Embroidered Transmission Lines with Conductive Yarns: Challenges, Modeling, Fabrication, and Experimental Performance Assessment
<p>Evaluation process of embroidered transmission lines using the proposed technique.</p> "> Figure 2
<p>(<b>a</b>) Double-stitch (ds) pattern formation. (<b>b</b>) Close-up of an embroidered microstrip sample with density 1 line/mm, with single and double stitching, respectively.</p> "> Figure 3
<p>Copper reference sample and d4 sample.</p> "> Figure 4
<p>Measurement set-up of the proposed method.</p> "> Figure 5
<p>A two-port network of a microstrip line.</p> "> Figure 6
<p>Lockstitch formation and thread positions.</p> "> Figure 7
<p>Conductive fabric feeding (CFC) and yarn contact (YC) feeding techniques.</p> "> Figure 8
<p>Measured loss (L[dB]) of 10 cm-long Shieldex-embroidered microstrip samples with single stitching.</p> "> Figure 9
<p>Measured loss (L[dB]) of 10 cm-long Elitex-embroidered microstrip samples with single stitching.</p> "> Figure 10
<p>Close-ups of sample d5 embroidered with Shieldex and Elitex yarn, respectively.</p> "> Figure 11
<p>Measured forward loss factor (FLF [dB]) of 10 cm-long Elitex-embroidered microstrip samples with single stitching.</p> "> Figure 12
<p>Measured loss (L[dB]) of 10 cm-long Shieldex-embroidered microstrip samples with double stitching.</p> "> Figure 13
<p>Measured loss (L[dB]) of 10 cm-long Elitex-embroidered microstrip samples with double stitching.</p> "> Figure 14
<p>Manufacturing repeatability (a–b samples comparison) of Shieldex- and Elitex-embroidered microstrip samples.</p> "> Figure 15
<p>Measurement repeatability (first–second measurement comparison) of Shieldex-embroidered microstrip samples.</p> "> Figure 16
<p>Measurement repeatability (first–second measurement comparison) of Elitex-embroidered microstrip samples.</p> "> Figure 17
<p>(<b>a</b>) Initial estimation of the effective conductivity of sample d4 (Shieldex), throughout the whole frequency range (0.5–4.0 GHz), and (<b>b</b>) estimation of the effective conductivity individually for each frequency region.</p> "> Figure 18
<p>Microscope zoomed-in photos of single-stitch embroidered patterns on the interface point for densities d1, d4, d7 for (<b>a</b>) Shieldex and (<b>b</b>) Elitex yarns.</p> "> Figure 18 Cont.
<p>Microscope zoomed-in photos of single-stitch embroidered patterns on the interface point for densities d1, d4, d7 for (<b>a</b>) Shieldex and (<b>b</b>) Elitex yarns.</p> "> Figure 19
<p>Measured loss (L[dB]) of 10 cm-long Shieldex-embroidered microstrip samples with single stitching with densities equal to 4 and 7 lines/mm, employing CFC and YC feeding.</p> "> Figure 20
<p>Measured loss (L[dB]) of 10 cm-long Elitex-embroidered microstrip samples with single stitching with densities equal to 4 and 7 lines/mm, employing CFC and YC feeding.</p> "> Figure 21
<p>Measured loss (L[dB]) of 10 cm-long Shieldex-embroidered microstrip samples with double stitching for densities equal to 4 and 7 lines/mm, employing CFC and YC feeding.</p> "> Figure 22
<p>Measured loss (L[dB]) of 10 cm-long Elitex-embroidered microstrip samples with double stitching for densities equal to 4 and 7 lines/mm, employing CFC and YC feeding.</p> ">
Abstract
:1. Introduction
- (a)
- The design and fabrication of embroidered TLs, instead of using the rigid conventional ones (e.g., coaxial cables). The use of TLs aims to interconnect the sensors placed on the body. The embroidered textile nature of the lines facilitates their integration into clothes and enables the flexibility of the user [2].
- (b)
- The design and fabrication of embroidered antennas acting as sensors. Such work is described in [15], where embroidered strain sensors are presented. Commercial embroidered force-strength sensors are provided in [16]. A theoretical analysis and implementation of wearable sensors and embroidered sensors is described in [17].
- (c)
- The design and fabrication of embroidered antennas operating as Rx/Tx antennas in a wearable system for the transmission of information from on-body sensors to an off-body monitor [4].
