Movement Disorders and Smart Wrist Devices: A Comprehensive Study
<p>Main functionalities (already or being integrated) for smart wrist devices in the market.</p> "> Figure 2
<p>Classification of movement disorders with an approximate indication of worldwide incidence.</p> "> Figure 3
<p>Flow diagram generated with PRISMA-S methodology, depicting the reviewers’ process of finding published data on the considered topic and how they decided whether to include it in the review.</p> "> Figure 4
<p>Distribution of the articles by year of publication.</p> "> Figure 5
<p>Distribution of the articles by movement disorder.</p> "> Figure 6
<p>Categorization of the articles related to PD movement disorder.</p> "> Figure 7
<p>Categorization of articles related to epilepsy or seizure detection, based on type of wrist device.</p> "> Figure 8
<p>Graphical representation of the distribution of articles with respect to classification methodologies.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Smart Wrist Devices
Smart Wrist Device Technology
2.2. Movement Disorders Categorization
2.2.1. Hypokinetic Movement Disorders
2.2.2. Hyperkinetic Movement Disorders
2.3. Article Selection, Inclusion and Exclusion Criteria
- -
- Articles published in an indexed journal (conference abstracts, workshop results, preprint articles, and posters were not considered for inclusion in the review).
- -
- Articles in which a smart wrist device is used (both commercial and prototype).
- -
- Articles that present results from studies where data were collected using humans.
- -
- Articles in which the device used for the assessment of the movement disorder is not wrist-worn.
- -
- Articles that do not provide information on movement disorders (these are listed in Section 2.2).
- -
- Articles containing reviews or surveys.
- -
- Articles not produced in the English language.
- -
- Articles downloadable only against payment.
3. Scientific Articles on Movement Disorders
3.1. Parkinson’s Disease
3.1.1. Articles Dealing with Devices’ Feasibility, Usefulness, and Acceptability Used for PD Evaluation
3.1.2. Articles Dealing with PD Symptom Detection Through Smart Wrist Devices
3.1.3. Articles Dealing with PD Assessment Using Smart Wrist Devices
3.1.4. Articles Investigating PD Progress Monitoring Using Smart Wrist Devices
3.1.5. Other Works That Correlate PD and Smart Wrist Devices
3.2. Epilepsy and Seizure Detection
3.2.1. Epilepsy and Seizure Detection Using Empatica Commercial Devices
3.2.2. Epilepsy and Seizure Detection Using Other Smart Wrist Devices (Commercial and Non-Commercial)
3.3. Essential Tremor
3.4. CP/UCP
3.5. Other Movement Disorders (Huntington’s Disease, Gait Disorders, Tourette Syndrome, Ataxia)
3.6. Raw Data Extracted and Classification Methodologies
4. Other Reviews on Movement Disorders or Use of Smart Wrist Devices in Different Contexts
5. Challenges and Open Research Issues
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Decade of Healthy Ageing: Baseline Report; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- World Health Organization. Neurological Disorders: Public Health Challenges; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Jankovic, J.; Hallett, M.; Okun, M.S.; Comella, C.L.; Fahn, S. Principles and Practice of Movement Disorders; Elsevier Health Sciences: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Rajan, S.; Kaas, B.; Moukheiber, E. Movement disorders emergencies. Semin. Neurol. 2019, 39, 125–136. [Google Scholar] [CrossRef]
- Tarakad, A. Clinical rating scales and quantitative assessments of movement disorders. Neurol. Clin. 2020, 38, 231–254. [Google Scholar] [CrossRef]
- Nielsen, G.; Ricciardi, L.; Meppelink, A.M.; Holt, K.; Teodoro, T.; Edwards, M. A simplified version of the psychogenic movement disorders rating scale: The simplified functional movement disorders rating scale (S-FMDRS). Mov. Disord. Clin. Pract. 2017, 4, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Pietracupa, S.; Bruno, E.; Cavanna, A.E.; Falla, M.; Zappia, M.; Colosimo, C. Scales for hyperkinetic disorders: A systematic review. J. Neurol. Sci. 2015, 358, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Grossman, S.N.; Han, S.C.; Balcer, L.J.; Kurzweil, A.; Weinberg, H.; Galetta, S.L.; Busis, N.A. Rapid implementation of virtual neurology in response to the COVID-19 pandemic. Neurology 2020, 94, 1077–1087. [Google Scholar] [CrossRef] [PubMed]
- Porciuncula, F.; Roto, A.V.; Kumar, D.; Davis, I.; Roy, S.; Walsh, C.J.; Awad, L.N. Wearable movement sensors for rehabilitation: A focused review of technological and clinical advances. PMR 2018, 10, S220–S232. [Google Scholar] [CrossRef]
- Dias, D.; Paulo Silva Cunha, J. Wearable health devices—Vital sign monitoring, systems and technologies. Sensors 2018, 18, 2414. [Google Scholar] [CrossRef]
- Ramachandran, A.; Karuppiah, A. A survey on recent advances in wearable fall detection systems. BioMed Res. Int. 2020, 2020, 2167160. [Google Scholar] [CrossRef]
- Campanini, I.; Disselhorst-Klug, C.; Rymer, W.Z.; Merletti, R. Surface EMG in clinical assessment and neurorehabilitation: Barriers limiting its use. Front. Neurol. 2020, 11, 934. [Google Scholar] [CrossRef]
- Casson, A.J. Wearable EEG and beyond. Biomed. Eng. Lett. 2019, 9, 53–71. [Google Scholar] [CrossRef]
- Meena, J.S.; Choi, S.B.; Jung, S.B.; Kim, J.W. Electronic textiles: New age of wearable technology for healthcare and fitness solutions. Mater. Today Bio 2023, 19, 100565. [Google Scholar] [CrossRef]
- Willemse, I.H.; Schootemeijer, S.; van den Bergh, R.; Dawes, H.; Nonnekes, J.H.; van de Warrenburg, B.P. Smartphone applications for Movement Disorders: Towards collaboration and re-use. Park. Relat. Disord. 2024, 120, 105988. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B. PRISMA-S: An extension to the PRISMA statement for reporting literature searches in systematic reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Reid, L.B.; Rose, S.E.; Boyd, R.N. Rehabilitation and neuroplasticity in children with unilateral cerebral palsy. Nat. Rev. Neurol. 2015, 11, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.M. Gait disorders. Am. J. Med. 2018, 131, 602–607. [Google Scholar] [CrossRef]
- Baizabal-Carvallo, J.F.; Alonso-Juarez, M.; Jankovic, J. Functional gait disorders, clinical phenomenology, and classification. Neurol. Sci. 2020, 41, 911–915. [Google Scholar] [CrossRef] [PubMed]
- Akbar, U.; Ashizawa, T. Ataxia. Neurol. Clin. 2015, 33, 225–248. [Google Scholar] [CrossRef] [PubMed]
- Beghi, E. The epidemiology of epilepsy. Neuroepidemiology 2020, 54, 185–191. [Google Scholar] [CrossRef]
- Elger, C.E.; Hoppe, C. Diagnostic challenges in epilepsy: Seizure under-reporting and seizure detection. Lancet Neurol. 2018, 17, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Welton, T.; Cardoso, F.; Carr, J.A.; Chan, L.L.; Deuschl, G.; Jankovic, J.; Tan, E.K. Essential tremor. Nat. Rev. Dis. Primers 2021, 7, 83. [Google Scholar] [CrossRef]
- Walker, F.O. Huntington’s disease. Lancet 2007, 369, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Hallett, M. Tourette syndrome: Update. Brain Dev. 2015, 37, 651–655. [Google Scholar] [CrossRef]
- Debelle, H.; Packer, E.; Beales, E.; Bailey, H.G.; Mc Ardle, R.; Brown, P.; Hunter, H.; Ciravegna, F.; Ireson, N.; Evers, J.; et al. Feasibility and usability of a digital health technology system to monitor mobility and assess medication adherence in mild-to-moderate Parkinson’s disease. Front. Neurol. 2023, 14, 1111260. [Google Scholar] [CrossRef] [PubMed]
