ROS-Based Smart Walker with Fuzzy Posture Judgement and Power Assistance
<p>Proposed smart walker architecture.</p> "> Figure 2
<p>Real design of the proposed smart walker.</p> "> Figure 3
<p>Real design of the proposed smart walker. (<b>a</b>) SolidWorks drawn coupling, (<b>b</b>) 3D printer made coupling, (<b>c</b>) L-shaped bracket with SolidWorks drawing and 3D printing, (<b>d</b>) wheel with coupling device and rotary encoder disc.</p> "> Figure 4
<p>Execution flowchart of smart walker.</p> "> Figure 5
<p>Robot operating system (ROS) framework of smart walker.</p> "> Figure 6
<p>Input membership functions.</p> "> Figure 7
<p>Output membership functions.</p> "> Figure 8
<p>Posture judgment (<math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>f</mi> </msub> </mrow> </semantics></math> = S): (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>d</mi> </msub> </mrow> </semantics></math> = S; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>d</mi> </msub> </mrow> </semantics></math> = M; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>d</mi> </msub> </mrow> </semantics></math> = L.</p> "> Figure 9
<p>Posture judgment (<math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>f</mi> </msub> </mrow> </semantics></math> = M): (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>d</mi> </msub> </mrow> </semantics></math> = S; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>d</mi> </msub> </mrow> </semantics></math> = M; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>d</mi> </msub> </mrow> </semantics></math> = L.</p> "> Figure 10
<p>Posture judgment (<math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>f</mi> </msub> </mrow> </semantics></math> = L): (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>d</mi> </msub> </mrow> </semantics></math> = S; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>d</mi> </msub> </mrow> </semantics></math> = M; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>d</mi> </msub> </mrow> </semantics></math> = L.</p> "> Figure 11
<p>Snapshots of smart walker assisted in downhill.</p> "> Figure 12
<p>The degree of slope, sensing force, and the assistive motor output (downhill).</p> "> Figure 13
<p>Snapshots of smart walker assisted in flat surface.</p> "> Figure 14
<p>The degree of slope, sensing force, and the assistive motor output (flat surface).</p> "> Figure 15
<p>Snapshots of smart walker assisted on a steep uphill.</p> "> Figure 16
<p>The degree of slope, sensing force, and the assistive motor output (steeper uphill).</p> "> Figure 17
<p>App showing: User’s location, user’s health status and environmental information encountered by smart walker.</p> ">
Abstract
:1. Introduction
2. Walker Design and Implementation
3. ROS-Based Fuzzy Controller Design with User’s Posture
3.1. ROS Framework
3.2. Fuzzy Controller Design
3.3. User’s Posture Judgement
3.4. Remedy of Fuzzy Rules
Algorithm 1: Power assistance with user’s posture (v = ZO) |
Input variables: , , , v While = PS or PL If = (L ⋁ M) ⋀ = S, then controller output = slower or reversal else controller output = forward While = ZO If ( = (L ⋁ M) ⋀ = S) ⋁ ( = L ⋀ = M), then controller output = slow reversal else if ( = (L ⋁ M) ⋀ = L) ⋁ ( = M ⋀ = M), then controller output = forward slowly else stay the same While = NS or NL If ( = M) ⋀ ( = L ⋁ M), then controller output = slower than general else controller output = reverse (fast or slow) End |
Algorithm 2: Power assistance design user’s posture (v = PS or PL) |
Input variables: , , , v While = PS or PL If ( = L ⋀ = L) ⋁ ( = M ⋀ = L) ⋁ ( = M ⋀ = M), then controller output = forward fast else if ( = L ⋀ = M) ⋁ ( = L ⋀ = S) ⋁ ( = M ⋀ = S), then controller output = reverse (slow or fast) else stay the same While = ZO If = L ⋀ = L, then controller output = forward fast else if = M ⋀ = (L ⋁ M), then controller output = stay the same else reverse (slow or fast) While = NS or NL controller output = reverse slow (v = PS) or reverse fast (v = PL) End |
4. Experimental Results and Analysis
4.1. Design of Experiments
4.2. Results and Analyses
4.2.1. Moving in a Downhill Surface
4.2.2. Moving on Flat Surface
4.2.3. Moving on a Uphill Surface
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Population Division United Nations, Department of Economic and Social Affairs. World Population Ageing 2017. Available online: https://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2017_Report.pdf (accessed on 5 June 2019).