- (1)
- The selection of the most appropriate conductive yarn in terms of conductivity, stress and thermal tolerance, mechanical flexibility, and size;
- (2)
- The effective evaluation of specific yarns and embroidery patterns designed for special applications;
- (3)
- (4)
- (5)
1.1. Facing the Challenges of Embroidered Conductive Yarns
- The proposed measurement technique provides a stable and repeatable environment.
- The design settings and fabrication of embroidered patterns for TLs can be acceptable in terms of manufacturing repeatability when adjustments of the design CAD are made, considering the yarn thickness and speed (tolerance) of the embroidery machine.
- Increasing the stitch density will not always improve performance.
- Low performance stitch densities can be greatly improved by using double-stitching patterns.
- Double stitching is more beneficial for low-performance yarns and deteriorates high-performance yarns at high frequencies (>3 GHz).
- Effective conductivity of embroidery patterns is frequency-dependent, with high degradation after 3 GHz.
- Using more meters of yarn is not always advantageous.
- Direct contact (yarn contact) feeding yields more losses than the interface contact (conductive fabric contact) for medium stitch densities and improved performance at higher stitch densities.
1.2. Embroidered Lines Evaluation Process and Sections Briefing
2. Methodology and Materials
2.1. Measurements Setup and Loss Calculation
2.2. Conductive Yarns and Materials Used
3. Embroidery Design and Implementation
4. Effect of Embroidery Density and Yarn Properties
4.1. Single Stitching
- A.
- Proposed technique (mismatch losses exclusion)
- B.
- Comparison of the proposed technique with Forward Loss Factor (FLF) technique
4.2. Double Stitching
4.3. Repeatability of Fabrication and Measurements
4.4. Effective Conductivity
4.5. Conductive Yarn Usage Comparison
5. Feeding Techniques Comparison (CFC vs. YC)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El Gharbi, M.; Fernández-García, R.; Ahyoud, S.; Gil, I. A review of flexible wearable antenna sensors: Design, fabrication methods, and applications. Materials 2020, 13, 3781. [Google Scholar] [CrossRef] [PubMed]
- Corchia, L.; Monti, G.; Tarricone, L. Wearable Antennas: Nontextile Versus Fully Textile Solutions. IEEE Antennas Propag. Mag. 2019, 61, 71–83. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Volakis, J.L. Textile Antennas and Sensors for Body-Worn Applications. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1690–1693. [Google Scholar] [CrossRef]
- FHashim, F.; Mahadi, W.N.L.B.; Latef, T.B.A.; Othman, M.B. Key Factors in the Implementation of Wearable Antennas for WBNs and ISM Applications: A Review WBNs and ISM Applications: A Review. Electronics 2022, 11, 2470. [Google Scholar] [CrossRef]
- Roh, J.-S.; Chi, Y.-S.; Lee, J.-H.; Tak, Y.; Nam, S.; Kang, T.J. Embroidered Wearable Multiresonant Folded Dipole Antenna for FM Reception. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 803–806. [Google Scholar] [CrossRef]
- Wang, Z.; Lee, L.Z.; Psychoudakis, D.; Volakis, J.L. Embroidered multiband body-worn antenna for GSM/PCS/WLAN communications. IEEE Trans. Antennas Propag. 2014, 62, 3321–3329. [Google Scholar] [CrossRef]
- Tsolis, A.; Bakogianni, S.; Angelaki, C.; Alexandridis, A.A. A Review of Clothing Components in the Development of Wearable Textile Antennas: Design and Experimental Procedure. Sensors 2023, 23, 3289. [Google Scholar] [CrossRef]