- Elm, J.J.; Daeschler, M.; Bataille, L.; Schneider, R.; Amara, A.; Espay, A.J.; Afek, M.; Admati, C.; Teklehaimanot, A.; Simuni, T. Feasibility and utility of a clinician dashboard from wearable and mobile application Parkinson’s disease data. NPJ Digit. Med. 2019, 2, 95. [Google Scholar] [CrossRef]
- Morgan, C.; Craddock, I.; Tonkin, E.L.; Kinnunen, K.M.; McNaney, R.; Whitehouse, S.; Mirmehdi, M.; Heidarivincheh, F.; McConville, R.; Carey, J.; et al. Protocol for PD SENSORS: Parkinson’s Disease Symptom Evaluation in a Naturalistic Setting producing Outcome measuRes using SPHERE technology. An observational feasibility study of multi-modal multi-sensor technology to measure symptoms and activities of daily living in Parkinson’s disease. BMJ Open 2020, 10, e041303. [Google Scholar]
- Gatsios, D.; Antonini, A.; Gentile, G.; Marcante, A.; Pellicano, C.; Macchiusi, L.; Assogna, F.; Spalletta, G.; Gage, H.; Touray, M.; et al. Feasibility and utility of mHealth for the remote monitoring of Parkinson disease: Ancillary study of the PD_manager randomized controlled trial. JMIR Mhealth Uhealth 2020, 8, e16414. [Google Scholar] [CrossRef] [PubMed]
- Silva de Lima, A.L.; Hahn, T.; Evers, L.J.; De Vries, N.M.; Cohen, E.; Afek, M.; Bataille, L.; Daeschler, M.; Claes, K.; Boroojerdi, B.; et al. Feasibility of large-scale deployment of multiple wearable sensors in Parkinson’s disease. PLoS ONE 2017, 12, e0189161. [Google Scholar] [CrossRef] [PubMed]
- Liikkanen, S.; Sinkkonen, J.; Suorsa, J.; Kaasinen, V.; Pekkonen, E.; Kärppä, M.; Scheperjans, F.; Huttunen, T.; Sarapohja, T.; Pesonen, U.; et al. Feasibility and patient acceptability of a commercially available wearable and a smart phone application in identification of motor states in Parkinson’s disease. PLOS Digit. Health 2023, 2, e0000225. [Google Scholar] [CrossRef]
- Arasteh, E.; Mirian, M.S.; Verchere, W.D.; Surathi, P.; Nene, D.; Allahdadian, S.; Doo, M.; Won Park, K.; Ray, S.; McKeown, M.J. An Individualized Multi-Modal Approach for Detection of Medication “Off” Episodes in Parkinson’s Disease via Wearable Sensors. J. Pers. Med. 2023, 13, 265. [Google Scholar] [CrossRef] [PubMed]
- Channa, A.; Ifrim, R.C.; Popescu, D.; Popescu, N. A-WEAR bracelet for detection of hand tremor and bradykinesia in Parkinson’s patients. Sensors 2021, 21, 981. [Google Scholar] [CrossRef] [PubMed]
- Sigcha, L.; Domínguez, B.; Borzì, L.; Costa, N.; Costa, S.; Arezes, P.; López, J.M.; De Arcas, G.; Pavón, I. Bradykinesia detection in Parkinson’s disease using smartwatches’ inertial sensors and deep learning methods. Electronics 2022, 11, 3879. [Google Scholar] [CrossRef]
- Tong, L.; He, J.; Peng, L. CNN-based PD hand tremor detection using inertial sensors. IEEE Sens. Lett. 2021, 5, 1–4. [Google Scholar] [CrossRef]
- Williamson, J.R.; Telfer, B.; Mullany, R.; Friedl, K.E. Detecting Parkinson’s disease from wrist-worn accelerometry in the UK Biobank. Sensors 2021, 21, 2047. [Google Scholar] [CrossRef] [PubMed]
- Brink-Kjær, A.; Wickramaratne, S.D.; Parekh, A.; During, E.H. Detection and Characterization of Walking Bouts Using a Single Wrist-Worn Accelerometer in Free-living Conditions. medRxiv 2023. [Google Scholar] [CrossRef]
- Rastegari, E.; Ali, H.; Marmelat, V. Detection of Parkinson’s Disease Using Wrist Accelerometer Data and Passive Monitoring. Sensors 2022, 22, 9122. [Google Scholar] [CrossRef]
- Pfister, F.M.; Um, T.T.; Pichler, D.C.; Goschenhofer, J.; Abedinpour, K.; Lang, M.; Satoshy, E.; Ceballos-Baumann, A.O.; Hirche, S.; Bishcl, B.; et al. High-resolution motor state detection in Parkinson’s disease using convolutional neural networks. Sci. Rep. 2020, 10, 5860. [Google Scholar] [CrossRef] [PubMed]
- San-Segundo, R.; Zhang, A.; Cebulla, A.; Panev, S.; Tabor, G.; Stebbins, K.; Massa, R.E.; Whitford, A.; de la Torre, F.; Hodgins, J. Parkinson’s disease tremor detection in the wild using wearable accelerometers. Sensors 2020, 20, 5817. [Google Scholar] [CrossRef] [PubMed]
- Kluge, F.; Brand, Y.E.; Micó-Amigo, M.E.; Bertuletti, S.; D’Ascanio, I.; Gazit, E.; Bonci, T.; Kirk, C.; Kuderle, A.; Palmerini, L.; et al. Real-World Gait Detection Using a Wrist-Worn Inertial Sensor: Validation Study. JMIR Form. Res. 2024, 8, e50035. [Google Scholar] [CrossRef] [PubMed]
- Shawen, N.; O’Brien, M.K.; Venkatesan, S.; Lonini, L.; Simuni, T.; Hamilton, J.L.; Ghaffari, R.; Rogers, J.A.; Jayaraman, A. Role of data measurement characteristics in the accurate detection of Parkinson’s disease symptoms using wearable sensors. J. Neuroeng. Rehabil. 2020, 17, 52. [Google Scholar] [CrossRef] [PubMed]
- Mazilu, S.; Blanke, U.; Calatroni, A.; Gazit, E.; Hausdorff, J.M.; Tröster, G. The role of wrist-mounted inertial sensors in detecting gait freeze episodes in Parkinson’s disease. Pervasive Mob. Comput. 2016, 33, 1–16. [Google Scholar] [CrossRef]
- Battista, L.; Romaniello, A. A wearable tool for continuous monitoring of movement disorders: Clinical assessment and comparison with tremor scores. Neurol. Sci. 2021, 42, 4241–4248. [Google Scholar] [CrossRef] [PubMed]
- Battista, L.; Casali, M.; Brusa, L.; Radicati, F.G.; Stocchi, F. Clinical assessment of a new wearable tool for continuous and objective recording of motor fluctuations and ON/OFF states in patients with Parkinson’s disease. PLoS ONE 2023, 18, e0287139. [Google Scholar] [CrossRef]
- Oyama, G.; Burq, M.; Hatano, T.; Marks Jr, W.J.; Kapur, R.; Fernandez, J.; Fujikawa, K.; Furusawa, Y.; Nakatome, K.; Rainaldi, E.; et al. Analytical and clinical validity of wearable, multi-sensor technology for assessment of motor function in patients with Parkinson’s disease in Japan. Sci. Rep. 2023, 13, 3600. [Google Scholar] [CrossRef]
- Kyritsis, K.; Fagerberg, P.; Ioakimidis, I.; Chaudhuri, K.R.; Reichmann, H.; Klingelhoefer, L.; Delopoulos, A. Assessment of real life eating difficulties in Parkinson’s disease patients by measuring plate to mouth movement elongation with inertial sensors. Sci. Rep. 2021, 11, 1632. [Google Scholar] [CrossRef] [PubMed]
- Sigcha, L.; Pavón, I.; Costa, N.; Costa, S.; Gago, M.; Arezes, P.; López, J.M.; De Arcas, G. Automatic resting tremor assessment in Parkinson’s disease using smartwatches and multitask convolutional neural networks. Sensors 2021, 21, 291. [Google Scholar] [CrossRef]
- Chaudhuri, K.R.; Hand, A.; Obam, F.; Belsey, J. Cost-effectiveness analysis of the Parkinson’s KinetiGraph and clinical assessment in the management of Parkinson’s disease. J. Med. Econ. 2022, 25, 774–782. [Google Scholar] [CrossRef]
- Pulliam, C.L.; Burack, M.A.; Heldman, D.A.; Giuffrida, J.P.; Mera, T.O. Motion sensor dyskinesia assessment during activities of daily living. J. Park. Dis. 2014, 4, 609–615. [Google Scholar]
- Hadley, A.J.; Riley, D.E.; Heldman, D.A. Real-world evidence for a smartwatch-based Parkinson’s motor assessment app for patients undergoing therapy changes. Digit. Biomark. 2021, 5, 206–215. [Google Scholar] [CrossRef]
- Adams, J.L.; Kangarloo, T.; Tracey, B.; O’Donnell, P.; Volfson, D.; Latzman, R.D.; Zach, N.; Alexander, R.; Bergethon, P.; Cosman, J.; et al. Using a smartwatch and smartphone to assess early Parkinson’s disease in the WATCH-PD study. npj Park. Dis. 2023, 9, 64. [Google Scholar] [CrossRef]
