Tracking by Risky Particle Filtering over Sensor Networks
<p>Mean distance error (MDE) performance comparison between particle filtering (PF) and minimax PF (MPF). Three hundred runs were performed with 1000 particles, where <span class="html-italic">M</span>, <math display="inline"> <semantics> <msub> <mi>S</mi> <mi>S</mi> </msub> </semantics> </math>, and <math display="inline"> <semantics> <msub> <mi>S</mi> <mi>L</mi> </msub> </semantics> </math> denote the number of sensors, the scenario of the small state noise variance, and the scenario of the large state noise variance, respectively.</p> "> Figure 2
<p>Mean-risk over 300 runs with 1000 particles based on Equation (<a href="#FD20-sensors-20-03109" class="html-disp-formula">20</a>) for PF and MPF. Results regarding only <math display="inline"> <semantics> <msub> <mi>r</mi> <mi>x</mi> </msub> </semantics> </math> are shown, and those regarding <math display="inline"> <semantics> <msub> <mi>r</mi> <mi>y</mi> </msub> </semantics> </math> showed similar results. Legend: line style (dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: PF; red: MPF).</p> "> Figure 3
<p>Mean-variance of the weights of particles over 300 runs with 1000 particles for PF and MPF. These results are associated with the results of MDE and mean-risk of <a href="#sensors-20-03109-f001" class="html-fig">Figure 1</a> and <a href="#sensors-20-03109-f002" class="html-fig">Figure 2</a>. Legend: line style (dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: PF; red: MPF).</p> "> Figure 4
<p>Mean square error of distance (MSED) performance comparison between auxiliary-PF (APF) and minimax APF (MAPF). Three hundred runs were performed with 1000 particles, where <span class="html-italic">M</span>, <math display="inline"> <semantics> <msub> <mi>S</mi> <mi>S</mi> </msub> </semantics> </math>, <math display="inline"> <semantics> <msub> <mi>S</mi> <mi>L</mi> </msub> </semantics> </math> denote the number of sensors, the scenario of the small state noise variance, the scenario of the large state noise variance, respectively. Comparison with Cramér-Rao lower bound was also shown, as derived in the <a href="#app1-sensors-20-03109" class="html-app">Appendix A</a>. Legend: line style (dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: APF; red: MAPF; black: CRB).</p> "> Figure 5
<p>Mean-risk over 300 runs with 1000 particles based on Equation (<a href="#FD20-sensors-20-03109" class="html-disp-formula">20</a>) for APF and MAPF. Results regarding only <math display="inline"> <semantics> <msub> <mi>r</mi> <mi>x</mi> </msub> </semantics> </math> are shown, and those regarding <math display="inline"> <semantics> <msub> <mi>r</mi> <mi>y</mi> </msub> </semantics> </math> showed similar results. Legend: line style (dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: APF; red: MAPF).</p> "> Figure 6
<p>Mean-variance of the weights of particles over 300 runs with 1000 particles for APF and MAPF. These results are associated with the results of mean square error of distance (MSED) and mean-risk of <a href="#sensors-20-03109-f004" class="html-fig">Figure 4</a> and <a href="#sensors-20-03109-f005" class="html-fig">Figure 5</a>. Legend: line style (dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: APF; red: MAPF).</p> "> Figure 7
<p>Mean distance error (MDE) performance comparison between regularized PF (RPF) and minimax RPF (MRPF). Three hundred runs were performed with 1000 particles, where <span class="html-italic">M</span>, <math display="inline"> <semantics> <msub> <mi>S</mi> <mi>S</mi> </msub> </semantics> </math>, and <math display="inline"> <semantics> <msub> <mi>S</mi> <mi>L</mi> </msub> </semantics> </math> denote the number of sensors, the scenario of the small state noise variance, and the scenario of the large state noise variance, respectively.</p> "> Figure 8
<p>Mean-risk over 300 runs with 1000 particles based on Equation (<a href="#FD20-sensors-20-03109" class="html-disp-formula">20</a>) for RPF and MRPF. Results regarding only <math display="inline"> <semantics> <msub> <mi>r</mi> <mi>x</mi> </msub> </semantics> </math> are shown, and those regarding <math display="inline"> <semantics> <msub> <mi>r</mi> <mi>y</mi> </msub> </semantics> </math> showed similar results. Legend: line style (dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: RPF; red: MRPF).</p> "> Figure 9
