Magnetic Field Meter Based on CMR-B-Scalar Sensor for Measurement of Microsecond Duration Magnetic Field Pulses
<p>(<b>a</b>) Resistivity vs. temperature dependences of LSMO films with different Mn contents. <span class="html-italic">MR</span> dependences on magnetic flux density for films with Mn excess <span class="html-italic">y</span> = 1.15 (<b>b</b>) and <span class="html-italic">y</span> = 1.10 (<b>c</b>) contents at various ambient temperatures. Cross-sectional bright-field TEM image of the film with <span class="html-italic">y</span> = 1.10 (<b>d</b>) and <span class="html-italic">y</span> = 1.15 (<b>e</b>).</p> "> Figure 2
<p>Image of the sensors after photolithography (<b>a</b>). Image (<b>b</b>) and cross-sectional drawing (<b>c</b>) of a single sensor.</p> "> Figure 3
<p>(<b>a</b>) Flexible magnetic field probe with length of 25 cm and wire diameter of 1 mm. (<b>b</b>) Rigid magnetic field probe in plastic housing with diameter of 3 mm.</p> "> Figure 4
<p>The block diagram of the first version of the magnetic field meter.</p> "> Figure 5
<p>Circuit diagrams of the sensor’s signal amplifier and interference protection circuit of the first version meter. The resistors with the asterisk (∗) are chosen depending on the sensor resistance. The amplifier and protection circuit are located in a separate unit (see <a href="#sensors-25-01640-f004" class="html-fig">Figure 4</a>).</p> "> Figure 6
<p>Circuit diagrams of interference protection circuit and bipolar pulsed voltage supply source of the first version of the meter. The bipolar pulse generator and input protection circuit are located in the measurement unit (see <a href="#sensors-25-01640-f004" class="html-fig">Figure 4</a>).</p> "> Figure 7
<p>The first version of the magnetic field meter.</p> "> Figure 8
<p>The block diagram of the second version of the pulsed magnetic field meter.</p> "> Figure 9
<p>Circuit diagrams of interference protection circuit, bipolar pulsed voltage supply source, and sensor signal amplifier of the second version of the meter. The resistors with the asterisk (∗) are chosen depending on the sensor resistance. The input protection circuit, signal amplifier, and bipolar pulse generator are located in the measurement unit (see <a href="#sensors-25-01640-f008" class="html-fig">Figure 8</a>).</p> "> Figure 10
<p>Second version of the measurement unit of the magnetic field meter: (<b>a</b>) front side; (<b>b</b>) rear side.</p> "> Figure 11
<p>Magnetic field meter and picture of main window of a personal computer interface.</p> "> Figure 12
<p>Transients of bipolar pulsed supply voltage across the sensor for the first (<b>a</b>,<b>c</b>) and second (<b>b</b>,<b>d</b>) versions of magnetic field meter at various pulsed voltage frequencies.</p> "> Figure 13
<p>(<b>a</b>) Circuit diagram of microsecond magnetic pulse generator which consists of a capacitor bank, a Bitter coil, and a spark gap. (<b>b</b>) General view of the experimental setup for testing the magnetic field meter (second version).</p> "> Figure 14