- Adams, J.L.; Kangarloo, T.; Gong, Y.; Khachadourian, V.; Tracey, B.; Volfson, D.; Latzman, R.D.; Cosman, J.; Edgerton, J.; Anderson, D.; et al. Using a smartwatch and smartphone to assess early Parkinson’s disease in the WATCH-PD study over 12 months. npj Park. Dis. 2024, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Battista, L.; Romaniello, A. A New Wrist-Worn Tool Supporting the Diagnosis of Parkinsonian Motor Syndromes. Sensors 2024, 24, 1965. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Zhou, P.; Wang, X.; Yao, H.; Liang, L.; Zhao, Y.; Zhang, J.; Ban, D.; Zheng, H. A health monitoring system based on flexible triboelectric sensors for intelligence medical internet of things and its applications in virtual reality. Nano Energy 2023, 118, 108984. [Google Scholar] [CrossRef]
- Channa, A.; Ruggeri, G.; Ifrim, R.C.; Mammone, N.; Iera, A.; Popescu, N. Cloud-Connected Bracelet for Continuous Monitoring of Parkinson’s Disease Patients: Integrating Advanced Wearable Technologies and Machine Learning. Electronics 2024, 13, 1002. [Google Scholar] [CrossRef]
- Sica, M.; Varnosfaderani, O.T.; Crowe, C.; Kenny, L.; Bocchino, A.; O’Flynn, B.; Mueller, D.S.; Tedesco, S.; Timmons, S.; Barton, J. Design of a multi-sensors wearable system for continuous home monitoring of people with Parkinson’s. IEEE Access 2004, 12, 38436–38455. [Google Scholar] [CrossRef]
- Fay-Karmon, T.; Galor, N.; Heimler, B.; Zilka, A.; Bartsch, R.P.; Plotnik, M.; Hassin-Baer, S. Home-based monitoring of persons with advanced Parkinson’s disease using smartwatch-smartphone technology. Sci. Rep. 2024, 14, 9. [Google Scholar] [CrossRef]
- Sigcha, L.; Polvorinos-Fernández, C.; Costa, N.; Costa, S.; Arezes, P.; Gago, M.; Lee, C.; López, J.M.; de Arcas, G.; Pavón, I. Monipar: Movement data collection tool to monitor motor symptoms in Parkinson’s disease using smartwatches and smartphones. Front. Neurol. 2023, 14, 1326640. [Google Scholar] [CrossRef]
- Madrid-Navarro, C.J.; Escamilla-Sevilla, F.; Mínguez-Castellanos, A.; Campos, M.; Ruiz-Abellán, F.; Madrid, J.A.; Rol, M.A. Multidimensional circadian monitoring by wearable biosensors in Parkinson’s disease. Front. Neurol. 2018, 9, 157. [Google Scholar] [CrossRef] [PubMed]
- Habets, J.G.; Herff, C.; Kubben, P.L.; Kuijf, M.L.; Temel, Y.; Evers, L.J.; Bloem, B.R.; Starr, P.A.; Gilron, R.; Little, S. Rapid dynamic naturalistic monitoring of bradykinesia in Parkinson’s disease using a wrist-worn accelerometer. Sensors 2021, 21, 7876. [Google Scholar] [CrossRef] [PubMed]
- Lipsmeier, F.; Taylor, K.I.; Postuma, R.B.; Volkova-Volkmar, E.; Kilchenmann, T.; Mollenhauer, B.; Bamdadian, A.; Popp, W.L.; Cheng, W.-Y.; Zhang, Y.-P.; et al. Reliability and validity of the Roche PD Mobile Application for remote monitoring of early Parkinson’s disease. Sci. Rep. 2022, 12, 12081. [Google Scholar] [CrossRef] [PubMed]
- Powers, R.; Etezadi-Amoli, M.; Arnold, E.M.; Kianian, S.; Mance, I.; Gibiansky, M.; Trietsch, D.; Alvarado, A.S.; Kretlow, J.D.; Herrington, T.M. Smartwatch inertial sensors continuously monitor real-world motor fluctuations in Parkinson’s disease. Sci. Transl. Med. 2021, 13, eabd7865. [Google Scholar] [CrossRef] [PubMed]
- Campani, D.; De Luca, E.; Bassi, E.; Busca, E.; Airoldi, C.; Barisone, M.; Canonico, M.; Contaldi, E.; Capello, D.; De Marchi, F.; et al. The prevention of falls in patients with Parkinson’s disease with in-home monitoring using a wearable system: A pilot study protocol. Aging Clin. Exp. Res. 2022, 34, 3017–3024. [Google Scholar] [CrossRef]
- Fisher, J.M.; Hammerla, N.Y.; Ploetz, T.; Andras, P.; Rochester, L.; Walker, R.W. Unsupervised home monitoring of Parkinson’s disease motor symptoms using body-worn accelerometers. Park. Relat. Disord. 2016, 33, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Jafarpour Mahalleh, A.; Zakerzadeh, M. A nonlinear energy sink for tremor suppression using shape memory alloys. J. Vib. Control 2024, 10775463241262146. [Google Scholar] [CrossRef]
- Varghese, J.; Niewöhner, S.; Soto-Rey, I.; Schipmann-Miletić, S.; Warneke, N.; Warnecke, T.; Dugas, M. A smart device system to identify new phenotypical characteristics in movement disorders. Front. Neurol. 2019, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Antonini, A.; Gentile, G.; Giglio, M.; Marcante, A.; Gage, H.; Touray, M.M.; Fotiadis, D.I.; Gatsios, D.; Konitsiotis, S.; Timotijevic, L.; et al. Acceptability to patients, carers and clinicians of an mHealth platform for the management of Parkinson’s disease (PD_Manager): Study protocol for a pilot randomised controlled trial. Trials 2018, 19, 492. [Google Scholar] [CrossRef]
- Haddock, A.; Mitchell, K.T.; Miller, A.; Ostrem, J.L.; Chizeck, H.J.; Miocinovic, S. Automated deep brain stimulation programming for tremor. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1618–1625. [Google Scholar] [CrossRef]
- Sarikhani, P.; Ferleger, B.; Mitchell, K.; Ostrem, J.; Herron, J.; Mahmoudi, B.; Miocinovic, S. Automated deep brain stimulation programming with safety constraints for tremor suppression in patients with Parkinson’s disease and essential tremor. J. Neural Eng. 2022, 19, 046042. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Jenkins, M.E.; Naish, M.D.; Trejos, A.L. Characterization of parkinsonian hand tremor and validation of a high-order tremor estimator. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1823–1834. [Google Scholar] [CrossRef]
- Cohen, S.; Waks, Z.; Elm, J.J.; Gordon, M.F.; Grachev, I.D.; Navon-Perry, L.; Fine, S.; Grossman, I.; Papapetropoulos, S.; Savola, J.M. Characterizing patient compliance over six months in remote digital trials of Parkinson’s and Huntington disease. BMC Med. Inform. Decis. Mak. 2018, 18, 138. [Google Scholar] [CrossRef]
- Yousef, M.A.; Hafizh, M.; Sassi, S.; Muthalif, A.G. Design and efficiency evaluation of a new wearable device for multi-degree suppression of hand pathological tremor. J. Vib. Control 2024, 30, 1200–1213. [Google Scholar] [CrossRef]
- Schalkamp, A.K.; Harrison, N.A.; Peall, K.J.; Sandor, C. Digital outcome measures from smartwatch data relate to non-motor features of Parkinson’s disease. npj Park. Dis. 2024, 10, 110. [Google Scholar] [CrossRef] [PubMed]
- Mammen, J.R.; Speck, R.M.; Stebbins, G.T.; Müller, M.L.; Yang, P.T.; Campbell, M.; Cosman, J.; Crawford, J.E.; Dam, T.; Hellesten, J.; et al. Relative meaningfulness and impacts of symptoms in people with early-stage Parkinson’s disease. J. Park. Dis. 2023, 13, 619–632. [Google Scholar] [CrossRef]
- Ymeri, G.; Salvi, D.; Olsson, C.M.; Wassenburg, M.V.; Tsanas, A.; Svenningsson, P. Quantifying Parkinson’s disease severity using mobile wearable devices and machine learning: The ParkApp pilot study protocol. BMJ Open 2023, 13, e077766. [Google Scholar] [CrossRef]
- Rincón, D.; Valderrama, J.; González, M.C.; Muñoz, B.; Orozco, J.; Montilla, L.; Castano, Y.; Navarro, A. Wristbands containing accelerometers for objective arm swing analysis in patients with Parkinson’s disease. Sensors 2020, 20, 4339. [Google Scholar] [CrossRef] [PubMed]
- Khodakarami, H.; Ricciardi, L.; Contarino, M.F.; Pahwa, R.; Lyons, K.E.; Geraedts, V.J.; Morgante, F.; Leake, A.; Paviour, D.; De Angelis, A.; et al. Prediction of the levodopa challenge test in Parkinson’s disease using data from a wrist-worn sensor. Sensors 2019, 19, 5153. [Google Scholar] [CrossRef] [PubMed]