- Anbalagan, A.; Sundarsingh, E.F.; Ramalingam, V.S.; Kapileshvar, A.P.; Subramaniam, K.; Asif, M.A.; Manikandan, E. Smart Dynamic Position Tracking Wearable for Geofencing in Marine Environment. IEEE Trans. Instrum. Meas. 2023, 72, 1–9. [Google Scholar] [CrossRef]
- Tahseen, M.M.; Kishk, A.A. C-band linearly polarised textile-reflectarray (TRA) using conductive thread. IET Microw. Antennas Propag. 2017, 11, 982–989. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, M.; Xia, B.; Wang, S.; Wang, M.; Chen, M.; Dai, S.; Wang, T.; Ye, T.T. E-Textile Battery-Less Displacement and Strain Sensor for Human Activities Tracking. IEEE Internet Things J. 2021, 8, 16486–16497. [Google Scholar] [CrossRef]
- Zhong, J.; Kiourti, A.; Sebastian, T.; Bayram, Y.; Volakis, J.L. Conformal Load-Bearing Spiral Antenna on Conductive Textile Threads. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 230–233. [Google Scholar] [CrossRef]
- Luo, C.; Gil, I.; Fernandez-Garcia, R. Textile UHF-RFID Antenna Embroidered on Surgical Masks for Future Textile Sensing Applications. IEEE Trans. Antennas Propag. 2022, 70, 5246–5253. [Google Scholar] [CrossRef]
- Toivonen, M.; Bjorninen, T.; Sydanheimo, L.; Ukkonen, L.; Rahmat-Samii, Y. Impact of moisture and washing on the performance of embroidered UHF RFID tags. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1590–1593. [Google Scholar] [CrossRef]
- Khan, Z.; Chen, X.; He, H.; Xu, J.; Wang, T.; Cheng, L.; Ukkonen, L.; Virkki, J. Glove-Integrated Passive UHF RFID Tags—Fabrication, Testing and Applications. IEEE J. Radio Freq. Identif. 2019, 3, 127–132. [Google Scholar] [CrossRef]
- Colli Alfaro, J.G.; Trejos, A.L. Design and Fabrication of Embroidered Textile Strain Sensors: An Alternative to Stitch-Based Strain Sensors. Sensors 2023, 23, 1503. [Google Scholar] [CrossRef]
- Embroidered Textile FSR Sensors—Media Interaction Lab. Available online: https://mi-lab.org/embroidered-textile-fsr-sensors/ (accessed on 25 September 2024).
- Tan, S. Design, Construction and Modelling of Embroidered Sensors Made from Graphene and Metal Coated Yarn. Ph.D. Thesis, University of Manchester, Manchester, UK, 2019. [Google Scholar]
- Tsolis, A.; Whittow, W.; Alexandridis, A.; Vardaxoglou, J. Embroidery and Related Manufacturing Techniques for Wearable Antennas: Challenges and Opportunities. Electronics 2014, 3, 314–338. [Google Scholar] [CrossRef]
- Kiourti, A.; Volakis, J.L. Wearable Antennas and Electronics; Artech House: Norwood, MA, USA, 2022. [Google Scholar]
- Ivsic, B.; Bonefacic, D.; Bartolic, J. Considerations on embroidered textile antennas for wearable applications. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1708–1711. [Google Scholar] [CrossRef]
- Seager, R.; Zhang, S.; Chauraya, A.; Whittow, W.; Vardaxoglou, Y.; Acti, T.; Dias, T. Effect of the Fabrication Parameters on the Performance of Embroidered Antennas. IET Microw. Antennas Propag. 2013, 7, 1174–1181. [Google Scholar] [CrossRef]
- Mao, C.X.; Vital, D.; Werner, D.H.; Wu, Y.; Bhardwaj, S. Dual-Polarized Embroidered Textile Armband Antenna Array with Omnidirectional Radiation for On-/Off-Body Wearable Applications. IEEE Trans. Antennas Propag. 2020, 68, 2575–2584. [Google Scholar] [CrossRef]
- Vital, D.; Volakis, J.L.; Bhardwaj, S. A wireless power transfer system (WPTS) using misalignment resilient, on-fabric resonators for wearable applications. In Proceedings of the 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 4–6 August 2020; pp. 1184–1187. [Google Scholar] [CrossRef]