- Ministry of Interior, Department of Statistics. Available online: https://www.moi.gov.tw/stat/news_detail.aspx?sn=13742 (accessed on 5 June 2019).
- Alexander, N.B.; Goldberg, A. Gait Disorders: Search for Multiple Causes. Clevel. Clin. J. Med. 2005, 72, 586–600. [Google Scholar] [CrossRef] [PubMed]
- Lacey, G.; Mac Namara, S.; Dawson-Howe, K.M. Personal adaptive mobility aid for the infirm and elderly blind. Assist. Technol. Artif. Intell. 2006, 1458, 211–220. [Google Scholar] [CrossRef]
- Martins, M.M.; Santos, C.P.; Frizera-Neto, A.; Ceres, R. Assistive mobility devices focusing on smart walkers: Classification and review. Robot. Auton. Syst. 2012, 60, 548–562. [Google Scholar] [CrossRef] [Green Version]
- Bradley, S.M.; Hernandez, C.R. Geriatric assistive devices. Am. Fam. Phys. 2011, 84, 405–411. [Google Scholar]
- Chan, A.D.C.; Green, J.R. Smart rollator prototype. In Proceedings of the 2008 IEEE International Workshop on Medical Measurements and Applications, Ottawa, ON, Canada, 9–10 May 2008; pp. 97–100. [Google Scholar]
- Taghvaei, S.; Hirata, Y.; Kosuge, K. Vision-based human state estimation to control an intelligent passive walker. In Proceedings of the 2010 IEEE/SICE International Symposium on System Integration, Sendai, Japan, 21–22 December 2010; pp. 146–151. [Google Scholar]
- Ibraheem, M. Gyroscope-enhanced dead reckoning localization system for an intelligent walker. In Proceedings of the 2010 International Conference on Information, Networking and Automation (ICINA), Kunming, China, 18–19 October 2010; pp. 67–72. [Google Scholar]
- Taghvaei, S.; Hirata, Y.; Kosuge, K. Visual human action classification for control of a passive walker. In Proceedings of the IEEE 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Sharjah, United Arab Emirates, 4–6 April 2017; pp. 1–5. [Google Scholar]
- Patel, M.; Miro, J.V.; Dissanayake, G. A hierarchical hidden Markov model to support activities of daily living with an assistive robotic walker. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 1071–1076. [Google Scholar]
- Shi, F.; Cao, Q.; Leng, C.; Tan, H. Based on force sensing-controlled human-machine interaction system for walking assistant robot. In Proceedings of the 2010 8th World Congress on Intelligent Control and Automation, Jinan, China, 7–9 July 2010; pp. 6528–6533. [Google Scholar]
- Song, K.T.; Jiang, S.Y. Force-cooperative guidance design of an omni directional walking assistive robot. In Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation, Beijing, China, 7–10 August 2011; pp. 1258–1263. [Google Scholar]
- Paulo, J.; Peixoto, P.; Nunes, U.J. ISR-AIWALKER: Robotic Walker for Intuitive and Safe Mobility Assistance and Gait Analysis. IEEE Trans. Hum. Mach. Syst. 2017, 47, 1110–1122. [Google Scholar] [CrossRef]
- Valadão, C.; Caldeira, E.; Bastos-Filho, T.; Frizera-Neto, A.; Carelli, R. A new controller for a smart walker based on human-robot formation. Sensors 2016, 16, 1116. [Google Scholar] [CrossRef] [Green Version]
- Saint-Bauzel, L.; Pasqui, V.; Monteil, I. A reactive robotized interface for lower limb rehabilitation: Clinical results. IEEE Trans. Robot. 2009, 25, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Yang, J.; Okoye, M.O.; Wang, S. Walking assist robot: A novel non-contact abnormal gait recognition approach based on extended set membership filter. IEEE Access 2019, 7, 76741–76753. [Google Scholar] [CrossRef]