- Varghese, J.; Alen, C.M.V.; Fujarski, M.; Schlake, G.S.; Sucker, J.; Warnecke, T.; Thomas, C. Sensor validation and diagnostic potential of smartwatches in movement disorders. Sensors 2021, 21, 3139. [Google Scholar] [CrossRef] [PubMed]
- Burq, M.; Rainaldi, E.; Ho, K.C.; Chen, C.; Bloem, B.R.; Evers, L.J.; Helmich, R.C.; Myers, L.; Marks, W.J.; Kapur, R. Virtual exam for Parkinson’s disease enables frequent and reliable remote measurements of motor function. npj Digit. Med. 2022, 5, 65. [Google Scholar] [CrossRef] [PubMed]
- Dominey, T.; Kehagia, A.A.; Gorst, T.; Pearson, E.; Murphy, F.; King, E.; Carroll, C. Introducing the Parkinson’s KinetiGraph into routine Parkinson’s disease care: A 3-year single centre experience. J. Park. Dis. 2020, 10, 1827–1832. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.; Kelly, P.; Huang, C.; Pearlmutter, A.; Izmailova, E.S. Sensor verification and analytical validation of algorithms to measure gait and balance and pronation/supination in healthy volunteers. Sensors 2022, 22, 6275. [Google Scholar] [CrossRef]
- Faizan, M.S.; Muzammil, M. Hand tremor suppression device for patients suffering from Parkinson’s disease. J. Med. Eng. Technol. 2020, 44, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Varghese, J.; Fujarski, M.; Hahn, T.; Dugas, M.; Warnecke, T. The smart device system for movement disorders: Preliminary evaluation of diagnostic accuracy in a prospective study. In Digital Personalized Health and Medicine; IOS Press: Amsterdam, The Netherlands, 2020; pp. 889–893. [Google Scholar]
- Victorino, J.N.; Shibata, Y.; Inoue, S.; Shibata, T. Predicting wearing-off of Parkinson’s disease patients using a wrist-worn fitness tracker and a smartphone: A case study. Appl. Sci. 2021, 11, 7354. [Google Scholar] [CrossRef]
- Abrami, A.; Heisig, S.; Ramos, V.; Thomas, K.C.; Ho, B.K.; Caggiano, V. Using an unbiased symbolic movement representation to characterize Parkinson’s disease states. Sci. Rep. 2020, 10, 7377. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, N.; Demanuele, C.; Zhang, H.; Volfson, D.; Ho, B.; Erb, M.K.; Patel, S. Development of digital biomarkers for resting tremor and bradykinesia using a wrist-worn wearable device. npj Digit. Med. 2020, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- Diao, J.A.; Raza, M.M.; Venkatesh, K.P.; Kvedar, J.C. Watching Parkinson’s disease with wrist-based sensors. npj Digit. Med. 2022, 5, 73. [Google Scholar] [CrossRef]
- Evans, L.; Mohamed, B.; Thomas, E.C. Using telemedicine and wearable technology to establish a virtual clinic for people with Parkinson’s disease. BMJ Open Qual. 2020, 9, e001000. [Google Scholar] [CrossRef] [PubMed]
- López-Blanco, R.; Velasco, M.A.; Méndez-Guerrero, A.; Romero, J.P.; Del Castillo, M.D.; Serrano, J.I.; Rocon, E.; Benito-León, J. Smartwatch for the analysis of rest tremor in patients with Parkinson’s disease. J. Neurol. Sci. 2019, 401, 37–42. [Google Scholar] [CrossRef]
- Sieberts, S.K.; Borzymowski, H.; Guan, Y.; Huang, Y.; Matzner, A.; Page, A.; Bar-Gad, I.; Beaulieu-Jones, B.; El-Hanani, Y.; Goschenhofer, J.; et al. Developing better digital health measures of parkinson’s disease using free living data and a crowdsourced data analysis challenge. PLOS Digit. Health 2023, 2, e0000208. [Google Scholar] [CrossRef]
- Torrado, J.C.; Husebo, B.S.; Allore, H.G.; Erdal, A.; Fæø, S.E.; Reithe, H.; Førsund, E.; Tzoulis, C.; Patrascu, M. Digital phenotyping by wearable-driven artificial intelligence in older adults and people with Parkinson’s disease: Protocol of the mixed method, cyclic ActiveAgeing study. PLoS ONE 2022, 17, e0275747. [Google Scholar] [CrossRef]
- van Brummelen, E.M.; Ziagkos, D.; de Boon, W.M.; Hart, E.P.; Doll, R.J.; Huttunen, T.; Kolehmainen, P.; Groeneveld, G.J. Quantification of tremor using consumer product accelerometry is feasible in patients with essential tremor and Parkinson’s disease: A comparative study. J. Clin. Mov. Disord. 2020, 7, 4. [Google Scholar] [CrossRef]
- de Lima, A.L.S.; Hahn, T.; de Vries, N.M.; Cohen, E.; Bataille, L.; Little, M.A.; Baldus, H.; Bloem, B.R.; Faber, M.J. Large-scale wearable sensor deployment in Parkinson’s patients: The Parkinson@ home study protocol. JMIR Res. Protoc. 2016, 5, e5990. [Google Scholar]
- Gregg, N.M.; Pal Attia, T.; Nasseri, M.; Joseph, B.; Karoly, P.; Cui, J.; Stirling, R.E.; Viana, P.F.; Richner, T.J.; Nurse, E.S.; et al. Seizure occurrence is linked to multiday cycles in diverse physiological signals. Epilepsia 2023, 64, 1627–1639. [Google Scholar] [CrossRef]
- Böttcher, S.; Bruno, E.; Epitashvili, N.; Dümpelmann, M.; Zabler, N.; Glasstetter, M.; Ticcinelli, V.; Thorpe, S.; Lees, S.; Van Laerhoven, K.; et al. Intra- and Inter-Subject Perspectives on the Detection of Focal Onset Motor Seizures in Epilepsy Patients. Sensors 2022, 22, 3318. [Google Scholar] [CrossRef] [PubMed]
- Regalia, G.; Onorati, F.; Lai, M.; Caborni, C.; Picard, R.W. Multimodal wrist-worn devices for seizure detection and advancing research: Focus on the Empatica wristbands. Epilepsy Res. 2019, 153, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Onorati, F.; Regalia, G.; Caborni, C.; Migliorini, M.; Bender, D.; Poh, M.Z.; Frazier, C.; Kovitch Thropp, E.; Mynatt, E.D.; Bidwell, J. Multicenter clinical assessment of improved wearable multimodal convulsive seizure detectors. Epilepsia 2017, 58, 1870–1879. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, M.; Attia, T.P.; Joseph, B.; Gregg, N.M.; Nurse, E.S.; Viana, P.F.; Schulze-Bonhage, A.; Dümpelmann, M.; Worrell, G.; Freestone, D.R.; et al. Non-invasive wearable seizure detection using long–short-term memory networks with transfer learning. J. Neural Eng. 2021, 18, 056017. [Google Scholar] [CrossRef] [PubMed]
- Gaurav, G.; Shukla, R.; Singh, G.; Sahani, A.K. A Machine Learning Approach to the Smartwatch-based Epileptic Seizure Detection System. IETE J. Res. 2022, 791–803. [Google Scholar] [CrossRef]
- Pipatpratarnporn, W.; Muangthong, W.; Jirasakuldej, S.; Limotai, C. Wrist-worn smartwatch and predictive models for seizures. Epilepsia 2023, 64, 2701–2713. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, M.; Pal Attia, T.; Joseph, B.; Gregg, N.M.; Nurse, E.S.; Viana, P.F.; Worrell, G.; Dümpelmann, M.; Richardson, M.P.; Freestone, D.R.; et al. Ambulatory seizure forecasting with a wrist-worn device using long-short term memory deep learning. Sci. Rep. 2021, 11, 21935. [Google Scholar] [CrossRef]
- Mohammadpour Touserkani, F.; Tamilia, E.; Coughlin, F.; Hammond, S.; El Atrache, R.; Jackson, M.; Bendsen-Jensen, M.; Kim, B.; Connolly, J.; Manganaro, S.; et al. Photoplethysmographic evaluation of generalized tonic-clonic seizures. Epilepsia 2020, 61, 1606–1616. [Google Scholar] [CrossRef] [PubMed]
- Vandecasteele, K.; De Cooman, T.; Gu, Y.; Cleeren, E.; Claes, K.; Van Paesschen, W.; Van Huffel, S.; Hunyadi, B. Automated epileptic seizure detection based on wearable ECG and PPG in a hospital environment. Sensors 2017, 17, 2338. [Google Scholar] [CrossRef] [PubMed]
- Meisel, C.; El Atrache, R.; Jackson, M.; Schubach, S.; Ufongene, C.; Loddenkemper, T. Machine learning from wristband sensor data for wearable, noninvasive seizure forecasting. Epilepsia 2020, 61, 2653–2666. [Google Scholar] [CrossRef] [PubMed]