<p>Mean-variance of the weights of particles over 300 runs with 1000 particles for RPF and MRPF. These results are associated with the results of MDE and mean-risk of <a href="#sensors-20-03109-f007" class="html-fig">Figure 7</a> and <a href="#sensors-20-03109-f008" class="html-fig">Figure 8</a>. Legend: line style (dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: RPF; red: MRPF).</p> "> Figure 10
<p>Mean distance error (MDE) performance comparison between Kullback–Leibler divergence-PF (KLDPF) and minimax KLDPF (MKLDPF). Three hundred runs were performed with 1000 particles, where <span class="html-italic">M</span>, <math display="inline"> <semantics> <msub> <mi>S</mi> <mi>S</mi> </msub> </semantics> </math>, and <math display="inline"> <semantics> <msub> <mi>S</mi> <mi>L</mi> </msub> </semantics> </math> denote the number of sensors, the scenario of the small state noise variance, and the scenario of the large state noise variance, respectively.</p> "> Figure 11
<p>Mean-risk over 300 runs with 1000 particles based on Equation (<a href="#FD20-sensors-20-03109" class="html-disp-formula">20</a>) for KLDPF and MKLDPF. Results regarding only <math display="inline"> <semantics> <msub> <mi>r</mi> <mi>x</mi> </msub> </semantics> </math> are shown, and those regarding <math display="inline"> <semantics> <msub> <mi>r</mi> <mi>y</mi> </msub> </semantics> </math> showed similar results. Legend: line style (dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: KLDPF; red: MKLDPF).</p> "> Figure 12
<p>Mean-variance of the weights of particles over 300 runs with 1000 particles for KLDPF and MKLDPF. These results are associated with the results of MDE and mean-risk of <a href="#sensors-20-03109-f010" class="html-fig">Figure 10</a> and <a href="#sensors-20-03109-f011" class="html-fig">Figure 11</a>. Legend: line style (dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: KLDPF; red: MKLDPF).</p> "> Figure 13
<p>Mean distance error (MDE) performance comparison between Gaussian-PF (GPF) and minimax GPF (MGPF). Three hundred runs were performed with 1000 particles, where <span class="html-italic">M</span>, <math display="inline"> <semantics> <msub> <mi>S</mi> <mi>S</mi> </msub> </semantics> </math>, <math display="inline"> <semantics> <msub> <mi>S</mi> <mi>L</mi> </msub> </semantics> </math> denote the number of sensors, the scenario of the small state noise variance, the scenario of the large state noise variance, respectively. Legend: line style (dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: GPF; red: MGPF).</p> "> Figure 14
<p>Mean-risk over 300 runs with 1000 particles based on Equation (<a href="#FD20-sensors-20-03109" class="html-disp-formula">20</a>) for GPF and MGPF. Results regarding only <math display="inline"> <semantics> <msub> <mi>r</mi> <mi>x</mi> </msub> </semantics> </math> are shown, and those regarding <math display="inline"> <semantics> <msub> <mi>r</mi> <mi>y</mi> </msub> </semantics> </math> showed similar results. Legend: line style (dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: GPF; red: MGPF).</p> "> Figure 15
<p>Mean-variance of the weights of particles over 300 runs with 1000 particles for GPF and MGPF. These results are associated with the results of MDE and mean-risk of <a href="#sensors-20-03109-f013" class="html-fig">Figure 13</a> and <a href="#sensors-20-03109-f014" class="html-fig">Figure 14</a>. Legend: line style (dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: GPF; red: MGPF).</p> "> Figure 16
<p>Mean-elapsed time for the one time step over 300 runs with 1000 particles for all PFs. Note that there is no resampling process required for GPF.</p> ">
Abstract
:1. Introduction
2. Problem Formulation
2.1. Dynamic State Model
2.2. Measurement Model
3. Proposed Approach
Algorithm 1: The minimax PF algorithm for the standard PF in wireless sensor networks |
□ Initialization |
for , where N is the number of particles. |
1. Random generation of initial particles: |
, and assign initial weights: . |
end |
□ Sequential update |
for , where T is the total time steps. |
for , |
2. Propagation of particles via a proposal density: |
end |
for , |
3. Computing the weights of particles: |
assuming the proposal density, |
. |
end |
for , |
4. Normalization. |
5. Selecting the minimum weight among M weights. |
end |
