Tunable Beam Steering Metasurface Based on a PMN-PT Crystal with a High Electro-Optic Coefficient
<p>Simulation of the PMN-PT metasurface structure unit. (<b>a</b>) Schematic of the tunable beam-deflecting PMN-PT metasurface. The red arrows, from top to bottom, represent incident and refrected light, respectively. (<b>b</b>) Three-dimensional view of the structure unit. The dimensions include a length L = 1.5 μm, width W = 0.9 μm, and height H. The period P = L = 1.5 μm. During simulation, <span class="html-italic">x</span>-polarized light (green arrow) is incident on the metasurface from the negative <span class="html-italic">z</span>-direction (red arrow). (<b>c</b>) Transmission (black solid line and red dashed line) and reflection (blue dot-dashed line) spectra of the metasurface in optical communication band. The inset shows the distributions of the electric field <span class="html-italic">E<sub>x</sub></span> and energy flow (red arrows) of the metasurface structure at the incident of 1.5 μm <span class="html-italic">x</span>-polarized light. The color legend specifies the electric field <span class="html-italic">E<sub>x</sub></span> (unit: V/m). (<b>d</b>) Spectra of the resonance shifting with the applied voltages −100 V (red), 0 V (black), and +100 V (blue).</p> "> Figure 2
<p>Simulation of the beam-deflecting metasurface. The influences of rectangular block height H and external voltage U<sub>bias</sub> on the transmission coefficient S<sub>21</sub> (<b>a</b>) amplitude and (<b>b</b>) phase are depicted. The position H = 1.5 μm is indicated by the white dashed line. (<b>c</b>) Relationships between the transmission coefficient S<sub>21</sub> amplitude (black solid line) and phase (red dashed line) and the external voltage U<sub>bias</sub> corresponding to the white dashed lines in (<b>a</b>,<b>b</b>). The green dots indicate the eight data points where the phase difference between adjacent points is 45°. (<b>d</b>) Electric field <span class="html-italic">E<sub>x</sub></span> (specified by the bottom color legend) distribution of the transmitted light when the <span class="html-italic">x</span>-polarized light with λ = 1.5 μm is normally incident onto the metasurface. The black arrows, from top to bottom, indicate the directions of the incident and transmitted light waves, respectively.</p> "> Figure 3
<p>Regulation of the deflection direction for the beam-deflecting metasurface. (<b>a</b>–<b>e</b>) Electric field <span class="html-italic">E<sub>x</sub></span> distribution of the transmitted light for <span class="html-italic">x</span>-polarized light at a wavelength of λ = 1.5 μm, incident perpendicularly onto the metasurface, when the phase difference between adjacent structure units is 60°, 72°, 90°, 120°, or 180°. (<b>f</b>) Relationship between the deflection angle and the U<sub>bias</sub> voltages (actually the phase difference Δφ between adjacent units). The dashed line indicates the theoretical value of the deflection angle.</p> "> Figure 4
<p>Tunable PMN-PT beam-deflecting metasurface. Relationships between the transmission coefficient S<sub>21</sub> (<b>a</b>) amplitude and (<b>b</b>) phase with incident light wavelength λ and external voltage U<sub>bias</sub> are displayed. (<b>c</b>,<b>d</b>) Relationships between the S<sub>21</sub> amplitude (black solid line) and phase (red dashed line) with external voltage U<sub>bias</sub> for incident light wavelengths of λ = 1.48 μm and 1.53 μm, respectively. The green dots indicate the data points where the phase difference between adjacent points is 45°. (<b>e</b>,<b>f</b>) Electric field <span class="html-italic">E<sub>x</sub></span> distribution of the transmitted light for the metasurface at incident light wavelengths of λ = 1.48 μm and 1.53 μm, respectively.</p> "> Figure 5