- Bruno, E.; Biondi, A.; Böttcher, S.; Vértes, G.; Dobson, R.; Folarin, A.; Ranjan, Y.; Rashid, Z.; Manyakov, N.; Rintala, A.; et al. Remote assessment of disease and relapse in epilepsy: Protocol for a multicenter prospective cohort study. JMIR Res. Protoc. 2020, 9, e21840. [Google Scholar] [CrossRef]
- Shah, S.; Gutierrez, E.G.; Hopp, J.L.; Wheless, J.; Gil-Nagel, A.; Krauss, G.L.; Crone, N.E. Prospective multicenter study of continuous tonic-clonic seizure monitoring on Apple Watch in epilepsy monitoring units and ambulatory environments. Epilepsy Behav. 2024, 158, 109908. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Stirling, R.E.; Payne, D.E.; Nurse, E.S.; Kameneva, T.; Cook, M.J.; Viana, P.F.; Richardson, M.P.; Brinkmann, B.H.; Freestone, D.R.; et al. Forecasting seizure likelihood from cycles of self-reported events and heart rate: A prospective pilot study. EbioMedicine 2023, 93, 104656. [Google Scholar] [CrossRef] [PubMed]
- Mittlesteadt, J.; Bambach, S.; Dawes, A.; Wentzel, E.; Debs, A.; Sezgin, E.; Digby, D.; Huang, Y.; Ganger, A.; Bhatnagar, S.; et al. Evaluation of an activity tracker to detect seizures using machine learning. J. Child Neurol. 2020, 35, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Kusmakar, S.; Karmakar, C.K.; Yan, B.; O’Brien, T.J.; Muthuganapathy, R.; Palaniswami, M. Automated detection of convulsive seizures using a wearable accelerometer device. IEEE Trans. Biomed. Eng. 2018, 66, 421–432. [Google Scholar] [CrossRef]
- Biondi, A.; Simblett, S.K.; Viana, P.F.; Laiou, P.; Fiori, A.M.; Nurse, E.; Schreuder, M.; Pal, D.K.; Richardson, M.P. Feasibility and acceptability of an ultra-long-term at-home EEG monitoring system (EEG@ HOME) for people with epilepsy. Epilepsy Behav. 2024, 151, 109609. [Google Scholar] [CrossRef]
- Dong, C.; Ye, T.; Long, X.; Aarts, R.M.; van Dijk, J.P.; Shang, C.; Liao, X.; Chen, W.; Lai, W.; Chen, L.; et al. A two-layer ensemble method for detecting epileptic seizures using a self-annotation bracelet with motor sensors. IEEE Trans. Instrum. Meas. 2022, 71, 1–13. [Google Scholar] [CrossRef]
- Kusmakar, S.; Karmakar, C.; Yan, B.; Muthuganapathy, R.; Kwan, P.; O’Brien, T.J.; Palaniswami, M.S. Novel features for capturing temporal variations of rhythmic limb movement to distinguish convulsive epileptic and psychogenic nonepileptic seizures. Epilepsia 2019, 60, 165–174. [Google Scholar] [CrossRef]
- Ge, A.; Gutierrez, E.G.; Lee, S.W.; Shah, S.; Carmenate, Y.; Collard, M.; Crone, N.E.; Krauss, G.L. Seizure triggers identified postictally using a smart watch reporting system. Epilepsy Behav. 2022, 126, 108472. [Google Scholar] [CrossRef]
- Patterson, A.L.; Mudigoudar, B.; Fulton, S.; McGregor, A.; Van Poppel, K.; Wheless, M.C.; Brooks, L.; Wheless, J.W. SmartWatch by SmartMonitor: Assessment of seizure detection efficacy for various seizure types in children, a large prospective single-center study. Pediatr. Neurol. 2015, 53, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.E.; Langer, J.; Kinfe, M. Seizure detection watch improves quality of life for adolescents and their families. Epilepsy Behav. 2019, 98, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Lazeron, R.H.; Thijs, R.D.; Arends, J.; Gutter, T.; Cluitmans, P.; Van Dijk, J.; Tan, F.I.Y.; Hofstra, W.; Donjacour, C.E.H.M.; Leijten, F.; et al. Multimodal nocturnal seizure detection: Do we need to adapt algorithms for children? Epilepsia Open 2022, 7, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Stirling, R.E.; Grayden, D.B.; D’Souza, W.; Cook, M.J.; Nurse, E.; Freestone, D.R.; Payne, D.E.; Brinkmann, B.H.; Attia, T.P.; Viana, P.F.; et al. Forecasting seizure likelihood with wearable technology. Front. Neurol. 2021, 12, 704060. [Google Scholar] [CrossRef] [PubMed]
- Naganur, V.D.; Kusmakar, S.; Chen, Z.; Palaniswami, M.S.; Kwan, P.; O’Brien, T.J. The utility of an automated and ambulatory device for detecting and differentiating epileptic and psychogenic non-epileptic seizures. Epilepsia Open 2019, 4, 309–317. [Google Scholar] [CrossRef]
- Arends, J.; Thijs, R.D.; Gutter, T.; Ungureanu, C.; Cluitmans, P.; Van Dijk, J.; van Andel, J.; Tan, F.; de Weerd, A.; Vledder, B.; et al. Multimodal nocturnal seizure detection in a residential care setting: A long-term prospective trial. Neurology 2018, 91, e2010–e2019. [Google Scholar] [CrossRef]
- Van de Vel, A.; Verhaert, K.; Ceulemans, B. Critical evaluation of four different seizure detection systems tested on one patient with focal and generalized tonic and clonic seizures. Epilepsy Behav. 2014, 37, 91–94. [Google Scholar] [CrossRef]
- Karthikeyan, G.; Kousalya, G. GTCS-Vagus Nerve Stimulator Automation Using Private IoT-Blockchain Smartcontract. Comput. Syst. Sci. Eng. 2023, 44, 1325–1340. [Google Scholar] [CrossRef]
- Page, R.A. Technology-enabled seizure detection and reporting: The epilepsy network project. Epilepsy Res. 2019, 153, 85–87. [Google Scholar] [CrossRef]
- Johansson, D.; Ohlsson, F.; Krýsl, D.; Rydenhag, B.; Czarnecki, M.; Gustafsson, N.; Wipenmyr, J.; McKelvey, T.; Malmgren, K. Tonic-clonic seizure detection using accelerometry-based wearable sensors: A prospective, video-EEG controlled study. Seizure 2019, 65, 48–54. [Google Scholar] [CrossRef]
- Zheng, X.; Vieira Campos, A.; Ordieres-Meré, J.; Balseiro, J.; Labrador Marcos, S.; Aladro, Y. Continuous monitoring of essential tremor using a portable system based on smartwatch. Front. Neurol. 2017, 8, 96. [Google Scholar] [CrossRef] [PubMed]
- Wile, D.J.; Ranawaya, R.; Kiss, Z.H. Smart watch accelerometry for analysis and diagnosis of tremor. J. Neurosci. Methods 2014, 230, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Fernandes, J.; Kim, H.; Coetzer, H. Comparative effectiveness of transcutaneous afferent patterned stimulation therapy for essential tremor: A randomized pragmatic clinical trial. Tremor Other Hyperkinetic Mov. 2023, 13, 38. [Google Scholar] [CrossRef] [PubMed]
- Pahwa, R.; Dhall, R.; Ostrem, J.; Gwinn, R.; Lyons, K.; Ro, S.; Dietiker, C.; Luthra, N.; Chidester, P.; Hamner, S.; et al. An acute randomized controlled trial of noninvasive peripheral nerve stimulation in essential tremor. Neuromodulation 2019, 22, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Vieira, A.; Marcos, S.L.; Aladro, Y.; Ordieres-Meré, J. Activity-aware essential tremor evaluation using deep learning method based on acceleration data. Park. Relat. Disord. 2019, 58, 17–22. [Google Scholar] [CrossRef]
- van der Linden, C.; Berger, T.; Brandt, G.A.; Strelow, J.N.; Jergas, H.; Baldermann, J.C.; Visser-Vandewalle, V.; Fink, G.R.; Barbe, M.T.; Petry-Schmelzer, J.N.; et al. Accelerometric classification of resting and postural tremor amplitude. Sensors 2023, 23, 8621. [Google Scholar] [CrossRef]
- Biswas, A.; Bhattacharjee, S.; Choudhury, D.R.; Das, P. Tremor stabilization improvement using anti-tremor band: A machine learning–based technique. Res. Biomed. Eng. 2023, 39, 1007–1014. [Google Scholar] [CrossRef]
- van Alen, C.M.; Brenner, A.; Warnecke, T.; Varghese, J. Smartwatch Versus Routine Tremor Documentation: Descriptive Comparison. JMIR Form. Res. 2024, 8, e51249. [Google Scholar] [CrossRef]
