Neural Mass Modeling in the Cortical Motor Area and the Mechanism of Alpha Rhythm Changes
<p>Synchronous acquisition of the electroencephalography (EEG) and maximum voluntary contraction (MVC) signals. (<b>a</b>) Recording of EEG data; (<b>b</b>) target force and actual output force display interface.</p> "> Figure 2
<p>Experimental paradigm flow chart.</p> "> Figure 3
<p>Composition of the single-channel neural mass model.</p> "> Figure 4
<p>Power spectrum density analysis of alpha-band signals under three grip strengths.</p> "> Figure 5
<p>Power spectrum analysis of alpha bands under different grip strengths in 11 participants.</p> "> Figure 6
<p>Power spectrum analysis of alpha-band signals under different grip strengths. The blue bars represent the power spectrum under 20% MVC, the red bars represent the power spectrum under 40% MVC and the yellow bars represent the power spectrum under 60% MVC. “∗” denotes <span class="html-italic">p</span> < 0.05.</p> "> Figure 7
<p>Analysis of the influence of neuron group model parameters on signal frequency spectrum density.</p> "> Figure 8
<p>Analysis of the influence of neural mass model parameters on signal power spectrum. The different shading patterns in the figure represent the changes in power values corresponding to the variations in parameters <span class="html-italic">J</span>, <span class="html-italic">G<sub>e</sub></span>, and <span class="html-italic">G<sub>i</sub></span>.</p> "> Figure 9
<p>Comparative analysis of actual measurement results and simulation results.</p> "> Figure 10
<p>Analysis of model parameters of neuron groups for different grip strengths.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Subjects and Paradigms
2.2. Data Recording and Preprocessing
2.3. Power Spectrum Analysis of EEG Signals
2.4. Single-Channel Neural Mass Modeling and Analysis
2.4.1. Single-Channel Neural Mass Model
2.4.2. Model Simulation and Parameter Settings
3. Experimental Results
3.1. Power Spectral Analysis of Alpha Rhythm Under Different Grip Forces
3.2. Results of Neural Mass Model Parameter Analysis
3.3. Results of Feature Fitting Between EEG Signals and Simulated Model Signals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schmidt, R.; Rose, J.; Muralidharan, V. Transient oscillations as computations for cognition: Analysis, modeling and function. Curr. Opin. Neurobiol. 2023, 83, 102796. [Google Scholar] [CrossRef]
- Meehan, C.E.; Schantell, M.; Springer, S.D.; Wiesman, A.I.; Wolfson, S.L.; O’Neill, J.; Murman, D.L.; Bares, S.H.; May, P.E.; Johnson, C.M. Movement-related beta and gamma oscillations indicate parallels and disparities between Alzheimer’s disease and HIV-associated neurocognitive disorder. Neurobiol. Dis. 2023, 186, 106283. [Google Scholar] [CrossRef]
- Bramson, B.; Jensen, O.; Toni, I.; Roelofs, K. Cortical oscillatory mechanisms supporting the control of human social-emotional actions. J. Neurosci. 2018, 38, 5739–5749. [Google Scholar] [CrossRef]
- Houston, M.; Seo, G.; Fang, F.; Park, J.-H.; Park, H.-S.; Roh, J.; Zhang, Y. Modulating Inter-Muscular Coordination Patterns in the Upper Extremity Induces Changes to Inter-Muscular, Cortico-Muscular, and Cortico-Cortical Connectivity. IEEE J. Biomed. Health Inform. 2024, 28, 7164–7174. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Dewald, J.P.; van der Helm, F.C.; Schouten, A.C. Unveiling neural coupling within the sensorimotor system: Directionality and nonlinearity. Eur. J. Neurosci. 2018, 48, 2407–2415. [Google Scholar] [CrossRef]