- Vital, D.; Gaire, P.; Bhardwaj, S.; Volakis, J.L. An Ergonomic Wireless Charging System for Integration with Daily Life Activities. IEEE Trans. Microw. Theory Tech. 2021, 69, 947–954. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, L.; Li, Y.; Ye, T.T. Textile based embroidery-friendly RFID antenna design techniques. In Proceedings of the 2019 IEEE International Conference on RFID (RFID), Phoenix, AZ, USA, 2–4 April 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Kiourti, A.; Volakis, J.L. High-accuracy conductive textiles for embroidered antennas and circuits. In Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; p. 1194. [Google Scholar] [CrossRef]
- Acti, T.; Chauraya, A.; Zhang, S.; Whittow, W.G.; Seager, R.; Vardaxoglou, J.C.; Dias, T. Embroidered wire dipole antennas using novel copper yarns. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 638–641. [Google Scholar] [CrossRef]
- Kiourti, A.; Volakis, J.L. High-Geometrical-Accuracy Embroidery Process for Textile Antennas with Fine Details. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1474–1477. [Google Scholar] [CrossRef]
- Perron, R.R.G.; Huang, G.C.; Iskander, M.F. Textile electromagnetic coupler for monitoring vital signs and changes in lung water content. IEEE Antennas Wirel. Propag. Lett. 2014, 14, 151–154. [Google Scholar] [CrossRef]
- Cottet, D.; Member, S.; Grzyb, J.; Member, S. Electrical Characterization of Textile Transmission Lines. IEEE Trans. Adv. Packag. 2003, 26, 182–190. [Google Scholar] [CrossRef]
- Shaw, R.K.; Long, B.R.; Werner, D.H.; Gavrin, A. The characterization of conductive textile materials intended for radio frequency applications. IEEE Antennas Propag. Mag. 2007, 49, 28–40. [Google Scholar] [CrossRef]
- Vital, D.; Zhong, J.; Bhardwaj, S.; Volakis, J.L. Loss-Characterization and Guidelines for Embroidery of Conductive Textiles. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 1301–1302. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Bayram, Y.; Volakis, J.L. Embroidered conductive fibers on polymer composite for conformal antennas. IEEE Trans. Antennas Propag. 2012, 60, 4141–4147. [Google Scholar] [CrossRef]
- Wang, T.; Dai, S.; Liu, Y.; Ye, T.T. Battery-Less Sensing of Body Movements Through Differential Backscattered RFID Signals. IEEE Sens. J. 2022, 22, 8490–8498. [Google Scholar] [CrossRef]
- Angelaki, C.; Bakogianni, S.; Tsolis, A.; Alexandridis, A.A. Embroidered Textile Patch Antennas: Design and Implementation Methodology. In Proceedings of the 2022 30th Telecommunications Forum (TELFOR), Belgrade, Serbia, 15–16 November 2022. [Google Scholar] [CrossRef]
- Kiourti, A.; Lee, C.; Volakis, J.L. Fabrication of Textile Antennas and Circuits with 0.1 mm Precision. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 151–153. [Google Scholar] [CrossRef]
- Moradi, E.; Björninen, T.; Ukkonen, L.; Rahmat-samii, Y. Effects of Sewing Pattern on the Performance of Embroidered Dipole-Type RFID Tag Antennas. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1482–1485. [Google Scholar] [CrossRef]
- Koski, K.; Sydänheimo, L.; Rahmat-Samii, Y.; Ukkonen, L. Fundamental characteristics of electro-textiles in wearable UHF RFID patch antennas for body-centric sensing systems. IEEE Trans. Antennas Propag. 2014, 62, 6454–6462. [Google Scholar] [CrossRef]
- Alharbi, S.; Chaudhari, S.; Inshaar, A.; Shah, H.; Zou, C.; Harne, R.L.; Kiourti, A. E-Textile Origami Dipole Antennas with Graded Embroidery for Adaptive RF Performance. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2218–2222. [Google Scholar] [CrossRef]
- Alharbi, S.; Ze, Q.; Zhao, R.; Kiourti, A. Magnetoactuated reconfigurable antennas on hard-magnetic soft substrates and E-threads. IEEE Trans. Antennas Propag. 2020, 68, 5882–5892. [Google Scholar] [CrossRef]