6. Normalization of the weights: |
7. Computing the estimate at the time step t: |
8. Resampling N particles. |
end |
4. Performance Assessment
4.1. Standard Particle Filter
4.2. Auxiliary Particle Filter (APF)
4.3. Regularized PF (RPF)
4.4. Kullback-Leibler Divergence PF (KLDPF)
4.5. Gaussian PF (GPF)
4.6. Processing Time
4.7. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Derivation of Cramér-Rao Lower Bound
References
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 2017, 4, 1125–1142. [Google Scholar] [CrossRef]
- Kuutti, S.; Fallah, S.; Katsaros, K.; Dianati, M.; Mccullough, F.; Mouzakitis, A. A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications. IEEE Internet Things J. 2018, 5, 829–846. [Google Scholar] [CrossRef]
- Ramnath, S.; Javali, A.; Narang, B.; Mishra, P.; Routray, S.K. IoT based localization and tracking. In Proceedings of the 2017 International Conference on IoT and Application (ICIOT), Nagapattinam, India, 19–20 May 2017; pp. 1–4. [Google Scholar]
- Paul, A.; Sato, T. Localization in wireless sensor networks: A survey on algorithms, measurement techniques, applications and challenges. J. Sens. Actuator Netw. 2017, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Yoo, S.J. Optimal UAV path planning: Sensing data acquisition over IoT sensor networks using multi-objective bio-inspired algorithms. IEEE Access 2018, 6, 13671–13684. [Google Scholar] [CrossRef]
- Wu, P.; Su, S.; Zuo, Z.; Guo, X.; Sun, B.; Wen, X. Time Difference of Arrival (TDoA) Localization Combining Weighted Least Squares and Firefly Algorithm. Sensors 2019, 19, 2554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, B.; Xu, X.; Zhang, T. Robust time-difference-of-arrival (TDOA) localization using weighted least squares with cone tangent plane constraint. Sensors 2018, 18, 778. [Google Scholar]
- Chen, Z.; Wang, J. ES-DPR: A DOA-Based Method for Passive Localization in Indoor Environments. Sensors 2019, 19, 2482. [Google Scholar] [CrossRef] [Green Version]
- Aboutanios, E.; Hassanien, A.; El-Keyi, A.; Nasser, Y.; Vorobyov, S.A. Advances in DOA Estimation and Source Localization. Int. J. Antennas Propag. 2017, 2017, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Ying, J.; Pahlavan, K. Precision of RSS-Based Localization in the IoT. Int. J. Wireless Inf. Netw. 2019, 26, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Tomic, S.; Beko, M.; Dinis, R. RSS-based localization in wireless sensor networks using convex relaxation: Noncooperative and cooperative schemes. IEEE Trans. Veh. Technol. 2014, 64, 2037–2050. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Chong, J.W. An efficient TDOA-based localization algorithm without synchronization between base stations. Int. J. Distrib. Sens. Netw. 2015, 11, 832351. [Google Scholar] [CrossRef] [Green Version]
- Sari, R.; Zayyani, H. RSS localization using unknown statistical path loss exponent model. IEEE Commun. Lett. 2018, 22, 1830–1833. [Google Scholar] [CrossRef]
- Achroufene, A.; Amirat, Y.; Chibani, A. RSS-based indoor localization using belief function theory. IEEE Trans. Autom. Sci. Eng. 2018, 16, 1163–1180. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, C.; Liu, R.; Liang, G.; Zhang, H.; Ur Rehman, S. Moving object localization based on UHF RFID phase and laser clustering. Sensors 2018, 18, 825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Zhang, Y.; Xue, W. Unsupervised indoor localization based on Smartphone Sensors, iBeacon and Wi-Fi. Sensors 2018, 18, 1378. [Google Scholar] [CrossRef] [Green Version]
- Mahapatra, R.K.; Shet, N. Localization based on RSSI exploiting gaussian and averaging filter in wireless sensor network. Arabian J. Mater. Sci. Eng. 2018, 43, 4145–4159. [Google Scholar] [CrossRef]
- Sun, W.; Xue, M.; Yu, H.; Tang, H.; Lin, A. Augmentation of fingerprints for indoor WiFi localization based on Gaussian process regression. IEEE Trans. Veh. Technol. 2018, 67, 10896–10905. [Google Scholar] [CrossRef]
- Liu, J.S.; Chen, R. Sequential Monte Carlo methods for dynamic systems. J. Am. Stat. Assoc. 1998, 93, 1032–1044. [Google Scholar] [CrossRef]
- Guarniero, P.; Johansen, A.M.; Lee, A. The iterated auxiliary particle filter. J. Am. Stati. Assoc. 2017, 112, 1636–1647. [Google Scholar] [CrossRef]
- Murangira, A.; Musso, C.; Dahia, K. A mixture regularized rao-blackwellized particle filter for terrain positioning. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 1967–1985. [Google Scholar] [CrossRef]