- Cao, L.; Hao, D.; Rong, Y.; Zhou, Y.; Li, M.; Tian, Y. Investigating the modulation of brain activity associated with handgrip force and fatigue. Technol. Health Care 2015, 23, S427–S433. [Google Scholar] [CrossRef] [PubMed]
- Fetz, E.E. Volitional control of cortical oscillations and synchrony. Neuron 2013, 77, 216–218. [Google Scholar] [CrossRef]
- Kim, D.-E.; Park, S.-M.; Sim, K.-B. Study on the correlation between grip strength and EEG. J. Inst. Control. Robot. Syst. 2013, 19, 853–859. [Google Scholar] [CrossRef]
- Dissanayake, U.C.; Steuber, V.; Amirabdollahian, F. EEG spectral feature modulations associated with fatigue in robot-mediated upper limb gross and fine motor interactions. Front. Neurorobot. 2022, 15, 788494. [Google Scholar] [CrossRef] [PubMed]
- Haddix, C.; Al-Bakri, A.F.; Sunderam, S. Prediction of isometric handgrip force from graded event-related desynchronization of the sensorimotor rhythm. J. Neural Eng. 2021, 18, 056033. [Google Scholar] [CrossRef]
- Ortiz, O.; Kuruganti, U.; Chester, V.; Wilson, A.; Blustein, D. Changes in EEG alpha-band power during prehension indicates neural motor drive inhibition. J. Neurophysiol. 2023, 130, 1588–1601. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Liu, L.; Chen, L.; Wang, X.; Zhang, X.; Liu, X.; Hou, W.; Wu, X. Neuro-muscular Responses Adaptation to Dynamic Changes in Grip Strength. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 3189–3198. [Google Scholar] [CrossRef]
- Popescu, A.; Buiu, C. Robust control and state observer design for neural mass model applications using simulated EEG signals. J. Control. Eng. Appl. Inform. 2023, 25, 22–30. [Google Scholar] [CrossRef]
- Sanchez-Rodriguez, L.M.; Bezgin, G.; Carbonell, F.; Therriault, J.; Fernandez-Arias, J.; Servaes, S.; Rahmouni, N.; Tissot, C.; Stevenson, J.; Karikari, T.K.; et al. Personalized whole-brain neural mass models reveal combined Aβ and tau hyperexcitable influences in Alzheimer’s disease. Commun. Biol. 2024, 7, 528. [Google Scholar] [CrossRef]
- Song, J.-L.; Li, Q.; Zhang, B.; Westover, M.B.; Zhang, R. A new neural mass model driven method and its application in early epileptic seizure detection. IEEE Trans. Biomed. Eng. 2019, 67, 2194–2205. [Google Scholar] [CrossRef] [PubMed]
- Gangopadhyay, A.; Mehta, D.; Chakrabartty, S. A spiking neuron and population model based on the growth transform dynamical system. Front. Neurosci. 2020, 14, 425. [Google Scholar] [CrossRef]
- Jansen, B.H.; Rit, V.G. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cybern. 1995, 73, 357–366. [Google Scholar] [CrossRef]
- Jansen, B.H.; Zouridakis, G.; Brandt, M.E. A neurophysiologically-based mathematical model of flash visual evoked potentials. Biol. Cybern. 1993, 68, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Wendling, F.; Hernandez, A.; Bellanger, J.-J.; Chauvel, P.; Bartolomei, F. Interictal to ictal transition in human temporal lobe epilepsy: Insights from a computational model of intracerebral EEG. J. Clin. Neurophysiol. 2005, 22, 343–356. [Google Scholar] [PubMed]