<p>Relationship between the deflection angle and the wavelength of incident light. (<b>a</b>–<b>c</b>) Electric field <span class="html-italic">E<sub>x</sub></span> distribution of the transmitted light for <span class="html-italic">x</span>-polarized light at wavelengths of λ = 1.49 μm, 1.51 μm, and 1.52 μm, respectively. (<b>d</b>) Relationship between the deflection angle and the wavelength of incident light. The simulated deflection angles (the red circle dot) were measured from the transmission electric field distributions. The black square dots represent the theoretical deflection angles calculated by using the generalized Snell’s law [<a href="#B1-sensors-25-00055" class="html-bibr">1</a>].</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Beam-Deflecting Metasurface Based on a PMN-PT Electro-Optic Crystal
2.2. Tunable PMN-PT Beam-Deflecting Metasurfaces
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, N.F.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.F.; Genevet, P.; Aieta, F.; Kats, M.A.; Blanchard, R.; Aoust, G.; Tetienne, J.P.; Gaburro, Z.; Capasso, F. Flat optics: Controlling wavefronts with optical antenna metasurfaces. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 4700423. [Google Scholar]
- Sun, S.; He, Q.; Xiao, S.; Xu, Q.; Li, X.; Zhou, L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 2012, 11, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Kildishev, A.V.; Shalaev, V.M. Metasurface holograms for visible light. Nat. Commun. 2013, 4, 2807. [Google Scholar] [CrossRef]
- Lin, D.; Fan, P.; Hasman, E.; Brongersma, M.L. Dielectric gradient metasurface optical elements. Science 2014, 345, 298–302. [Google Scholar] [CrossRef]
- Pfeiffer, C.; Emani, N.K.; Shaltout, A.M.; Boltasseva, A.; Shalaev, V.M.; Grbic, A. Efficient light bending with isotropic metamaterial Huygens’ surfaces. Nano Lett. 2014, 14, 2491–2497. [Google Scholar] [CrossRef]
- Silva, A.; Monticone, F.; Castaldi, G.; Galdi, V.; Alu, A.; Engheta, N. Performing mathematical operations with metamaterials. Science 2014, 343, 160–163. [Google Scholar] [CrossRef]
- Ding, F.; Wang, Z.; He, S.; Shalaev, V.M.; Kildishev, A.V. Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach. ACS Nano 2015, 9, 4111–4119. [Google Scholar] [CrossRef]
- Ni, X.; Wong, Z.J.; Mrejen, M.; Wang, Y.; Zhang, X. An ultrathin invisibility skin cloak for visible light. Science 2015, 349, 1310–1314. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef]
- Abdelraouf, O.A.M.; Wang, Z.Y.; Liu, H.L.; Dong, Z.G.; Wang, Q.; Ye, M.; Wang, X.R.; Wang, Q.J.; Liu, H. Recent advances in tunable metasurfaces: Materials, design, and applications. ACS Nano 2022, 16, 13339–13369. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Shankar, R.; Kats, M.A.; Song, Y.; Kong, J.; Loncar, M.; Capasso, F. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett. 2014, 14, 6526–6532. [Google Scholar] [CrossRef]
- Zeng, B.; Huang, Z.; Singh, A.; Yao, Y.; Azad, A.K.; Mohite, A.D.; Taylor, A.J.; Smith, D.R.; Chen, H.-T. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light-Sci. Appl. 2018, 7, 51. [Google Scholar] [CrossRef] [PubMed]
- Masyukov, M.; Vozianova, A.; Grebenchukov, A.; Gubaidullina, K.; Zaitsev, A.; Khodzitsky, M. Optically tunable terahertz chiral metasurface based on multi-layered graphene. Sci. Rep. 2020, 10, 3157. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Schaller, R.D.; Ketterson, J.B.; Chang, R.P.H. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat. Photonics 2016, 10, 267–273. [Google Scholar] [CrossRef]
- Huang, Y.W.; Lee, H.W.; Sokhoyan, R.; Pala, R.A.; Thyagarajan, K.; Han, S.; Tsai, D.P.; Atwater, H.A. Gate-tunable conducting oxide metasurfaces. Nano Lett. 2016, 16, 5319–5325. [Google Scholar] [CrossRef]