- Fox, D. Adapting the sample size in particle filters through KLD-sampling. Int. J. Rob. Res. 2003, 22, 985–1003. [Google Scholar] [CrossRef]
- Li, T.; Sun, S.; Sattar, T.P. Adapting sample size in particle filters through KLD-resampling. Electron. Lett 2013, 49, 740–742. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Peng, D.; Xu, C.; Zhang, W.; Shen, J. Adaptive particle filter based on Kullback–Leibler distance for underwater terrain aided navigation with multi-beam sonar. IET Radar Sonar Navig. 2018, 12, 433–441. [Google Scholar] [CrossRef]
- Kotecha, J.H.; Djuric, P.M. Gaussian particle filtering. IEEE Trans. Signal Process. 2003, 51, 2592–2601. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Hong, D. Gaussian particle filtering approach for carrier frequency offset estimation in OFDM systems. IEEE Signal Process Lett. 2013, 20, 367–370. [Google Scholar] [CrossRef]
- Míguez, J.; Bugallo, M.F.; Djurić, P.M. A new class of particle filters for random dynamic systems with unknown statistics. EURASIP J. Adv. Sign. Proces. 2004, 2004, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Hong, D. Cost reference particle filtering approach to high-bandwidth tilt estimation. IEEE Trans. Ind. Electron. 2010, 57, 3830–3839. [Google Scholar] [CrossRef]
- Lim, J. Particle filtering for nonlinear dynamic state systems with unknown noise statistics. Nonlinear Dyn. 2014, 78, 1369–1388. [Google Scholar] [CrossRef]
- Arulampalam, M.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Bolic, M.; Djuric, P.M. Resampling methods for particle filtering: Classification, implementation, and strategies. IEEE Signal Process Mag. 2015, 32, 70–86. [Google Scholar] [CrossRef]
- Li, T.C.; Villarrubia, G.; Sun, S.d.; Corchado, J.M.; Bajo, J. Resampling methods for particle filtering: Identical distribution, a new method, and comparable study. Front. Inf. Technol. Electron. Eng. 2015, 16, 969–984. [Google Scholar] [CrossRef]
- Lim, J.; Kim, H.S.; Park, H.M. Minimax particle filtering for tracking a highly maneuvering target. Int. J. Robust Nonlinear Control 2020, 30, 636–651. [Google Scholar] [CrossRef]
- Lim, J.; Kim, H.S.; Park, H.M. Interactive-Multiple-Model Algorithm based on Minimax Particle Filtering. IEEE Signal Process Lett. 2020, 27, 36–40. [Google Scholar] [CrossRef]
- Gustafsson, F.; Gunnarsson, F.; Bergman, N.; Forssell, U.; Jansson, J.; Karlsson, R.; Nordlund, P.J. Particle filters for positioning, navigation, and tracking. IEEE Trans. Signal Process. 2002, 50, 425–437. [Google Scholar] [CrossRef] [Green Version]
- Djuric, P.M.; Vemula, M.; Bugallo, M.F. Target tracking by particle filtering in binary sensor networks. IEEE Trans. Signal Process. 2008, 56, 2229–2238. [Google Scholar] [CrossRef]
- Lim, J. A target tracking based on bearing and range measurement with unknown noise statistics. J. Electr. Eng. Technol. 2013, 8, 1520–1529. [Google Scholar] [CrossRef] [Green Version]
- Patwari, N.; Hero III, A.O.; Perkins, M.; Correal, N.S.; O’Dea, R.J. Relative location estimation in wireless sensor networks. IEEE Trans. Signal Process. 2003, 51, 2137–2148. [Google Scholar] [CrossRef] [Green Version]
- Pitt, M.K.; Shephard, N. Filtering via simulation: Auxiliary particle filters. J. Am. Stat. Assoc. 1999, 94, 590–599. [Google Scholar] [CrossRef]
- Lim, J. Performance degradation due to particle impoverishment in particle filtering. J. Electr. Eng. Technol. 2014, 9, 2107–2113. [Google Scholar] [CrossRef] [Green Version]
- Kay, S.M. Fundamentals of Statistical Signal Processing; Estimation Theory; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1993; Volume 1. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, J.; Park, H.-M. Tracking by Risky Particle Filtering over Sensor Networks. Sensors 2020, 20, 3109. https://doi.org/10.3390/s20113109
Lim J, Park H-M. Tracking by Risky Particle Filtering over Sensor Networks. Sensors. 2020; 20(11):3109. https://doi.org/10.3390/s20113109
Chicago/Turabian StyleLim, Jaechan, and Hyung-Min Park. 2020. "Tracking by Risky Particle Filtering over Sensor Networks" Sensors 20, no. 11: 3109. https://doi.org/10.3390/s20113109
APA StyleLim, J., & Park, H.-M. (2020). Tracking by Risky Particle Filtering over Sensor Networks. Sensors, 20(11), 3109. https://doi.org/10.3390/s20113109