- Kramer, G.; Dominguez-Vega, Z.T.; Laarhoven, H.S.; Brandsma, R.; Smit, M.; van der Stouwe, A.M.; Elting, J.W.J.; Maurits, N.M.; Rosmalen, J.G.M.; Tijssen, M.A. Similar association between objective and subjective symptoms in functional and organic tremor. Park. Relat. Disord. 2019, 64, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Isaacson, S.H.; Peckham, E.; Tse, W.; Waln, O.; Way, C.; Petrossian, M.T.; Dahodwala, N.; Soileau, M.J.; Lew, M.; Dietiker, C.; et al. Prospective home-use study on non-invasive neuromodulation therapy for essential tremor. Tremor Other Hyperkinetic Mov. 2020, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- López-Blanco, R.; Velasco, M.A.; Méndez-Guerrero, A.; Romero, J.P.; Del Castillo, M.D.; Serrano, J.I.; Benito-León, J.; Bermejo-Pareja, F.; Rocon, E. Essential tremor quantification based on the combined use of a smartphone and a smartwatch: The NetMD study. J. Neurosci. Methods 2018, 303, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Brillman, S.; Colletta, K.; Borucki, S.; Lin, P.T.; Waln, O.; Petrossian, M.; Khemani, P.; Rajagopal, A.; Rosenbluth, K.H.; Khosla, D. Real-world evidence of transcutaneous afferent patterned stimulation for essential tremor. Tremor Other Hyperkinetic Mov. 2022, 12, 29. [Google Scholar] [CrossRef]
- Buki, E.; Katz, R.; Zacksenhouse, M.; Schlesinger, I. Vib-bracelet: A passive absorber for attenuating forearm tremor. Med. Biol. Eng. Comput. 2018, 56, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.P.; Dawe, J.; Musselman, K.E.; Petrevska, M.; Zariffa, J.; Andrysek, J.; Biddiss, E. Measuring functional hand use in children with unilateral cerebral palsy using accelerometry and machine learning. Dev. Med. Child Neurol. 2024, 66, 1380–1389. [Google Scholar] [CrossRef]
- Turner, A.; Jackson, D.; Officer, E.; Boyne-Nelson, C.; Zielinska, Z.; Dinraj, D.; Blickwedel, J.; Nappey, T.; Rapley, T.; Turpin, H.; et al. Can wrist-worn devices and a smartphone application influence arm activity in children with unilateral cerebral palsy? A proof-of-concept study. Front. Rehabil. Sci. 2023, 3, 1060191. [Google Scholar] [CrossRef]
- Srinivasan, S.; Amonkar, N.; Kumavor, P.D.; Bubela, D. Measuring upper extremity activity of children with unilateral cerebral palsy using wrist-worn accelerometers: A pilot study. Am. J. Occup. Ther. 2024, 78, 7802180050. [Google Scholar] [CrossRef]
- Shahane, V.; Kumavor, P.; Morgan, K.; Friel, K.M.; Srinivasan, S.M. A protocol for a single-arm interventional study assessing the effects of a home-based joystick-operated ride-on-toy navigation training programme to improve affected upper extremity function and spontaneous use in children with unilateral cerebral palsy (UCP). BMJ Open 2023, 13, e071742. [Google Scholar] [PubMed]
- Bard-Pondarré, R.; Al-Abiad, N.; Verdun, S.; Naaïm, A.; Agopyan, H.; Chaléat-Valayer, E.; Vuillerot, C. Does accelerometry reflect hand function in infants at risk of unilateral cerebral palsy? A secondary analysis of BB-Bim results. Res. Dev. Disabil. 2023, 139, 104549. [Google Scholar] [CrossRef]
- Gardas, S.S.; Lysaght, C.; McMillan, A.G.; Kantak, S.; Willson, J.D.; Patterson, C.G.; Surkar, S.M. Bimanual Movement Characteristics and Real-World Performance Following Hand–Arm Bimanual Intensive Therapy in Children with Unilateral Cerebral Palsy. Behav. Sci. 2023, 13, 681. [Google Scholar] [CrossRef]
- Gantelius, S.; Vikerfors, S.; Edqvist, J.J.; von Walden, F.; Hagströmer, M.; Pontén, E. Time-matched accelerometers on limbs and waist in children with CP give new insights into real-life activities after botulinum toxin treatment: A proof of concept study. J. Pediatr. Rehabil. Med. 2023, 16, 125–137. [Google Scholar] [CrossRef]
- Poitras, I.; Gagné-Pelletier, L.; Clouâtre, J.; Flamand, V.H.; Campeau-Lecours, A.; Mercier, C. Optimizing Epoch Length and Activity Count Threshold Parameters in Accelerometry: Enhancing Upper Extremity Use Quantification in Cerebral Palsy. Sensors 2024, 24, 1100. [Google Scholar] [CrossRef]
- Mitchell, L.E.; Ziviani, J.; Boyd, R.N. A randomized controlled trial of web-based training to increase activity in children with cerebral palsy. Dev. Med. Child Neurol. 2016, 58, 767–773. [Google Scholar] [CrossRef]
- Gordon, M.F.; Grachev, I.D.; Mazeh, I.; Dolan, Y.; Reilmann, R.; Loupe, P.S.; Fine, S.; Navon-Perry, L.; Gross, N.; Papapetropoulos, S.; et al. Quantification of motor function in Huntington disease patients using wearable sensor devices. Digit. Biomark. 2020, 3, 103–115. [Google Scholar] [CrossRef]
- Lipsmeier, F.; Simillion, C.; Bamdadian, A.; Tortelli, R.; Byrne, L.M.; Zhang, Y.P.; Wolf, D.; Smith, A.V.; Czech, C.; Gossens, C.; et al. A remote digital monitoring platform to assess cognitive and motor symptoms in Huntington disease: Cross-sectional validation study. J. Med. Internet Res. 2022, 24, e32997. [Google Scholar] [CrossRef] [PubMed]
- Keren, K.; Busse, M.; Fritz, N.E.; Muratori, L.M.; Gazit, E.; Hillel, I.; Scheinowitz, M.; Gurevich, T.; Inbar, N.; Omer, N.; et al. Quantification of daily-living gait quantity and quality using a wrist-worn accelerometer in Huntington’s disease. Front. Neurol. 2021, 12, 719442. [Google Scholar] [CrossRef] [PubMed]
- Cola, G.; Vecchio, A.; Avvenuti, M. Continuous authentication through gait analysis on a wrist-worn device. Pervasive Mob. Comput. 2021, 78, 101483. [Google Scholar] [CrossRef]
- Bikias, T.; Iakovakis, D.; Hadjidimitriou, S.; Charisis, V.; Hadjileontiadis, L.J. DeepFoG: An IMU-based detection of freezing of gait episodes in Parkinson’s disease patients via deep learning. Front. Robot. AI 2023, 8, 537384. [Google Scholar] [CrossRef] [PubMed]
- Kiprijanovska, I.; Gjoreski, H.; Gams, M. Detection of gait abnormalities for fall risk assessment using wrist-worn inertial sensors and deep learning. Sensors 2020, 20, 5373. [Google Scholar] [CrossRef] [PubMed]
- Kocuvan, P.; Hrastič, A.; Kareska, A.; Gams, M. Predicting a fall based on gait anomaly detection: A comparative study of wrist-worn three-axis and mobile phone-based accelerometer sensors. Sensors 2023, 23, 8294. [Google Scholar] [CrossRef]
- Gupta, A.S.; Luddy, A.C.; Khan, N.C.; Reiling, S.; Thornton, J.K. Real-life wrist movement patterns capture motor impairment in individuals with ataxia-telangiectasia. Cerebellum 2023, 22, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Maiquez, B.M.; Smith, C.; Dyke, K.; Chou, C.P.; Kasbia, B.; McCready, C.; Wright, H.; Jackson, J.K.; Farr, I.; Badinger, E.; et al. A double-blind, sham-controlled, trial of home-administered rhythmic 10-Hz median nerve stimulation for the reduction of tics, and suppression of the urge-to-tic, in individuals with Tourette syndrome and chronic tic disorder. J. Neuropsychol. 2023, 17, 540–563. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.; Chesmore, A.; Legner, C.M.; Pandey, S. Trends in Workplace Wearable Technologies and Connected-Worker Solu-tions for Next-Generation Occupational Safety, Health, and Productivity. Adv. Intell. Syst. 2022, 4, 2100099. [Google Scholar] [CrossRef]
- Santos-Gago, J.M.; Ramos-Merino, M.; Vallarades-Rodriguez, S.; Alvarez-Sabucedo, L.M.; Fernandez-Iglesias, M.J.; Garcia-Soidan, J.L. Innovative Use of Wrist-Worn Wearable Devices in the Sports Domain: A Systematic Review. Electronics 2019, 8, 1257. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Biswas, N.; Jones, L.D.; Kesari, S.; Ashili, S. Smart consumer wearables as digital diagnostic tools: A review. Diagnostics 2022, 12, 2110. [Google Scholar] [CrossRef]
- Mughal, H.; Javed, A.R.; Rizwan, M.; Alamdhor, A.S.; Kryvinska, N. Parkinson’s Disease Management via Wearable Sensors: A Systematic Review. IEEE Access 2022, 10, 35219–35237. [Google Scholar] [CrossRef]