- Ma, Z.; Zhou, W.; Geng, S.; Yuan, Q.; Li, X. Synchronization regulation in a model of coupled neural masses. Biol. Cybern. 2013, 107, 131–140. [Google Scholar] [CrossRef]
- Suppa, A.; Asci, F.; Guerra, A. Transcranial magnetic stimulation as a tool to induce and explore plasticity in humans. Handb. Clin. Neurol. 2022, 184, 73–89. [Google Scholar] [PubMed]
- Eskikand, P.Z.; Soto-Breceda, A.; Cook, M.J.; Burkitt, A.N.; Grayden, D.B. Neural dynamics and seizure correlations: Insights from neural mass models in a tetanus toxin rat model of epilepsy. Neural Netw. 2024, 180, 106746. [Google Scholar] [CrossRef]
- Klug, M.; Kloosterman, N.A. Zapline-plus: A Zapline extension for automatic and adaptive removal of frequency-specific noise artifacts in M/EEG. Hum. Brain Mapp. 2022, 43, 2743–2758. [Google Scholar] [CrossRef] [PubMed]
- Gonsisko, C.B.; Ferris, D.P.; Downey, R.J. iCanClean improves independent component analysis of mobile brain imaging with EEG. Sensors 2023, 23, 928. [Google Scholar] [CrossRef] [PubMed]
- Zeng, P.; Fan, L.; Luo, Y.; Shen, H.; Hu, D. Task-oriented EEG denoising generative adversarial network for enhancing SSVEP-BCI performance. J. Neural Eng. 2024, 21, 066003. [Google Scholar] [CrossRef]
- Hussain, I.; Kwon, C.; Noh, T.-S.; Kim, H.C.; Suh, M.-W.; Ku, Y. An interpretable tinnitus prediction framework using gap-prepulse inhibition in auditory late response and electroencephalogram. Comput. Methods Programs Biomed. 2024, 255, 108371. [Google Scholar] [CrossRef]
- Shen, X.; Ding, L.; Gu, L.; Li, X.; Wang, Y. Diagnosis of Alzheimer’s Disease Based on Particle Swarm Optimization Eeg Signal Channel Selection and Gated Recurrent Unit. SSRN 2024, ahead of print. [Google Scholar]
- Morgenstern, N.A.; Isidro, A.F.; Israely, I.; Costa, R.M. Pyramidal tract neurons drive amplification of excitatory inputs to striatum through cholinergic interneurons. Sci. Adv. 2022, 8, eabh4315. [Google Scholar] [CrossRef]
- Dasilva, M.; Camassa, A.; Navarro-Guzman, A.; Pazienti, A.; Perez-Mendez, L.; Zamora-López, G.; Mattia, M.; Sanchez-Vives, M.V. Modulation of cortical slow oscillations and complexity across anesthesia levels. Neuroimage 2021, 224, 117415. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, L.; Giampiccolo, D.; Meneghelli, P.; Tramontano, V.; Sala, F. Cortico-cortical connectivity between the superior and inferior parietal lobules and the motor cortex assessed by intraoperative dual cortical stimulation. Brain Stimul. 2020, 13, 819–831. [Google Scholar] [CrossRef] [PubMed]
- Gunduz, M.E.; Pacheco-Barrios, K.; Bonin Pinto, C.; Duarte, D.; Vélez, F.G.S.; Gianlorenco, A.C.L.; Teixeira, P.E.P.; Giannoni-Luza, S.; Crandell, D.; Battistella, L.R.; et al. Effects of combined and alone transcranial motor cortex stimulation and mirror therapy in phantom limb pain: A randomized factorial trial. Neurorehabil. Neural Repair 2021, 35, 704–716. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Q.; Yao, B.; Brown, R.; Yue, G. Linear correlation between fractal dimension of EEsG signal and handgrip force. Biol. Cybern. 2005, 93, 131–140. [Google Scholar] [CrossRef]
- Gao, L.; Wu, H.; Cheng, W.; Lan, B.; Ren, H.; Zhang, L.; Wang, L. Enhanced descending corticomuscular coupling during hand grip with static force compared with enhancing force. Clin. EEG Neurosci. 2021, 52, 436–443. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, C.; Chen, X.; Yin, Y.; Cheng, S.; Chen, Y.; Xie, P. Synchronous analysis of corticomuscular coherence based on Gabor wavelet-transfer entropy. J. Biomed. Eng. 2017, 34, 850–856. [Google Scholar]