<p>Transients of sensor signal using first (<b>a</b>) and second (<b>b</b>) versions of magnetic field meter, when sensors are placed in a Bitter coil and magnetic pulse generator capacitors are discharged through it when the capacitors’ voltage is 12.5 kV. (<b>c</b>) Transients of sensor signal are detected when useful signal, and EMF is also detected. (<b>d</b>) Magnetic flux density in the Bitter coil as a function of time, measured with the second version of the magnetic field meter when the capacitors were charged to 12.5 kV.</p> ">
Abstract
:1. Introduction
2. Design of Microsecond High-Amplitude Magnetic Field Meter
2.1. Design of the Magnetic Field Probe Using CMR-B-Scalar Sensor
2.2. Design of the First Version of the Magnetic Field Meter
2.3. Design of the Second Version of the Magnetic Field Meter
3. Results and Discussion
3.1. Bipolar Pulsed Voltage Behavior in Different Magnetic Field Meters
3.2. Testing of the Magnetic Field Meters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Battesti, R.; Beard, J.; Böser, S.; Bruyant, N.; Budker, D.; Crooker, S.A.; Daw, E.J.; Flambaum, V.V.; Inada, T.; Irastorza, I.G.; et al. High magnetic fields for fundamental Physics. Phys. Rep. 2018, 765–766, 1–39. [Google Scholar] [CrossRef]
- Abate, D.; Cavazzana, R. Effective area measurements of magnetic pick-up coil sensors for RFX-mod2. Sensors 2022, 22, 9767. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, D.; Sawabe, H.; Matsuda, Y.H.; Takeyama, S. Precise measurement of a magnetic field generated by the electromagnetic flux compression technique. Rev. Sci. Instrum. 2013, 84, 044702. [Google Scholar] [CrossRef]
- Tumanski, S. Induction coil sensors—A review. Meas. Sci. Technol. 2007, 18, R31. [Google Scholar] [CrossRef]
- Bellmann, J.; Lueg-Altho, J.; Schulze, S.; Gies, S.; Beyer, E.; Tekkaya, A.E. Measurement and analysis technologies for magnetic pulse welding: Established methods and new strategies. Adv. Manuf. 2016, 4, 322–339. [Google Scholar] [CrossRef]
- Karsenty, A. A comprehensive review of integrated Hall effects in macro-, micro-, nanoscales, and quantum devices. Sensors 2020, 20, 4163. [Google Scholar] [CrossRef] [PubMed]
- Look, D.C. Review of Hall effect and magnetoresistance measurements in GaAs materials and devices. J. Electrochem. Soc. 1990, 137, 260–266. [Google Scholar] [CrossRef]
- Khan, M.A.; Sun, J.; Li, B.; Przybysz, A.; Kosel, J. Magnetic sensors-A review and recent technologies. Eng. Res. Express 2021, 3, 02200. [Google Scholar] [CrossRef]
- Song, S.; Cheng, C. Measurement of solid Armature’s in-bore velocity using B-dot probes in a series-augmented railguns. IEEE Trans. Plasma Sci. 2015, 43, 1310–1315. [Google Scholar] [CrossRef]
- Cao, R.; Xu, X. Analysis of the velocity and current measurement method based on B-dot probes for the rail gun. IEEE Trans. Plasma Sci. 2017, 45, 981–989. [Google Scholar] [CrossRef]
- Jogschies, L.; Klaas, D.; Kruppe, R.; Rittinger, J.; Taptimthong, P.; Wienecke, A.; Rissing, L.; Wurz, M.C. Recent developments of magnetoresistive sensors for industrial applications. Sensors 2015, 15, 28665–28689. [Google Scholar] [CrossRef]
- Lenz, J.; Edelstein, A.S. Magnetic sensors and their applications. IEEE Sens. J. 2006, 6, 631–649. [Google Scholar] [CrossRef]