- El Gharbi, M.; Martinez-Estrada, M.; Fernández-García, R.; Gil, I. Determination of salinity and sugar concentration by means of a circular-ring monopole textile antenna-based sensor. IEEE Sens. J. 2021, 21, 23751–23760. [Google Scholar] [CrossRef]
- Baum, T.C.; Ziolkowski, R.W.; Ghorbani, K.; Nicholson, K.J. Embroidered Active Microwave Composite Preimpregnated Electronics-Pregtronics. IEEE Trans. Microw. Theory Tech. 2016, 64, 3175–3186. [Google Scholar] [CrossRef]
- Vital, D.; Bhardwaj, S.; Volakis, J.L. Textile-Based Large Area RF-Power Harvesting System for Wearable Applications. IEEE Trans. Antennas Propag. 2019, 68, 2323–2331. [Google Scholar] [CrossRef]
- Rayner, P.; Zhang, S.; Cadman, D.; Vardaxoglou, J.C.; Whittow, W. Wearable and meshed wideband monopole antennas and their interactions with the human body. IET Microw. Antennas Propag. 2019, 13, 2412–2418. [Google Scholar] [CrossRef]
- Vital, D.; Monshi, M.M.; Bhardwaj, S.; Raj, P.M.; Volakis, J.L. Flexible Ink-Based Interconnects for Textile-Integrated RF Components. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020; pp. 151–152. [Google Scholar] [CrossRef]
- Ginestet, G.; Brechet, N.; Torres, J.; Moradi, E.; Ukkonen, L.; Bjorninen, T.; Virkki, J. Embroidered Antenna-Microchip Interconnections and Contour Antennas in Passive UHF RFID Textile Tags. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1205–1208. [Google Scholar] [CrossRef]
- Chen, X.; He, H.; Gou, M.; Yang, Y.; Sydanheimo, L.; Ukkonen, L.; Virkki, J. Passive Moisture Sensor Based on Conductive and Water-Soluble Yarns. IEEE Sens. J. 2020, 20, 10989–10995. [Google Scholar] [CrossRef]
- Luo, C.; Gil, I.; Fernández-García, R. Electro-Textile UHF-RFID Compression Sensor for Health-Caring Applications. IEEE Sensors J. 2022, 12, 12332–12338. [Google Scholar] [CrossRef]
- Kanemoto, M.; Yoshida, K.; Nishimura, F.; Nishikawa, H.; Tanaka, A.; Douseki, T. Ultrasmall-button-shaped rectifier module tied with conductive-yarn antenna for wearable accessories powered by microwaves. In Proceedings of the 2020 IEEE Wireless Power Transfer Conference (WPTC), Seoul, Republic of Korea, 15–19 November 2020; pp. 349–352. [Google Scholar] [CrossRef]
- Martinez, I.; Mao, C.-X.; Vital, D.; Shahariar, H.; Werner, D.H.; Jur, J.S.; Bhardwaj, S. Compact, low-profile and robust textile antennas with improved bandwidth for easy garment integration. IEEE Access 2020, 8, 77490–77500. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, L.; Pan, K.; Leng, T.; Li, Y.; Danoon, L.; Hu, Z. e-Textile embroidered wearable near-field communication RFID antennas. IET Microw. Antennas Propag. 2019, 13, 99–104. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Bayram, Y.; Volakis, J.L. Multilayer printing of embroidered RF circuits on polymer composites. In Proceedings of the 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, USA, 3–8 July 2011; pp. 278–281. [Google Scholar] [CrossRef]
- Shah, A.H.; Patel, P.N. Embroidered Annular Elliptical E-Textile Antenna Sensor for Knee Effusion Diagnosis. IEEE Sens. J. 2023, 23, 4809–4818. [Google Scholar] [CrossRef]
- Available online: https://www.shieldex.de/en-us/products/shieldex-117-17/ (accessed on 26 October 2024).
- Available online: https://www.imbut.de/en/special-threads (accessed on 26 October 2024).
- Available online: https://qwed.com.pl/resonators_spdr.html (accessed on 26 October 2024).
- Available online: https://lessemf.com/product/shieldit-super-fabric/ (accessed on 26 October 2024).