- Lopes, S.; Filipe, L.; Rilva, R.; Cruz, A.; Parreira, P.; Couto, F.; Bernardes, R.; Apóstolo, J.; Roseiro, L.; Malça, C. An innovative concept for a walker with a self-locking mechanism using a single mechanical approach. Int. J. Environ. Res. Public Health 2019, 16, 1671. [Google Scholar] [CrossRef] [Green Version]
- Abellanas, A.; Frizera, A.; Ceres, R.; Gallego, J.A. Estimation of gait parameters by measuring upper limb-walker interaction process. Sens. Actuators A Phys. 2010, 162, 276–283. [Google Scholar] [CrossRef]
- Takahara, S.; Jeong, S. Prototype design of robotic mobility aid to assist elderly’s standing-sitting, walking, and wheelchair driving in daily life. In Proceedings of the 2014 14th International Conference on Control, Automation, and Systems, Seoul, Korea, 17 October 2014; pp. 470–473. [Google Scholar]
- Lee, G.; Ohnuma, T.; Chong, N.Y.; Lee, S. Walking intent-based movement control for JAIST active robotic walker. IEEE Trans. Syst. Man Cybern. Syst. 2014, 44, 665–672. [Google Scholar]
- Di, P.; Hasegawa, Y.; Nakagawa, S.; Sekiyama, K.; Fukuda, T.; Huang, J.; Huang, Q. Fall Detection and Prevention Control Using Walking-Aid Cane Robot. IEEE/ASME Trans. Mechatron. 2016, 21, 625–637. [Google Scholar] [CrossRef]
- Kapsalyamov, A.; Jamwal, P.K.; Hussain, S.; Ghayesh, M.H. State of the art lower limb robotic exoskeletons for elderly assistance. IEEE Access 2019, 7, 95075–95086. [Google Scholar] [CrossRef]
- Sierra, M.S.D.; Garzón, M.; Múnera, M.; Cifuentes, C.A. Human–robot–environment interaction interface for smart walker assisted gait: AGoRA walker. Sensors 2019, 19, 2897. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Zhu, Z.; Liu, M.; Zhao, C.; Zhao, Y.; Pan, J.; Wang, Z.; Wu, C. A smart robotic walker with intelligent close-proximity interaction capabilities for elderly mobility safety. Front. Neurorobot. 2020, 14, 575889. [Google Scholar] [CrossRef]
- Wan, X.; Yamada, Y. Changes in the determinism of the gait dynamics with the intervention of a robotic walker. Appl. Sci. 2020, 10, 4939. [Google Scholar] [CrossRef]
- Morone, G.; Annicchianco, R.; Losa, M.; Federici, A.; Paolucci, S.; Caltagirone, A. Overground walking training with the i-Walker, a robotic se-assistive device, enhances balance in patients with subacute: A randomized controlled trial. J. Neuroeng. Rehabil. 2016, 13, 47. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, F.; Divan, S.; Guerrero, C.; Zenatti, F.; Guidolin, R.; Palopoli, L.; Fontanelli, D. Human-robot interaction analysis for a smart walker for elderly: The ACANTO interactive guidance system. Int. J. Soc. Robot. 2020, 12, 479–492. [Google Scholar] [CrossRef]
- Garrote, L.; Paulo, J.; Nunes, U.J. Reinforcement learning aided robot-assisted navigation: A unity and RRT two-stage approach. Int. J. Soc. Robot. 2020, 12, 689–707. [Google Scholar] [CrossRef]
- Han, H.; Zhang, X.; Mu, X. An approach for fuzzy control of elderly-assistant and walking-assistant robot. In Proceedings of the 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI) 2017, Jeju, Korea, 28 June–1 July 2017; pp. 263–267. [Google Scholar]
- Sahoo, N.; Lin, H.-W.; Chang, Y.-H. Design and implementation of a walking stick aid for visually challenged people. Sensors 2019, 19, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, S.-Y.; Sahoo, N.; Lin, H.-W.; Chang, Y.-H. Predictive maintenance with sensor data analytics on a Raspberry Pi-based experimental platform. Sensors 2019, 19, 3884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robot Operating System. Available online: http://wiki.ros.org (accessed on 18 June 2019).