- Forouzmand, A.; Salary, M.M.; Inampudi, S.; Mosallaei, H. A tunable multigate indium-tin-oxide-assisted all-dielectric metasurface. Adv. Opt. Mater. 2018, 6, 1701275. [Google Scholar] [CrossRef]
- Shirmanesh, G.K.; Sokhoyan, R.; Wu, P.C.; Atwater, H.A. Electro-optically tunable multifunctional metasurfaces. ACS Nano 2020, 14, 6912–6920. [Google Scholar] [CrossRef]
- Hu, G.; Hong, X.; Wang, K.; Wu, J.; Xu, H.-X.; Zhao, W.; Liu, W.; Zhang, S.; Garcia-Vidal, F.; Wang, B.; et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nat. Photonics 2019, 13, 467–472. [Google Scholar] [CrossRef]
- Ni, P.; De Luna Bugallo, A.; Arellano Arreola, V.M.; Salazar, M.F.; Strupiechonski, E.; Brändli, V.; Sawant, R.; Alloing, B.; Genevet, P. Gate-tunable emission of exciton–plasmon polaritons in hybrid MoS2-gap-mode metasurfaces. ACS Photonics 2019, 6, 1594–1601. [Google Scholar] [CrossRef]
- van de Groep, J.; Song, J.-H.; Celano, U.; Li, Q.; Kik, P.G.; Brongersma, M.L. Exciton resonance tuning of an atomically thin lens. Nat. Photonics 2020, 14, 426–430. [Google Scholar] [CrossRef]
- Zhu, Z.; Evans, P.G.; Haglund, R.F., Jr.; Valentine, J.G. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett. 2017, 17, 4881–4885. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.; Lee, S.-Y.; Mun, S.-E.; Lee, G.-Y.; Sung, J.; Yun, H.; Yang, J.-H.; Kim, H.-O.; Hwang, C.-Y.; Lee, B. Metasurface with nanostructured Ge2Sb2Te5 as a platform for broadband-operating wavefront switch. Adv. Opt. Mater. 2019, 7, 1900171. [Google Scholar] [CrossRef]
- Kim, Y.; Wu, P.C.; Sokhoyan, R.; Mauser, K.; Glaudell, R.; Kafaie Shirmanesh, G.; Atwater, H.A. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces. Nano Lett. 2019, 19, 3961–3968. [Google Scholar] [CrossRef]
- Leitis, A.; Heßler, A.; Wahl, S.; Wuttig, M.; Taubner, T.; Tittl, A.; Altug, H. All-dielectric programmable Huygens’ metasurfaces. Adv. Funct. Mater. 2020, 30, 1910259. [Google Scholar] [CrossRef]
- de Galarreta, C.R.; Sinev, I.; Alexeev, A.M.; Trofimov, P.; Ladutenko, K.; Garcia-Cuevas Carrillo, S.; Gemo, E.; Baldycheva, A.; Bertolotti, J.; David Wright, C. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica 2020, 7, 476–484. [Google Scholar] [CrossRef]
- Wang, Y.; Landreman, P.; Schoen, D.; Okabe, K.; Marshall, A.; Celano, U.; Wong, H.S.P.; Park, J.; Brongersma, M.L. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol. 2021, 16, 667–672. [Google Scholar] [CrossRef]
- Wu, C.; Yu, H.; Lee, S.; Peng, R.; Takeuchi, I.; Li, M. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun. 2021, 12, 96. [Google Scholar] [CrossRef]
- Abdollahramezani, S.; Hemmatyar, O.; Taghinejad, M.; Taghinejad, H.; Krasnok, A.; Eftekhar, A.A.; Teichrib, C.; Deshmukh, S.; El-Sayed, M.A.; Pop, E.; et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nat. Commun. 2022, 13, 1696. [Google Scholar] [CrossRef]
- Yang, F.Y.; Tan, T.C.; Prakash, S.; Kumar, A.; Ariando, A.; Singh, R.; Wang, N.; Pitchappa, P. Reconfigurable wide-angle beam-steering terahertz metasurfaces based on vanadium dioxide. Adv. Opt. Mater. 2024, 12, 2302047. [Google Scholar] [CrossRef]
- Li, S.Q.; Xu, X.W.; Veetil, R.M.; Valuckas, V.; Paniagua-Domínguez, R.; Kuznetsov, A.I. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 2019, 364, 1087–1090. [Google Scholar] [CrossRef] [PubMed]
- Driencourt, L.; Federspiel, F.; Kazazis, D.; Tseng, L.-T.; Frantz, R.; Ekinci, Y.; Ferrini, R.; Gallinet, B. Electrically tunable multicolored filter using birefringent plasmonic resonators and liquid crystals. ACS Photonics 2020, 7, 444–453. [Google Scholar] [CrossRef]
- Fan, C.Y.; Chuang, T.J.; Wu, K.H.; Su, G.D.J. Electrically modulated varifocal metalens combined with twisted nematic liquid crystals. Opt. Express 2020, 28, 10609–10617. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Shen, Z.; Ge, S.; Chen, B.; Shen, Z.; Wang, T.; Zhang, C.; Hu, W.; Fan, K.; Padilla, W.; et al. Liquid crystal programmable metasurface for terahertz beam steering. Appl. Phys. Lett. 2020, 116, 131104. [Google Scholar] [CrossRef]