- Mironov, O.A.; Zherlitsyn, S.; Uhlarz, M.; Skourski, Y.; Palewski, T.; Wosnitza, J. Microminiature Hall probes for applications at pulsed magnetic fields up to 87 Tesla. J. Low Temp. Phys. 2010, 159, 315–318. [Google Scholar] [CrossRef]
- Wei, S.; Liao, X.; Zhang, H.; Pang, J.; Zhou, Y. Recent progress of fluxgate magnetic sensors: Basic research and application. Sensors 2021, 21, 1500. [Google Scholar] [CrossRef]
- Tang, W.; Lyu, F.; Wang, D.; Pan, H. A new design of a single–device 3d Hall sensor: Cross–shaped 3D Hall sensor. Sensors 2018, 18, 1065. [Google Scholar] [CrossRef]
- Shiogai, J.; Fujiwara, K.; Nojima, T.; Tsukazaki, A. Three-dimensional sensing of the magnetic-field vector by a compact planar-type Hall device. Commun. Mater. 2021, 2, 102. [Google Scholar] [CrossRef]
- Alfadhel, A.; Carreno, A.A.A.; Foulds, I.G.; Kosel, J. Three-axis magnetic field induction sensor realized on buckled cantilever plate. IEEE Trans. Magn. 2013, 49, 4144–4147. [Google Scholar] [CrossRef]
- Dagotto, E.; Hotta, T.; Moreo, A. Colossal magnetoresistant materials: The key role of phase separation. Phys. Rep. 2001, 344, 1–153. [Google Scholar] [CrossRef]
- Balevicius, S.; Zurauskiene, Z.; Stankevic, V.; Stankevic, T.; Novickij, J.; Schneider, M. High-frequency CMR–B–Scalar sensor for pulsed magnetic field measurement. IEEE Trans. Plasma Sci. 2013, 41, 2885–2889. [Google Scholar] [CrossRef]
- Stankevič, T.; Medišauskas, L.; Stankevič, V.; Balevičius, S.; Žurauskiene, N.; Liebfried, O.; Schneider, M. Pulsed magnetic field measurement system based on colossal magnetoresistance-B-scalar sensors for railgun investigation. Rev. Sci. Instrum. 2014, 85, 044704. [Google Scholar] [CrossRef]
- Balevicius, S.; Zurauskiene, N.; Stankevic, V.; Kersulis, S.; Plausinaitiene, V.; Abrutis, A.; Zherlitsyn, S.; Herrmannsdorfer, T.; Wosnitza, J.; Wolff-Fabris, F. Nanostructured thin manganite films in megagauss magnetic field. Appl. Phys. Lett. 2012, 101, 092407. [Google Scholar] [CrossRef]
- Haran, T.L.; Hoffman, R.B.; Lane, S.E. Diagnostic Capabilities for Electromagnetic Railguns. IEEE Trans. Plasma Sci. 2013, 41, 1526–1532. [Google Scholar] [CrossRef]
- Stankevic, V.; Lueg-Althoff, J.; Hahn, M.; Tekkaya, A.E.; Zurauskiene, N.; Dilys, J.; Klimantavicius, J.; Skirmantas, K.; Simkevicius, C.; Balevicius, S. Magnetic field measurements during magnetic pulse welding using CMR-B-Scalar sensors. Sensors 2020, 20, 5925. [Google Scholar] [CrossRef]
- Johnson, H.; Graham, M. High-Speed Digital Design: A Handbook of Black Magic; Prentice Hall PTR: Englewood Cliffs, NJ, USA, 1993; p. 140. [Google Scholar]
- Imamura, H.; Uchida, K.; Ohmichi, E.; Osada, T. Magnetotransport measurements of low dimensional conductors under pulsed ultra-high magnetic fields. J. Phys. Conf. Ser. 2006, 51, 303–306. [Google Scholar] [CrossRef]
- Stankevič, V.; Keršulis, S.; Dilys, J.; Bleizgys, V.; Viliūnas, M.; Vertelis, V.; Maneikis, A.; Rudokas, V.; Plaušinaitienė, V.; Žurauskienė, N. Measurement system for short-pulsed magnetic fields. Sensors 2023, 23, 1435. [Google Scholar] [CrossRef]
- Ziese, M. Extrinsic Magnetotransport Phenomena in Ferromagnetic Oxides. Rep. Prog. Phys. 2002, 65, 143–249. [Google Scholar] [CrossRef]