- Deiber, M.-P.; Sallard, E.; Ludwig, C.; Ghezzi, C.; Barral, J.; Ibañez, V.J. EEG alpha activity reflects motor preparation rather than the mode of action selection. Front. Integr. Neurosci. 2012, 6, 59. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W.; Doppelmayr, M.; Russegger, H.; Pachinger, T.; Schwaiger, J. Induced alpha band power changes in the human EEG and attention. Neurosci. Lett. 1998, 244, 73–76. [Google Scholar] [CrossRef]
- Nakayashiki, K.; Saeki, M.; Takata, Y.; Hayashi, Y.; Kondo, T. Modulation of event-related desynchronization during kinematic and kinetic hand movements. J. Neuroeng. Rehabil. 2014, 11, 90. [Google Scholar] [CrossRef] [PubMed]
- Capogna, M.; Castillo, P.E.; Maffei, A. The ins and outs of inhibitory synaptic plasticity: Neuron types, molecular mechanisms and functional roles. Eur. J. Neurosci. 2021, 54, 6882–6901. [Google Scholar] [CrossRef] [PubMed]
- Urbin, M.A.; Collinger, J.L.; Wittenberg, G.F. Corticospinal recruitment of spinal motor neurons in human stroke survivors. J. Physiol. 2021, 599, 4357–4373. [Google Scholar] [CrossRef]
- Thio, B.J.; Grill, W.M. Relative contributions of different neural sources to the EEG. Neuroimage 2023, 275, 120179. [Google Scholar] [CrossRef]
- Shine, J.M.; Müller, E.J.; Munn, B.; Cabral, J.; Moran, R.J.; Breakspear, M. Computational models link cellular mechanisms of neuromodulation to large-scale neural dynamics. Nat. Neurosci. 2021, 24, 765–776. [Google Scholar] [CrossRef]
- Chipman, P.H.; Fetter, R.D.; Panzera, L.C.; Bergerson, S.J.; Karmelic, D.; Yokoyama, S.; Hoppa, M.B.; Davis, G.W. NMDAR-dependent presynaptic homeostasis in adult hippocampus: Synapse growth and cross-modal inhibitory plasticity. Neuron 2022, 110, 3302–3317.E7. [Google Scholar] [CrossRef]
Parameter | Physiological Significance | Alpha Rhythm |
---|---|---|
Excitatory Average Synaptic Gain (mV) | 3.25 | |
Inhibitory Average Synaptic Gain (mV) | 22 | |
Excitatory Membrane Potential Average Time Constant (s) | 0.0108 | |
Inhibitory Membrane Potential Average Time Constant (s) | 0.02 | |
Average Number of Synaptic Connections | 135 | |
Static Nonlinear Function Parameters |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, Z.; Xu, H.; Song, Z.; Xie, P.; Wei, P.; Zhao, G. Neural Mass Modeling in the Cortical Motor Area and the Mechanism of Alpha Rhythm Changes. Sensors 2025, 25, 56. https://doi.org/10.3390/s25010056
Zhang Y, Li Z, Xu H, Song Z, Xie P, Wei P, Zhao G. Neural Mass Modeling in the Cortical Motor Area and the Mechanism of Alpha Rhythm Changes. Sensors. 2025; 25(1):56. https://doi.org/10.3390/s25010056
Chicago/Turabian StyleZhang, Yuanyuan, Zhaoying Li, Hang Xu, Ziang Song, Ping Xie, Penghu Wei, and Guoguang Zhao. 2025. "Neural Mass Modeling in the Cortical Motor Area and the Mechanism of Alpha Rhythm Changes" Sensors 25, no. 1: 56. https://doi.org/10.3390/s25010056
APA StyleZhang, Y., Li, Z., Xu, H., Song, Z., Xie, P., Wei, P., & Zhao, G. (2025). Neural Mass Modeling in the Cortical Motor Area and the Mechanism of Alpha Rhythm Changes. Sensors, 25(1), 56. https://doi.org/10.3390/s25010056