- Agu, D.; Eike, R.J.; Cliett, A.; Michaelson, D.; Cloud, R.; Li, Y. Investigation of e-textile dipole antenna performance based on embroidery parameters. Text. Res. J. 2021, 92, 2771–2783. [Google Scholar] [CrossRef]
- Eike, R.J.; Depping, A.; Cliett, A. Technical Considerations and Specifications for Conductive Machine Embroidery. Trends in Text. Eng. Fash. Technol. 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Zhang, S.; Whittow, W.; Seager, R.; Chauraya, A.; Vardaxoglou, J.Y.C. Non-uniform mesh for embroidered microstrip antennas. IET Microw. Antennas Propag. 2017, 11, 1086–1091. [Google Scholar] [CrossRef]
- Krifa, M. Electrically Conductive Textile Materials—Application in Flexible Sensors and Antennas. Textiles 2021, 1, 239–257. [Google Scholar] [CrossRef]
- Zhang, D.; Rahmat-Samii, Y. A novel flexible electrotextile 3T MRI RF coil array for carotid artery imaging: Design, characterization, and prototyping. IEEE Trans. Antennas Propag. 2019, 67, 5115–5125. [Google Scholar] [CrossRef]
- Acti, T.; Zhang, S.; Chauraya, A.; Whittow, W.; Seager, R.; Dias, T.; Vardaxoglou, Y. High performance Flexible Fabric Electronics for Megahertz Frequency Communications. In Proceedings of the 2011 Loughborough Antennas & Propagation Conference, Loughborough, UK, 14–15 November 2011; pp. 1–4. [Google Scholar] [CrossRef]
- SPinapati, P.; Chen, S.J.; Brittain, J.; Caldow, A.; Fumeaux, C. Embroidered Ground Planes for Wearable Antennas. IEEE Trans. Compon. Packag. Manuf. Technol. 2022, 12, 1029–1039. [Google Scholar] [CrossRef]
- Bakogianni, S.; Tsolis, A.; Angelaki, C.; Alexandridis, A.A. On the Development of Embroidered Reconfigurable Dipole Antennas: A Textile Approach to Mechanical Reconfiguration. Electronics 2024, 13, 3649. [Google Scholar] [CrossRef]
Sample Name | Density [lines/mm] | Total Stitches |
---|---|---|
d1 | 1 | 315 |
d2 | 2 | 410 |
d3 | 3 | 509 |
d4 | 4 | 706 |
d5 | 5 | 803 |
d6 | 6 | 900 |
d7 | 7 | 1000 |
d1 (ds) | 1 (ds) | 527 |
d2 (ds) | 2 (ds) | 717 |
d3 (ds) | 3 (ds) | 915 |
d4 (ds) | 4 (ds) | 1313 |
d5 (ds) | 5 (ds) | 1503 |
d6 (ds) | 6 (ds) | 1697 |
d7 (ds) | 7 (ds) | 1897 |
Yarn | Yield [m/kg] | Dtex | # of Plies | # of Filaments | Linear Resistance [Ω/m] |
---|---|---|---|---|---|
Shieldex | 35,000 | 117 | 2 | 34 (17 × 2) | 3000 |
Elitex | 22,000 | 235 | 1 | 34 | 20 |
Sample | 0.5–1.5 GHz | 1.5–3.0 GHz | 3.0–4.0 GHz | 0.5–1.5 GHz | 1.5–3.0 GHz | 3.0–4.0 GHz |
---|---|---|---|---|---|---|
Shieldex σeff [(S/m) × 103] | Elitex σeff [(S/m) × 103] | |||||
d1 | 8.5 | 8.0 | 7.5 | 18.0 | 13.0 | 10.0 |
d2 | 12.0 | 11.0 | 9.0 | 47.0 | 31.0 | 19.0 |
d3 | 15.0 | 12.5 | 11.5 | 75.0 | 47.0 | 28.0 |
d4 | 20.0 | 16.5 | 14.5 | 5000.0 | 41,000.0 | 41,000.0 |
d5 | 16.0 | 12.5 | 12.0 | 140.0 | 70.0 | 28.0 |
d6 | 15.0 | 10.5 | 9.0 | 110.0 | 140.0 | 45.0 |
d7 | 14.0 | 11.0 | 10.0 | 120.0 | 70.0 | 45.0 |
Sample | 0.5–1.5 GHz | 1.5–3.0 GHz | 3.0–4.0 GHz | 0.5–1.5 GHz | 1.5–3.0 GHz | 3.0–4.0 GHz |
---|---|---|---|---|---|---|
