Mora-Nuñez, A.; Bravo-Medina, B.; Pottiez, O. Sagnac with Double-Sense Twisted Low-Birefringence Standard Fiber as Vibration Sensor. Sensors 2022, 22, 8557. https://doi.org/10.3390/s22218557
Santiago-Hernández H, Beltrán-González AB, Mora-Nuñez A, Bravo-Medina B, Pottiez O. Sagnac with Double-Sense Twisted Low-Birefringence Standard Fiber as Vibration Sensor. Sensors. 2022; 22(21):8557. https://doi.org/10.3390/s22218557
Chicago/Turabian StyleSantiago-Hernández, Héctor, Anuar Benjamín Beltrán-González, Azael Mora-Nuñez, Beethoven Bravo-Medina, and Olivier Pottiez. 2022. "Sagnac with Double-Sense Twisted Low-Birefringence Standard Fiber as Vibration Sensor" Sensors 22, no. 21: 8557. https://doi.org/10.3390/s22218557
APA StyleSantiago-Hernández, H., Beltrán-González, A. B., Mora-Nuñez, A., Bravo-Medina, B., & Pottiez, O. (2022). Sagnac with Double-Sense Twisted Low-Birefringence Standard Fiber as Vibration Sensor. Sensors, 22(21), 8557. https://doi.org/10.3390/s22218557