Field Evaluation of Low-Cost Particulate Matter Sensors for Measuring Wildfire Smoke
"> Figure 1
<p>Box plots for (<b>a</b>) reference PM<sub>2.5</sub> hourly concentrations (<b>b</b>) RH and (<b>c</b>) temperature at each fire from the reference monitor. Whiskers denote the 10th and 90th percentiles, symbols represent data outside of 1.5 times the interquartile range. Natchez RH and temperature estimated from corrected PA and AQY measurements.</p> "> Figure 2
<p>Scatter plot of sensor hourly averages compared to the reference for smoke impacted times. Red lines show linear least-squares fit; black lines show a one-to-one relationship. Columns correspond to the sensor type and rows correspond to the measurement location. Note the varying concentration range measured at each location.</p> "> Figure 3
<p>Bias for the AIRS ambient and smoke corrected sensor measurements for the (<b>a</b>) AQY (<b>b</b>) PA and (<b>c</b>) RAMP. Box plots of the hourly bias values for different correction equations for the (<b>d</b>) AQY (<b>e</b>) PA and (<b>f</b>) RAMP. ‘Smoke’ correction is from all smoke impacted sites, ‘AIRS’ correction is for ambient in NC, PA corrections from the literature are from smoke impacted Delp and Singer [<a href="#B23-sensors-20-04796" class="html-bibr">23</a>], Lane Regional Air Programs Association (LRAPA) [<a href="#B31-sensors-20-04796" class="html-bibr">31</a>], Mehadi et al. [<a href="#B7-sensors-20-04796" class="html-bibr">7</a>], Sayahi et al. [<a href="#B8-sensors-20-04796" class="html-bibr">8</a>], and Stampfer et al. [<a href="#B32-sensors-20-04796" class="html-bibr">32</a>]. ‘-1’ and ‘-atm’ refer to the data source the correction was applied to and was based off current understanding of the data source used to generate each correction.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments
2.2. Wildfire Deployments
2.3. Data Analysis
3. Results and Discussion
3.1. Evaluation of Meteorological Measurements
3.2. Evaluation of PM2.5 Measurement—Ambient
3.3. Evaluation of PM2.5 Measurement–Smoke Impacted
3.4. Factors Impacting Sensor Performance
3.4.1. Sensor Performance—Accuracy, Precision, Linearity
3.4.2. Smoke Specific Correction
3.4.3. Impact of Meteorological Conditions
3.4.4. Impact of Reference Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
Appendix A. Data Analysis Formulas
References
- Cascio, W.E. Wildland fire smoke and human health. Sci. Total Environ. 2018, 624, 586–595. [Google Scholar] [CrossRef]
- Wildfire Smoke: A Guide for Public Health Officials; United States Environmental Protection Agency: Washington, DC, USA, 2019.
- Jaffe, D.A.; O’Neill, S.M.; Larkin, N.K.; Holder, A.L.; Peterson, D.L.; Halofsky, J.E.; Rappold, A.G. Wildfire and prescribed burning impacts on air quality in the United States. J. Air Waste Manag. Assoc. 2020. [Google Scholar] [CrossRef] [PubMed]
- Wildland Fire Air Quality Response Program. Available online: https://wildlandfiresmoke.net (accessed on 26 May 2020).
- Kelleher, S.; Quinn, C.; Miller-Lionberg, D.; Volckens, J. A low-cost particulate matter (PM2.5) monitor for wildland fire smoke. Atmos. Meas. Tech. 2018, 11, 1087–1097. [Google Scholar] [CrossRef] [Green Version]
- News, C. California wildfires: Nearly 10,000 unaccounted for in Camp Fire. Available online: https://www.cbsnews.com/live-news/fires-in-california-camp-woolsey-paradise-wildfire-evacuations-death-toll-map-2018-11-18-latest/ (accessed on 26 May 2020).