- Huang, J.; Wang, H.; Wu, Q.; Yin, J.; Zhou, H.; He, Y. Clinical research on neurological and psychiatric diagnosis and monitoring using wearable devices: A literature review. Interdiscip. Med. 2024, 2, e20230037. [Google Scholar] [CrossRef]
Database | Query |
---|---|
TITLE-ABS (((“Smartwatch” OR “Smartwatches” OR “Wristband” OR “Wristbands” OR “Bracelet” OR “Bracelets” OR “Smart watch” OR “Wrist-worn” OR “Wrist device” OR “Wrist devices” OR “Actigraph” OR “Apple watch” OR “Garmin” OR “Fitbit”) AND (“Movement disorder” OR “Movement disorders” OR “Gait disorder” OR “Gait disorders” OR “Gait” OR “Parkinson’s disease” OR “Parkinson” OR “Parkinson’s” OR “Movement disease” OR “Ataxia” OR “Dystonia” OR “Essential Tremor” OR “Huntington’s Disease” OR “Multiple System Atrophy” OR “MSA” OR “Myoclonus” OR “Progressive Supranuclear Palsy” OR “PSP” OR “Unilateral cerebral Palsy” OR “UCP” OR “Rett Syndrome” OR “Secondary Parkinsonism” OR “Spasticity” OR “Tardive Dyskinesia” OR “TD” OR “Tourette Syndrome” OR “Tics” OR “Wilson’s Disease” OR “Chorea” OR “Epilepsy” OR “Seizure”))) (LIMIT-TO (DOCTYPE, “ar”)) | |
((Smartwatch [Title/Abstract]) OR (Smartwatches [Title/Abstract]) OR (Wristband [Title/Abstract]) OR (Wristbands [Title/Abstract]) OR (Bracelet [Title/Abstract]) OR (Bracelets [Title/Abstract]) OR (Smart watch [Title/Abstract]) OR (Wrist-worn [Title/Abstract]) OR (Wrist device [Title/Abstract]) OR (Wrist devices [Title/Abstract]) OR (Actigraph [Title/Abstract]) OR (Apple watch [Title/Abstract]) OR (Garmin [Title/Abstract]) OR (Fitbit [Title/Abstract])) AND ((Movement Disorder [Title/Abstract]) OR ((Movement Disorders [Title/Abstract]) OR (Gait disorder [Title/Abstract]) OR (Gait disorders [Title/Abstract]) OR (Gait [Title/Abstract]) OR (Movement disease [Title/Abstract]) OR (Parkinson’s disease [Title/Abstract]) OR (Parkinson [Title/Abstract]) OR (Parkinson’s [Title/Abstract]) OR (Ataxia [Title/Abstract]) OR (Dystonia [Title/Abstract]) OR (Essential Tremor [Title/Abstract]) OR (Huntington’s Disease [Title/Abstract]) OR (Multiple System Atrophy [Title/Abstract]) OR (MSA [Title/Abstract]) OR (Myoclonus [Title/Abstract]) OR (Progressive Supranuclear Palsy [Title/Abstract]) OR (PSP [Title/Abstract]) OR (Unilateral Cerebral Palsy [Title/Abstract]) OR (UCP [Title/Abstract]) OR (Rett Syndrome [Title/Abstract]) OR (Secondary Parkinsonism [Title/Abstract]) OR (Spasticity [Title/Abstract]) OR (Tardive Dyskinesia [Title/Abstract]) OR (TD [Title/Abstract]) OR (Tourette Syndrome [Title/Abstract]) OR (Tics [Title/Abstract]) OR (Wilson’s Disease [Title/Abstract]) OR (Chorea [Title/Abstract]) OR (Epilepsy [Title/Abstract]) OR Seizure [Title/Abstract])) | |
(((“Document Title”: Smartwatch) OR (“Document Title”: Smartwatches) OR (“Document Title”: Wristband) OR (“Document Title”: Wristbands) OR (“Document Title”: Bracelet) OR (“Document Title”: Bracelets) OR (“Document Title”: “Smart watch”) OR (“Document Title”: Wrist-worn) OR (“Document Title”: “Wrist device”) OR (“Document Title”: “Wrist devices”) OR (“Document Title”: Actigraph) OR (“Document Title”: “Apple watch”) OR (“Document Title”: Garmin) OR (“Document Title”: Fitbit)) AND ((“Document Title”: “Movement disorder”) OR (“Document Title”: “Gait disorder”) OR (“Document Title”: “Gait disorders”) OR (“Document Title”: “Gait”) OR (“Document Title”: “Parkinson’s disease”) OR (“Document Title”: Parkinson) OR (“Document Title”: Parkinson’s) OR (“Document Title”: “Movement disease”) OR (“Document Title”: Ataxia) OR (“Document Title”: Dystonia) OR (“Document Title”: “Essential Tremor”) OR (“Document Title”: “Huntington’s Disease”) OR (“Document Title”: “Multiple System Atrophy”) OR (“Document Title”: MSA) OR (“Document Title”: Myoclonus) OR (“Document Title”: “Progressive Supranuclear Palsy”) OR (“Document Title”: PSP) OR (“Document Title”: “Unilateral Cerebral Palsy”) OR (“Document Title”: UCP) OR (“Document Title”: “Rett Syndrome”) OR (“Document Title”: “Secondary Parkinsonism”) OR (“Document Title”: Spasticity) OR (“Document Title”: “Tardive Dyskinesia”) OR (“Document Title”: TD) OR (“Document Title”: “Tourette Syndrome”) OR (“Document Title”: “Wilson’s Disease”) OR (“Document Title”: Chorea) OR (“Document Title”: Epilepsy) OR (“Document Title”: Seizure))) OR (((“Abstract”: Smartwatch) OR (“Abstract”: Smartwatches) OR (“Abstract”: Wristband) OR (“Abstract”: Wristbands) OR (“Abstract”: Bracelet) OR (“Abstract”: Bracelets) OR (“Abstract”: “Smart watch”) OR (“Abstract”: Wrist-worn) OR (“Abstract”: “Wrist device”) OR (“Abstract”: “Wrist devices”) OR (“Abstract”: Actigraph) OR (“Abstract”: “Apple watch”) OR (“Abstract”: Garmin) OR (“Abstract”: Fitbit)) AND ((“Abstract”: “movement disorder”) OR (“Abstract”: “gait disorder”) OR (“Abstract”: “gait disorders”) OR (“Abstract”: “gait”) OR (“Abstract”: “parkinson’s disease”) OR (“Abstract”: Parkinson) OR (“Abstract”: Parkinson’s) OR (“Abstract”: “movement disease”) OR (“Abstract”: Ataxia) OR (“Abstract”: Dystonia) OR (“Abstract”: “Essential Tremor”) OR (“Abstract”: “Huntington’s Disease”) OR (“Abstract”: “Multiple System Atrophy”) OR (“Abstract”: MSA) OR (“Abstract”: Myoclonus) OR (“Abstract”: “Progressive Supranuclear Palsy”) OR (“Abstract”: PSP) OR (“Abstract”: “Unilateral Cerebral Palsy”) OR (“Abstract”: UCP) OR (“Abstract”: “Rett Syndrome”) OR (“Abstract”: “Secondary Parkinsonism”) OR (“Abstract”: Spasticity) OR (“Abstract”: “Tardive Dyskinesia”) OR (“Abstract”: TD) OR (“Abstract”: “Tourette Syndrome”) OR (“Abstract”: “Wilson’s Disease”) OR (“Abstract”: Chorea) OR (“Abstract”: Epilepsy) OR (“Abstract”: Seizure))) |
Brand | Model | Operating System | Main Sensors | Price | |
---|---|---|---|---|---|
Apple | Series 9 | watchOS | Electric heart rate ECG Third-generation optical heart rate Temperature Compass Altimeter High-g accelerometer High dynamic range gyroscope Ambient light | € 439 | |
Garmin | VivoActive 5 | GarminOS | Compass Accelerometer Thermometer Glonass GPS Pulse Ox Blood Oxygen Saturation Optical heartbeat Ambient light | € 249 | |
Fitbit Sense 2 | Fitbit OS | Glonass Optical heartbeat Altimeter Accelerometer GPS Ambient light Skin conductance | € 219 | ||
Huawei | Watch D | HarmonyOS 2.1 | Accelerometer Gyroscope Optical heart rate Ambient light Skin temperature Differential pressure | € 299 | |
Xiaomi | Watch 2 Pro | Wear OS | Optical heart rate Accelerometer Gyroscope Ambient light Electronic compass Barometer Bioelectrical impedance | € 211 | |
AmazFit | GTR 4 | Zepp OS | Optical heart rate Accelerometer Gyroscope Blood Oxygen Saturation GPS | € 199 |
Brand | Model | Dimensions | Main Sensors | Price | |
---|---|---|---|---|---|
Xiaomi | Smart Band 8 | 48 mm × 22.5 mm × 10.9 mm | High precision 6-axis PPG heart rate Ambient light | € 34 | |
Fitbit Charge 6 | 36.7 mm × 23 mm × 11.2 mm | 3-axis accelerometer NFC Optical heartbeat Sp02 monitoring Ambient light | € 129 | ||
Honor | Band 7 | 43 mm × 25.4 mm × 10.9 mm | Optical heartbeat Sp02 monitoring NFC | € 59 | |
Samsung | Galaxy Fit | 44.6 mm × 18.6 mm × 11.2 mm | 3-axis accelerometer Gyroscope Optical heartbeat | € 119 | |
Garmin | VivoSmart 5 | 25.5 mm × 19.5 mm × 10.7 mm | 3-axis accelerometer Optical heartbeat Sp02 monitoring Ambient light | € 149 |