Controller Output | ||||||
---|---|---|---|---|---|---|
v | PL | PS | ZO | NS | NL | |
NL | PL | PS | PL | NS | ZO | |
NS | PL | PS | PS | ZO | NL | |
ZO | PL | PS | ZO | NS | NL | |
PS | PL | ZO | NS | NS | NL | |
PL | ZO | PS | NL | NS | NL |
Posture | ||||
---|---|---|---|---|
L | M | S | ||
L | c.n.m | l.f. | b.f. | |
M | n.w. | n.w. | b.f. | |
S | l.o. | l.o. | s.s. |
Posture | ||||
---|---|---|---|---|
L | M | S | ||
L | c.n.m | l.f. | b.f. | |
M | n.w. | n.w. | l.f. | |
S | l.o. | l.o. | s.s. |
Posture | ||||
---|---|---|---|---|
L | M | S | ||
L | l.f. | l.f. | b.f. | |
M | n.w. | n.w. | l.f. | |
S | l.o. | l.o. | s.s. |
Controller Output | ||||||
---|---|---|---|---|---|---|
v | PL | PS | ZO | NS | NL | |
ZO | NL | NS | NS | NS | NL | |
PS | PS | NS | NL | NL | NL | |
PL | PS | ZO | NL | NL | NL |
Controller Output | ||||||
---|---|---|---|---|---|---|
v | PL | PS | ZO | NS | NL | |
ZO | PL | PL | PS | ZO | NS | |
PS | PL | PL | ZO | ZO | NS | |
PL | ZO | ZO | ZO | ZO | NS |
Controller Output | ||||||
---|---|---|---|---|---|---|
v | PL | PS | ZO | NS | NL | |
ZO | PL | PL | PS | ZO | NS | |
PS | PL | PS | ZO | ZO | NS | |
PL | ZO | ZO | NS | ZO | NS |
Fuzzy Controller | |
---|---|
Slope | setting as Figure 6 |
Velocity | |
Output | setting as Figure 7 |
Posture judgment | |
Grip force , | L: >80 lbf; M: 30~80 lbf; S: <30 lbf |
Experimental results | |
Downhill | shown as Figure 11, Figure 12 |
Flat surface | shown as Figure 13, Figure 14 |
Uphill | shown as Figure 15, Figure 16 |
Age | 25 | 26 | 24 | 27 | 23 | 25 | 27 | 25 | 23 | 23 | 51 | 61 |
Gender | M | M | M | F | M | M | M | F | M | M | M | M |
Height (cm) | 174 | 183 | 165 | 155 | 174 | 172 | 163 | 159 | 170 | 169 | 176 | 175 |
Weight (kg) | 70 | 65 | 75 | 60 | 83 | 71 | 52 | 53 | 60 | 83 | 85 | 86 |
Timestamp | Sub plot | Grip force | Posture | Control remedy |
13 s | 4th | = M, = M | Normal walking | NS → ZO |
| ||||
Timestamp | Sub plot | Grip force | Posture | Control remedy |
18 s | 5th | = M, = S | Leaning forward | NS → NL |
|
Timestamp | Sub plot | Grip force | Posture | Control remedy |
5 s | 1st | = M, = M | Normal walking | ZO → PS |
| ||||
Timestamp | Sub plot | Grip force | Posture | Control remedy |
11 s | 3rd | = M, = S | Leaning forward | ZO → NS |
|
Timestamp | Sub plot | Grip force | Posture | Control remedy |
2 s~3 s | 1st, 2nd | = S, = S | Standstill → n.w. | ZO → PS |
| ||||
Timestamp | Sub plot | Grip force | Posture | Control remedy |
7 s | 4th | = M, = L | Normal walking | NS → NL |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.-H.; Sahoo, N.; Chen, J.-Y.; Chuang, S.-Y.; Lin, H.-W. ROS-Based Smart Walker with Fuzzy Posture Judgement and Power Assistance. Sensors 2021, 21, 2371. https://doi.org/10.3390/s21072371
Chang Y-H, Sahoo N, Chen J-Y, Chuang S-Y, Lin H-W. ROS-Based Smart Walker with Fuzzy Posture Judgement and Power Assistance. Sensors. 2021; 21(7):2371. https://doi.org/10.3390/s21072371
Chicago/Turabian StyleChang, Yeong-Hwa, Nilima Sahoo, Jing-Yuan Chen, Shang-Yi Chuang, and Hung-Wei Lin. 2021. "ROS-Based Smart Walker with Fuzzy Posture Judgement and Power Assistance" Sensors 21, no. 7: 2371. https://doi.org/10.3390/s21072371
APA StyleChang, Y. -H., Sahoo, N., Chen, J. -Y., Chuang, S. -Y., & Lin, H. -W. (2021). ROS-Based Smart Walker with Fuzzy Posture Judgement and Power Assistance. Sensors, 21(7), 2371. https://doi.org/10.3390/s21072371