- Mehadi, A.; Moosmüller, H.; Campbell, D.E.; Ham, W.; Schweizer, D.; Tarnay, L.; Hunter, J. Laboratory and field evaluation of real-time and near real-time PM2.5 smoke monitors. J. Air Waste Manag. Assoc. 2020, 70, 158–179. [Google Scholar] [CrossRef] [PubMed]
- Sayahi, T.; Butterfield, A.; Kelly, K.E. Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors. Environ. Pollut. 2019, 245, 932–940. [Google Scholar] [CrossRef]
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.; et al. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef]
- Rai, A.C.; Kumar, P.; Pilla, F.; Skouloudis, A.N.; Di Sabatino, S.; Ratti, C.; Yasar, A.; Rickerby, D. End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci. Total Environ. 2017, 607–608, 691–705. [Google Scholar] [CrossRef] [Green Version]
- Hapidin, D.A.; Saputra, C.; Maulana, D.S.; Munir, M.M.; Khairurrijal, K. Aerosol chamber characterization for commercial particulate matter (PM) sensor evaluation. Aerosol Air Qual. Res. 2019, 19, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Manikonda, A.; Zíková, N.; Hopke, P.K.; Ferro, A.R. Laboratory assessment of low-cost PM monitors. J. Aerosol Sci. 2016, 102, 29–40. [Google Scholar] [CrossRef]
- Sousan, S.; Koehler, K.; Thomas, G.; Park, J.H.; Hillman, M.; Halterman, A.; Peters, T.M. Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols. Aerosol Sci. Technol. 2016, 50, 462–473. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Young, M.; Chen, J.; Liu, J.; May, A.; Clark, J.D. Examining the functional range of commercially available low-cost airborne particle sensors and consequences for monitoring of indoor air quality in residences. Indoor Air 2020, 30, 213–234. [Google Scholar] [CrossRef] [PubMed]
- Badura, M.; Batog, P.; Drzeniecka-Osiadacz, A.; Modzel, P. Evaluation of low-cost sensors for ambient PM2.5 monitoring. J. Sens. 2018, 2018, 16. [Google Scholar] [CrossRef] [Green Version]
- Jayaratne, R.; Liu, X.; Ahn, K.-H.; Asumadu-Sakyi, A.; Fisher, G.; Gao, J.; Mabon, A.; Mazaheri, M.; Mullins, B.; Nyaku, M.; et al. Low-cost PM2.5 sensors: An assessment of their suitability for various applications. Aerosol Air Qual. Res. 2020, 20, 520–532. [Google Scholar] [CrossRef]
- Li, J.; Mattewal, S.K.; Patel, S.; Biswas, P. Evaluation of nine low-cost-sensor-based particulate matter monitors. Aerosol Air Qual. Res. 2020, 20, 254–270. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Young, M.; Wickey, M.; May, A.; Clark, J.D. Response of eight low-cost particle sensors and consumer devices to typical indoor emission events in a real home (ASHRAE 1756-RP). Sci. Technol. Built Environ. 2020, 26, 237–249. [Google Scholar] [CrossRef]
- Zamora, M.L.; Xiong, F.L.Z.; Gentner, D.; Kerkez, B.; Kohrman-Glaser, J.; Koehler, K. Field and laboratory evaluations of the low-cost plantower particulate matter sensor. Environ. Sci. Technol. 2019, 53, 838–849. [Google Scholar] [CrossRef]
- Jayaratne, R.; Liu, X.T.; Thai, P.; Dunbabin, M.; Morawska, L. The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog. Atmos. Meas. Tech. 2018, 11, 4883–4890. [Google Scholar] [CrossRef] [Green Version]
- Magi, B.I.; Cupini, C.; Francis, J.; Green, M.; Hauser, C. Evaluation of PM2.5 measured in an urban setting using a low-cost optical particle counter and a federal equivalent method beta attenuation monitor. Aerosol Sci. Technol. 2019. [Google Scholar] [CrossRef]
- Malings, C.; Tanzer, R.; Hauryliuk, A.; Saha, P.K.; Robinson, A.L.; Presto, A.A.; Subramanian, R. Fine particle mass monitoring with low-cost sensors: Corrections and long-term performance evaluation. Aerosol Sci. Technol. 2020, 54, 160–174. [Google Scholar] [CrossRef]
- Delp, W.W.; Singer, B.C. Wildfire smoke adjustment factors for low-cost and professional PM2.5 monitors with optical sensors. Sensors 2020, 20, 3683. [Google Scholar] [CrossRef]
- Available online: https://www.epa.gov/air-research/winners-wildland-fire-sensors-challenge-develop-air-monitoring-system-prototypes (accessed on 26 May 2020).
- Tryner, J.; L’Orange, C.; Mehaffy, J.; Miller-Lionberg, D.; Hofstetter, J.C.; Wilson, A.; Volckens, J. Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers. Atmos. Environ. 2020, 220, 117067. [Google Scholar] [CrossRef]
- Revisions to Ambient Air Monitoring Regulations. In 71 FR 61235; USEPA (Ed.) USEPA: Washington, DC, USA, 2006. [Google Scholar]
- Trent, A. Evaluation of Real-Time Smoke Monitors; 0325-2834-MTDC; United States Forest Service: Washington, DC, USA, 2003.