Ref. | Commercial Devices | Kind of Smart Wrist Device | #End-Users | Data Availability |
---|---|---|---|---|
[28] | yes | Mobvoi, Ticwatch Pro | 30 | yes |
[29] | yes | Apple Watch Series 2 | 51 | subject to third-party restrictions |
[30] | no | 24 | no | |
[31] | yes | Microsoft Band | 75 | no |
[32] | yes | Pebble | 953 | yes |
[33] | yes | Garmin Vivosmart 4 | 65 | yes |
Ref. | Commercial Devices | Kind of Smart Wrist Device | #End-Users | Data Availability |
---|---|---|---|---|
[34] | yes | Empatica E4 | 25 | no |
[35] | no | 40 | no | |
[36] | yes | Android Smartwatch | 13 | yes |
[37] | no | 10 | no | |
[38] | yes | Axivity AX-3 | 380 | yes |
[39] | yes | Axivity AX-6 | 8 | no |
[40] | yes | ActiGraph GT3X | 60 | no |
[41] | yes | Microsoft Band 2 | 30 | yes |
[42] | yes | Axivity AX-3 | 12 | no |
[43] | no | 83 | no | |
[44] | yes | Apple Watch Series 2 | 13 | subject to third-party restrictions |
[45] | no | 11 | yes |
Ref. | Commercial Devices | Kind of Smart Wrist Device | #End-Users | Data Availability |
---|---|---|---|---|
[46] | yes | PD-watch | 20 | no |
[47] | yes | PD-watch | 12 | no |
[48] | yes | Verily Study Watch | 96 | yes |
[49] | yes | Huawei Watch 2 | 40 | yes |
[50] | yes | Android Smartwatch | 18 | yes |
[51] | no | 154 | yes | |
[52] | yes | KinetiSense | 15 | no |
[53] | yes | Mobvoi TicWatch E | 16 | yes |
[54,55] | yes | Clario Opal, Apple Watch 4 and 5 | 82 | yes |
[56] | no | 100 | no |
Ref. | Commercial Devices | Kind of Smart Wrist Device | #End-Users | Data Availability |
---|---|---|---|---|
[57] | no | N.A. | no | |
[58] | no | N.A. | yes | |
[59] | no | 10 | no | |
[60] | yes | Apple Watch Series 4 | 21 | yes |
[61] | yes | Mobvoi, Ticwatch Pro | 28 | yes |
[62] | yes | Kronowise 3.0 | 24 | no |
[63] | yes | Gaitup Physilog 4 | 20 | yes |
[64] | yes | Motorola G 360 | 316 | yes |
[65] | yes | Apple Watch | 343 | subject to third-party restrictions |
[66] | yes | TED bracelet | 52 | no |
[67] | yes | Axivity AX-3 | 34 | no |
Ref. | Commercial Devices | Kind of Smart Wrist Device | #End-Users | Data Availability |
---|---|---|---|---|
[68] | no | N.A. | yes | |
[69] | yes | Apple Watch Series 4 | 318 | subject to third-party restrictions |
[70] | yes | Microsoft Band | 200 | no |
[71] | no | 10 | no | |
[72] | yes | LG-W100 | 15 | yes |
[73] | no | 18 | no | |
[74] | yes | Apple Watch | 68 | subject to third-party restrictions |
[75] | no | N.A. | no | |
[76] | yes | Verily Study Watch | 149 | yes |
[77] | yes | Clario Opal, Apple Watch 4 and 5 | 40 | yes |
[78] | yes | GENEActiv | 30 | no |
[79] | no | 21 | no | |
[80] | no | 191 | no | |
[81] | yes | Apple Watch Series 3 and 4 | 450 | subject to third-party restrictions |
[82] | yes | Verily Study Watch | 388 | yes |
[83] | yes | Parkinson’s KinetiGraph | 166 | no |
[84] | yes | ActiGraph GT9X Link | N.A. | no |
[85] | no | N.A. | no | |
[86] | yes | Apple Watch Series 4 | 318 | subject to third-party restrictions |
[87] | yes | Garmin Vivosmart4 | 2 | yes |
[88] | yes | Opal APDM | 80 | no |
[89] | yes | Opal APDM | 154 | no |
[90] | yes | Verily Study Watch | 370 | no |
[91] | yes | Parkinson’s KinetiGraph | 61 | yes |
[92] | yes | Smartwatch3 (SW3) Sony | 22 | no |
[93] | no | N.A. | yes | |
[94] | yes | Fitbit Sense and Empatica E4 | 17 | no |
[95] | yes | Mbientlab MetaWear, Apple Watch 2, Huawei watch | 10 | yes |
[96] | yes | Pebble | 1000 | yes |
Ref. | Commercial Devices | Kind of Smart Wrist Device | #End-Users | Data Availability |
---|---|---|---|---|
[97] | yes | Empatica E4 | 14 | yes |
[98] | yes | Empatica E4 | 243 | no |
[99] | yes | Empatica E4 and Embrace | 9 | no |
[100] | yes | Empatica E3 and E4, iCalm | 69 | no |
[101] | yes | Empatica E4 | 38 | yes |
[102] | yes | Empatica E4 | 11 | no |
[103] | yes | Empatica E4 | 30 | no |
[104] | yes | Empatica E4 | 6 | no |
[105] | yes | Empatica E4 | 174 | no |
[106] | yes | Empatica E4 | 11 | yes |
[107] | yes | Empatica E4 | 69 | no |
[108] | yes | Empatica E4 | 32 | no |
Ref. | Commercial Devices | Kind of Smart Wrist Device | #End-Users | Data Availability |
---|---|---|---|---|
[109] | yes | Apple Watch Series 3, 4 and 5 | 106 | subject to third-party restrictions |
[110] | yes | Fitbit | 13 | yes |
[111] | yes | Fitbit Charge 2 | 40 | no |
[112] | yes | Apple iPod touch | 79 | subject to third-party restrictions |
[113] | yes | FitBit Charge 3, 4 and 5 | 12 | yes |
[114] | no | N.A. | no | |
[115] | yes | N.A. | 79 | no |
[116] | yes | Apple Watch | 999 | subject to third-party restrictions |
[117] | yes | SmartMonitor Smartwatch | 41 | no |
[118] | yes | SmartMonitor Smartwatch | 10 | no |
[119] | yes | Nightwatch | 18 | no |
[120] | yes | Fitbit | 11 | yes |
[121] | yes | Apple Ipod touch | 11 | subject to third-party restrictions |
[122] | yes | Nightwatch | 34 | yes |
[123] | yes | Epi-Care Free | 1 | no |
[124] | yes | N.A. | 1 | no |
[125] | yes | Garmin | 316 | no |
[126] | yes | Shimmer3 | 11 | no |
Ref. | Commercial Devices | Kind of Smart Wrist Device | #End-Users | Data Availability |
---|---|---|---|---|
[127] | yes | Pebble | 8 | no |
[128] | no | 41 | no | |
[129] | yes | Cala Trio | 276 | no |
[130] | yes | Cala One | 77 | no |
[131] | yes | Pebble | 20 | no |
[132] | yes | GENEActiv© Original | 41 | yes |
[133] | no | 4 | no | |
[134] | yes | N.A. | 219 | no |
[135] | yes | Shimmer3 | 33 | yes |
[136] | no | 205 | no | |
[137] | yes | Sony Smartwatch3 | 34 | no |
[138] | yes | Cala Trio | 321 | no |
[139] | no | 12 | no |
Ref. | Commercial Devices | Kind of Smart Wrist Device | #End-Users | Data Availability |
---|---|---|---|---|
[140] | yes | wGT3X-BT Actigraph and Mbientlab MetaMotion | 10 | no |
[141] | yes | iWown i5 Plus | 14 | yes |
[142] | yes | N.A. | 18 | no |
[143] | yes | N.A. | 11 | no |
[144] | yes | Axivity AX3 | 6 | no |
[145] | yes | Actigraphy GT9X Link | 25 | yes |
[146] | yes | Actigraphy GT1M | 11 | no |
[147] | yes | ActiGraph GT9X-BT | 29 | yes |
[148] | yes | ActiGraph GT3X+ | 101 | no |
Ref. | Commercial Devices | Kind of Smart Wrist Device | #End-Users | Data Availability |
---|---|---|---|---|
[149] | yes | N.A. | 15 | no |
[150] | yes | Motorola Moto G 360 | 160 | yes |
[151] | yes | Activinsights GENEActiv | 64 | yes |
[152] | yes | Shimmer3 | 20 | yes |
[153] | no | 18 | yes | |
[154] | yes | Mobvoi TicWatch E | 18 | no |
[155] | yes | Caretronic wristband | 17 | yes |
[156] | yes | GENEActiv Original | 31 | yes |
[157] | No | 135 | no |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caroppo, A.; Manni, A.; Rescio, G.; Carluccio, A.M.; Siciliano, P.A.; Leone, A. Movement Disorders and Smart Wrist Devices: A Comprehensive Study. Sensors 2025, 25, 266. https://doi.org/10.3390/s25010266
Caroppo A, Manni A, Rescio G, Carluccio AM, Siciliano PA, Leone A. Movement Disorders and Smart Wrist Devices: A Comprehensive Study. Sensors. 2025; 25(1):266. https://doi.org/10.3390/s25010266
Chicago/Turabian StyleCaroppo, Andrea, Andrea Manni, Gabriele Rescio, Anna Maria Carluccio, Pietro Aleardo Siciliano, and Alessandro Leone. 2025. "Movement Disorders and Smart Wrist Devices: A Comprehensive Study" Sensors 25, no. 1: 266. https://doi.org/10.3390/s25010266
APA StyleCaroppo, A., Manni, A., Rescio, G., Carluccio, A. M., Siciliano, P. A., & Leone, A. (2025). Movement Disorders and Smart Wrist Devices: A Comprehensive Study. Sensors, 25(1), 266. https://doi.org/10.3390/s25010266