- Mansha, S.; Moitra, P.; Xu, X.; Mass, T.W.W.; Veetil, R.M.; Liang, X.; Li, S.-Q.; Paniagua-Domínguez, R.; Kuznetsov, A.I. High resolution multispectral spatial light modulators based on tunable Fabry-Perot nanocavities. Light-Sci. Appl. 2022, 11, 141. [Google Scholar] [CrossRef]
- Karvounis, A.; Vogler-Neuling, V.V.; Richter, F.U.; Dénervaud, E.; Timofeeva, M.; Grange, R. Electro-optic metasurfaces based on barium titanate nanoparticle films. Adv. Opt. Mater. 2020, 8, 2000623. [Google Scholar] [CrossRef]
- Chen, X.Q.; Meng, Q.; Xu, W.; Zhang, J.F.; Zhu, Z.H.; Qin, S.Q. Electrically tunable absorber based on a graphene integrated lithium niobate resonant metasurface. Opt. Express 2021, 29, 32796–32803. [Google Scholar] [CrossRef]
- Gao, B.; Ren, M.; Wu, W.; Cai, W.; Xu, J. Electro-optic lithium niobate metasurfaces. Sci. China Phys. Mech. 2021, 64, 240362. [Google Scholar] [CrossRef]
- Klopfer, E.; Dagli, S.; Barton, D.; Lawrence, M.; Dionne, J.A. High-quality-factor silicon-on-lithium niobate metasurfaces for electro-optically reconfigurable wavefront shaping. Nano Lett. 2022, 22, 1703–1709. [Google Scholar] [CrossRef]
- Weiss, A.; Frydendahl, C.; Bar-David, J.; Zektzer, R.; Edrei, E.; Engelberg, J.; Mazurski, N.; Desiatov, B.; Levy, U. Tunable metasurface using thin-film lithium niobate in the telecom regime. ACS Photonics 2022, 9, 605–612. [Google Scholar] [CrossRef]
- Damgaard-Carstensen, C.; Bozhevolnyi, S.I. Nonlocal electro-optic metasurfaces for free-space light modulation. Nanophotonics 2023, 12, 2953–2962. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Tan, H.; Peng, J.; Chen, J.; Zhang, D.; Xie, F.; Wu, W.; Cai, W.; Ren, M.; Xu, J. Electro-optic modulation using lithium niobate metasurfaces with topological corner state. Appl. Phys. Lett. 2023, 122, 171706. [Google Scholar] [CrossRef]
- Ee, H.-S.; Agarwal, R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett. 2016, 16, 2818–2823. [Google Scholar] [CrossRef]
- Oshita, M.; Takahashi, H.; Ajiki, Y.; Kan, T. Reconfigurable surface plasmon resonance photodetector with a MEMS deformable cantilever. ACS Photonics 2020, 7, 673–679. [Google Scholar] [CrossRef]
- Zhang, C.; Jing, J.; Wu, Y.; Fan, Y.; Yang, W.; Wang, S.; Song, Q.; Xiao, S. Stretchable all-dielectric metasurfaces with polarization-insensitive and full-spectrum response. ACS Nano 2020, 14, 1418–1426. [Google Scholar] [CrossRef]
- Qiu, C.; Wang, B.; Zhang, N.; Zhang, S.; Liu, J.; Walker, D.; Wang, Y.; Tian, H.; Shrout, T.R.; Xu, Z.; et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 2020, 577, 350–354. [Google Scholar] [CrossRef]
- Deng, C.; Ye, L.; He, C.; Xu, G.; Zhai, Q.; Luo, H.; Liu, Y.; Bell, A.J. Reporting excellent transverse piezoelectric and electro-optic effects in transparent rhombohedral PMN-PT single crystal by engineered domains. Adv. Mater. 2021, 33, e2103013. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Wang, Z.; Chen, X.; Wang, J. Tunable Beam Steering Metasurface Based on a PMN-PT Crystal with a High Electro-Optic Coefficient. Sensors 2025, 25, 55. https://doi.org/10.3390/s25010055
Chen H, Wang Z, Chen X, Wang J. Tunable Beam Steering Metasurface Based on a PMN-PT Crystal with a High Electro-Optic Coefficient. Sensors. 2025; 25(1):55. https://doi.org/10.3390/s25010055
Chicago/Turabian StyleChen, Huan, Zixin Wang, Xin Chen, and Junli Wang. 2025. "Tunable Beam Steering Metasurface Based on a PMN-PT Crystal with a High Electro-Optic Coefficient" Sensors 25, no. 1: 55. https://doi.org/10.3390/s25010055
APA StyleChen, H., Wang, Z., Chen, X., & Wang, J. (2025). Tunable Beam Steering Metasurface Based on a PMN-PT Crystal with a High Electro-Optic Coefficient. Sensors, 25(1), 55. https://doi.org/10.3390/s25010055