- Andrade, J.M.; Estévez-Pérez, M.G. Statistical comparison of the slopes of two regression lines: A tutorial. Anal. Chim. Acta 2014, 838, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Feenstra, B.; Papapostolou, V.; Hasheminassab, S.; Zhang, H.; Boghossian, B.D.; Cocker, D.; Polidori, A. Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site. Atmos. Environ. 2019, 216, 116946. [Google Scholar] [CrossRef]
- Kim, S.; Park, S.; Lee, J. Evaluation of performance of inexpensive laser based PM2.5 sensor monitors for typical indoor and outdoor hotspots of south korea. Appl. Sci. 2019, 9, 1947. [Google Scholar] [CrossRef] [Green Version]
- LRAPA PurpleAir Monitor Correction Factor History. Available online: https://www.lrapa.org/DocumentCenter/View/4147/PurpleAir-Correction-Summary (accessed on 26 May 2020).
- Stampfer, O.; Austin, E.; Ganuelas, T.; Fiander, T.; Seto, E.; Karr, C.J. Use of low-cost PM monitors and a multi-wavelength aethalometer to characterize PM2.5 in the Yakama Nation reservation. Atmos. Environ. 2020, 224, 117292. [Google Scholar] [CrossRef]
- McMeeking, G.R.; Kreidenweis, S.M.; Baker, S.; Carrico, C.M.; Chow, J.C.; Collett, J.L., Jr.; Hao, W.M.; Holden, A.S.; Kirchstetter, T.W.; Malm, W.C.; et al. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Levin, E.J.T.; McMeeking, G.R.; Carrico, C.M.; Mack, L.E.; Kreidenweis, S.M.; Wold, C.E.; Moosmüller, H.; Arnott, W.P.; Hao, W.M.; Collett, J.L., Jr.; et al. Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME). J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Janhäll, S.; Andreae, M.O.; Pöschl, U. Biomass burning aerosol emissions from vegetation fires: Particle number and mass emission factors and size distributions. Atmos. Chem. Phys. 2010, 10, 1427–1439. [Google Scholar] [CrossRef] [Green Version]
- Laing, J.R.; Jaffe, D.A.; Hee, J.R. Physical and optical properties of aged biomass burning aerosol from wildfires in Siberia and the Western USA at the Mt. Bachelor Observatory. Atmos. Chem. Phys. 2016, 16, 15185–15197. [Google Scholar] [CrossRef] [Green Version]
- Reid, J.S.; Koppmann, R.; Eck, T.F.; Eleuterio, D.P. A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 799–825. [Google Scholar] [CrossRef] [Green Version]
- Hand, J.L.; Schichtel, B.A.; Malm, W.C.; Frank, N.H. Spatial and temporal trends in PM2.5 organic and elemental carbon across the united states. Adv. Meteorol. 2013, 2013, 367674. [Google Scholar] [CrossRef] [Green Version]
- Hand, J.L.; Schichtel, B.A.; Pitchford, M.; Malm, W.C.; Frank, N.H. Seasonal composition of remote and urban fine particulate matter in the United States. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Jimenez, J.L.; Canagaratna, M.R.; Donahue, N.M.; Prevot, A.S.H.; Zhang, Q.; Kroll, J.H.; DeCarlo, P.F.; Allan, J.D.; Coe, H.; Ng, N.L.; et al. Evolution of organic aerosols in the atmosphere. Science 2009, 326, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Kodros, J.K.; Volckens, J.; Jathar, S.H.; Pierce, J.R. Ambient particulate matter size distributions drive regional and global variability in particle deposition in the respiratory tract. GeoHealth 2018, 2, 298–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrico, C.M.; Prenni, A.J.; Kreidenweis, S.M.; Levin, E.J.T.; McCluskey, C.S.; DeMott, P.J.; McMeeking, G.R.; Nakao, S.; Stockwell, C.; Yokelson, R.J. Rapidly evolving ultrafine and fine mode biomass smoke physical properties: Comparing laboratory and field results. J. Geophys. Res. Atmos. 