- Pękała, M.; Pękała, K.; Drozd, V. Magnetotransport Study of Nanocrystalline and Polycrystalline Manganites La0.8Sr0.2MnO3 in High Magnetic Fields. J. Appl. Phys. 2015, 117, 175902. [Google Scholar] [CrossRef]
- Marozau, I.; Das, P.T.; Döbeli, M.; Storey, J.G.; Uribe-Laverde, M.A.; Das, S.; Wang, C.; Rössle, M.; Bernhard, C. Influence of La and Mn vacancies on the electronic and magnetic properties of LaMnO3 thin films grown by pulsed laser deposition. Phys. Rev. B Condens. Matter 2014, 89, 174422. [Google Scholar] [CrossRef]
- Zurauskiene, N.; Stankevic, V.; Kersulis, S.; Vagner, M.; Plausinaitiene, V.; Dobilas, J.; Vasiliauskas, R.; Skapas, M.; Koliada, M.; Pietosa, J.; et al. Enhancement of room-temperature low-field magnetoresistance in nanostructured lanthanum manganite films for magnetic sensor applications. Sensors 2022, 22, 4004. [Google Scholar] [CrossRef]
- Zurauskiene, N.; Balevicius, S.; Stankevic, V.; Kersulis, S.; Klimantavicius, J.; Plausinaitiene, V.; Kubilius, V.; Skapas, M.; Juskenas, R.; Navickas, R. Magnetoresistive properties of thin nanostructured manganite films grown by metalorganic chemical vapour deposition onto glass-ceramics substrates. J. Mater. Sci. 2018, 53, 12996–13009. [Google Scholar] [CrossRef]
- Grainys, A.; Novickij, J.; Stankevič, T.; Stankevič, V.; Novickij, V.; Žurauskienė, N. Single Pulse Calibration of Magnetic Field Sensors Using Mobile 43 kJ Facility. Meas. Sci. Rev. 2015, 15, 244–247. [Google Scholar] [CrossRef]
- Tavares, P.B.; Amaral, V.S.; Araujo, J.P.; Sousa, J.B.; Lourenço, A.A.C.S.; Vieira, J.M. Substrate, annealing, and Mn excess effects on La-Ca-MnO3 thin films grown by metalorganic chemical vapor deposition: A way to room-temperature Tc. J. Appl. Phys. 1999, 85, 5411–5413. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piatrou, P.; Stankevic, V.; Zurauskiene, N.; Kersulis, S.; Viliunas, M.; Baskys, A.; Sapurov, M.; Bleizgys, V.; Antonovic, D.; Plausinaitiene, V.; et al. Magnetic Field Meter Based on CMR-B-Scalar Sensor for Measurement of Microsecond Duration Magnetic Field Pulses. Sensors 2025, 25, 1640. https://doi.org/10.3390/s25061640
Piatrou P, Stankevic V, Zurauskiene N, Kersulis S, Viliunas M, Baskys A, Sapurov M, Bleizgys V, Antonovic D, Plausinaitiene V, et al. Magnetic Field Meter Based on CMR-B-Scalar Sensor for Measurement of Microsecond Duration Magnetic Field Pulses. Sensors. 2025; 25(6):1640. https://doi.org/10.3390/s25061640
Chicago/Turabian StylePiatrou, Pavel, Voitech Stankevic, Nerija Zurauskiene, Skirmantas Kersulis, Mindaugas Viliunas, Algirdas Baskys, Martynas Sapurov, Vytautas Bleizgys, Darius Antonovic, Valentina Plausinaitiene, and et al. 2025. "Magnetic Field Meter Based on CMR-B-Scalar Sensor for Measurement of Microsecond Duration Magnetic Field Pulses" Sensors 25, no. 6: 1640. https://doi.org/10.3390/s25061640
APA StylePiatrou, P., Stankevic, V., Zurauskiene, N., Kersulis, S., Viliunas, M., Baskys, A., Sapurov, M., Bleizgys, V., Antonovic, D., Plausinaitiene, V., Skapas, M., Vertelis, V., & Levitas, B. (2025). Magnetic Field Meter Based on CMR-B-Scalar Sensor for Measurement of Microsecond Duration Magnetic Field Pulses. Sensors, 25(6), 1640. https://doi.org/10.3390/s25061640