2016, 121, 5750–5768. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Lowenthal, D.H.; Antony Chen, L.W.; Tropp, R.J.; Park, K.; Magliano, K.A. PM2.5 and PM10 mass measurements in california’s san joaquin valley. Aerosol Sci. Technol. 2006, 40, 796–810. [Google Scholar] [CrossRef] [Green Version]
- Schweizer, D.; Cisneros, R.; Shaw, G. A comparative analysis of temporary and permanent beta attenuation monitors: The importance of understanding data and equipment limitations when creating PM2.5 air quality health advisories. Atmos. Pollut. Res. 2016, 7, 865–875. [Google Scholar] [CrossRef] [Green Version]
Event | Location | Dates | Sensors | Reference Instrument | PM Source |
---|---|---|---|---|---|
AIRS | RTP, NC | 8/8/2018–6/30/2019 | AQY, PA, RAMP | EDM 180 (GRIMM) | Ambient, Prescribed fire |
Natchez Fire | Happy Camp, CA | 8/11–8/29/2018 | AQY, PA | E-BAM (Met One) | Wildfire |
Bald Mt./Pole Creek Fire | Price, UT Dutch John, UT | 9/24–10/1/2018 | AQY, PA | E-SAMPLER (Met One) | Ambient |
Alder Fire | Springville, CA | 10/19–11/27/2018 | RAMP | BAM 1020 (Met One) | Wildfire |
Pinehurst, CA | 10/20–10/27/2018 | AQY, PA, RAMP | BAM 1020 (Met One) | Prescribed fire/ Wildfire | |
Camp Nelson, CA | 10/20–10/27/2018 | RAMP | E-BAM (Met One) | Wildfire |
Sensor | Temperature Collocation Dates | N (hr) | Slope | Intercept | R2 | MBE (°C) | NRMSE (%) | PDavg (%) |
---|---|---|---|---|---|---|---|---|
AQY | 8/9/18–12/3/18 | 1197 | 1.19 | −2.29 | 0.98 * | 1.83 | 12 | 1.1 |
PA | 8/10/18–4/30/19 | 5454 | 0.9 | 7.2 | 0.91 * | 5.23 | 34 | 6.1 |
RAMP | 12/12/18–7/31/19 | 4893 | 1.14 | −0.83 | 0.96 * | 1.36 | 19 | 4.8 |
Sensor | Relative Humidity Collocation Dates | N (hr) | Slope | Intercept | R2 | MBE (%) | NRMSE (%) | PDavg (%) |
---|---|---|---|---|---|---|---|---|
AQY | 8/9/18–12/3/18 | 1197 | 1.12 | −16.9 | 0.95 * | −4.90 | 11 | 11.4 |
PA | 8/10/18–4/30/19 | 4654 | 0.57 | 5.29 | 0.84 * | −24.30 | 37 | 4.0 |
RAMP | 12/12/18–7/31/19 | 4893 | 0.90 | 2.23 | 0.95 * | −4.10 | 10 | 2.2 |
Sensor | PM2.5 Collocation Dates | N (hr) | Slope | Intercept | R2 | MBE (µg/m3) | NRMSE (%) | PDavg (%) |
---|---|---|---|---|---|---|---|---|
AQY | 8/9/18–10/18/19 | 1186 | 0.89 | −0.21 | 0.37 * | −0.01 | 58 | 13.4 |
PA CF = atm | 8/10/18–4/30/19 | 4654 | 1.61 | −1.40 | 0.86 * | 2.89 | 66 | 6.9 |
PA CF = 1 | 8/10/18–4/30/19 | 4654 | 1.63 | −1.51 | 0.86 * | 2.92 | 67 | 6.9 |
RAMP | 12/12/18–7/31/19 | 3041 | 0.88 | 2.45 | 0.92 * | 1.64 | 34 | 6.7 |
Sensor | Location | N (hr) | Slope | Intercept | r2 | MBE (µg/m3) | NRMSE (%) |
---|---|---|---|---|---|---|---|
AQY | AIRS—Ambient | 2815 | 0.84 | −0.14 | 0.45 * | −1.39 | 53 |
AIRS—Prescribed Fire | - | - | - | - | - | - | |
Natchez | 181 | 2.18 | −7.89 | 0.86 * | 63.89 | 146 | |
Pole Creek | 63 | 0.54 | 0.87 | 0.77 * | −1.18 | 45 | |
Alder Pinehurst | 136 | 1.35 | 1.40 | 0.52 * | 5.91 | 82 | |
PA (CF = atm) | AIRS—Ambient | 4750 | 1.61 | −1.46 | 0.87 * | 2.98 | 66 |
AIRS—Prescribed Fire | 10 | 1.61 | −2.49 | 1.00 * | 6.16 | 70 | |
Natchez | 367 | 1.20 | 15.23 | 0.96 * | 32.82 | 44 | |
Pole Creek | 88 | 0.93 | 0.36 | 0.74 * | 0.13 | 50 | |
Alder Pinehurst | 161 | 1.30 | 9.78 | 0.62 * | 13.79 | 117 | |
PA (CF = 1) | AIRS—Ambient | 4750 | 1.63 | −1.58 | 0.87 * | 3.00 | 48 |
AIRS—Prescribed Fire | 10 | 2.44 | −7.97 | 0.99 * | 12.36 | 154 | |
Natchez | 367 | 1.85 | 18.41 | 0.96 * | 91.17 | 125 | |
Pole Creek | 88 | 0.93 | 0.36 | 0.74 * | 0.13 | 50 | |
Alder Pinehurst | 161 | 1.81 | 4.76 | 0.62 * | 15.67 | 145 | |
RAMP | AIRS—Ambient | 3493 | 0.89 | 2.58 | 0.91 * | 1.83 | 37 |
AIRS—Prescribed Fire | 10 | 1.35 | −0.05 | 0.99 * | 4.89 | 15 | |
Natchez | - | - | - | - | - | - | |
Pole Creek | - | - | - | - | - | - | |
Alder Pinehurst | 107 | 0.77 | 6.61 | 0.69 * | 3.69 | 5 | |
Alder Springville | 802 | 1.48 | −2.48 | 0.85 * | 14.47 | 3 |
Sensor | C | β | βT | βRH | Adjusted r2 | MAE (µg/m3) | NRMSE (%) |
---|---|---|---|---|---|---|---|
AQY | 0.90 | 39.4 | 167.1 | ||||
7.56 | 0.41 | 0.90 | 8.90 | 31.0 | |||
13.48 | 0.42 | −0.327 | 0.91 | 8.89 | 30.3 | ||
8.71 | 0.41 | 0.429 | 0.93 | 8.13 | 26.9 | ||
−36.7 | 0.38 | 0.809 | 0.782 | 0.93 | 7.52 | 25.1 | |
PA (cf = atm) | 0.97 | 26.3 | 52.2 | ||||
−7.96 | 0.79 | 0.97 | 7.68 | 18.7 | |||
−16.06 | 0.79 | 0.351 | 0.97 | 7.30 | 16.0 | ||
−1.93 | 0.80 | −0.206 | 0.97 | 7.37 | 16.2 | ||
−13.68 | 0.79 | 0.300 | −0.041 | 0.97 | 7.29 | 16.0 | |
PA (cf = 1) | 0.97 | 66.2 | 143.3 | ||||
−3.21 | 0.51 | 0.97 | 7.61 | 16.9 | |||
−9.43 | 0.51 | 0.270 | 0.97 | 7.49 | 16.6 | ||
3.18 | 0.52 | −0.216 | 0.97 | 7.36 | 16.4 | ||
3.27 | 0.52 | −0.002 | −0.218 | 0.97 | 7.36 | 16.4 | |
RAMP | 0.89 | 15.8 | 80.5 | ||||
−1.38 | 0.57 | 0.89 | 6.40 | 28.3 | |||
−0.94 | 0.57 | 0.164 | 0.90 | 6.27 | 28.0 | ||
−3.16 | 0.56 | −0.063 | 0.90 | 6.28 | 27.7 | ||
−2.54 | 0.57 | 0.135 | −0.028 | 0.90 | 6.22 | 27.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holder, A.L.; Mebust, A.K.; Maghran, L.A.; McGown, M.R.; Stewart, K.E.; Vallano, D.M.; Elleman, R.A.; Baker, K.R. Field Evaluation of Low-Cost Particulate Matter Sensors for Measuring Wildfire Smoke. Sensors 2020, 20, 4796. https://doi.org/10.3390/s20174796
Holder AL, Mebust AK, Maghran LA, McGown MR, Stewart KE, Vallano DM, Elleman RA, Baker KR. Field Evaluation of Low-Cost Particulate Matter Sensors for Measuring Wildfire Smoke. Sensors. 2020; 20(17):4796. https://doi.org/10.3390/s20174796
Chicago/Turabian StyleHolder, Amara L., Anna K. Mebust, Lauren A. Maghran, Michael R. McGown, Kathleen E. Stewart, Dena M. Vallano, Robert A. Elleman, and Kirk R. Baker. 2020. "Field Evaluation of Low-Cost Particulate Matter Sensors for Measuring Wildfire Smoke" Sensors 20, no. 17: 4796. https://doi.org/10.3390/s20174796
APA StyleHolder, A. L., Mebust, A. K., Maghran, L. A., McGown, M. R., Stewart, K. E., Vallano, D. M., Elleman, R. A., & Baker, K. R. (2020). Field Evaluation of Low-Cost Particulate Matter Sensors for Measuring Wildfire Smoke. Sensors, 20(17), 4796. https://doi.org/10.3390/s20174796