Shieldex σeff [(S/m) × 103] | Elitex σeff [(S/m) ) × 103] | |||||
d1 (ds) | 23.0 | 20.5 | 17.0 | 75.0 | 60.0 | 47.0 |
d2 (ds) | 36.0 | 30.0 | 24.0 | 180.0 | 200.0 | 140.0 |
d3 (ds) | 30.0 | 22.0 | 18.0 | 600.0 | 200.0 | 36.0 |
d4 (ds) | 40.0 | 27.5 | 21.0 | 140.0 | 100.0 | 40.0 |
d5 (ds) | 35.0 | 25.0 | 19.0 | 300.0 | 90.0 | 30.0 |
d6 (ds) | 36.0 | 23.0 | 17.0 | 500.0 | 90.0 | 65.0 |
d7 (ds) | 39.0 | 25.0 | 19.0 | 200.0 | 100.0 | 40.0 |
Sample | Yarn Usage [m] | Sample | Yarn Usage [m] |
---|---|---|---|
d1 | 2.07 | d1 (ds) | 3.21 |
d2 | 2.58 | d2 (ds) | 4.24 |
d3 | 3.12 | d3 (ds) | 5.31 |
d4 | 4.18 | d4 (ds) | 7.46 |
d5 | 4.70 | d5 (ds) | 8.48 |
d6 | 5.23 | d6 (ds) | 9.53 |
d7 | 5.77 | d7 (ds) | 10.61 |
Sample | 0.5–1.5 GHz | 1.5–3.0 GHz | 3.0–4.0 GHz | 0.5–1.5 GHz | 1.5–3.0 GHz | 3.0–4.0 GHz |
---|---|---|---|---|---|---|
Shieldex σeff [(S/m) × 103] | Elitex σeff [(S/m) × 103] | |||||
d4_CFC | 20.0 | 16.5 | 14.5 | 5000.0 | 41,000.0 | 41,000.0 |
d4_YC | 12.5 | 11.0 | 9.0 | 300.0 | 300.0 | 200.0 |
−37.5% | −33.3% | −37.9% | −94.0% | −99.3% | −99.5% |
Sample | 0.5–1.5 GHz | 1.5–3.0 GHz | 3.0–4.0 GHz | 0.5–1.5 GHz | 1.5–3.0 GHz | 3.0–4.0 GHz |
---|---|---|---|---|---|---|
Shieldex σeff [(S/m) × 103] | Elitex σeff [(S/m) × 103] | |||||
d7_CFC | 14.0 | 11.0 | 10.0 | 120.0 | 70.0 | 45.0 |
d7_YC | 22.0 | 17.5 | 14.5 | 130.0 | 110.0 | 200.0 |
57.1% | 59.1% | 45.0% | 8.3% | 57.1% | 344.4% |
Sample | 0.5–1.5 GHz | 1.5–3.0 GHz | 3.0–4.0 GHz | 0.5–1.5 GHz | 1.5–3.0 GHz | 3.0–4.0 GHz |
---|---|---|---|---|---|---|
Shieldex σeff [(S/m) × 103] | Elitex σeff [(S/m) × 103] | |||||
d4 (ds)_CFC | 40.0 | 27.5 | 21.0 | 140.0 | 100.0 | 40.0 |
d4 (ds)_YC | 23.0 | 16.5 | 12.5 | 1000.0 | 1000.0 | 390.0 |
−42.5% | −40.0% | −40.5% | 614.3% | 900.0% | 875.0% |
Sample | 0.5–1.5 GHz | 1.5–3.0 GHz | 3.0–4.0 GHz | 0.5–1.5 GHz | 1.5–3.0 GHz | 3.0–4.0 GHz |
---|---|---|---|---|---|---|
Shieldex σeff [(S/m) × 103] | Elitex σeff [(S/m) × 103] | |||||
d7 (ds)_CFC | 39.0 | 25.0 | 19.0 | 200.0 | 100.0 | 40.0 |
d7 (ds)_YC | 32.0 | 21.0 | 16.5 | 200.0 | 120.0 | 120.0 |
−17.9% | −16.0% | −13.2% | 0.0% | 20.0% | 200.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelaki, C.; Tsolis, A.; Bakogianni, S.; Alexandridis, A.A. Embroidered Transmission Lines with Conductive Yarns: Challenges, Modeling, Fabrication, and Experimental Performance Assessment. Sensors 2024, 24, 6961. https://doi.org/10.3390/s24216961
Angelaki C, Tsolis A, Bakogianni S, Alexandridis AA. Embroidered Transmission Lines with Conductive Yarns: Challenges, Modeling, Fabrication, and Experimental Performance Assessment. Sensors. 2024; 24(21):6961. https://doi.org/10.3390/s24216961
Chicago/Turabian StyleAngelaki, Chrysanthi, Aris Tsolis, Sofia Bakogianni, and Antonis A. Alexandridis. 2024. "Embroidered Transmission Lines with Conductive Yarns: Challenges, Modeling, Fabrication, and Experimental Performance Assessment" Sensors 24, no. 21: 6961. https://doi.org/10.3390/s24216961
APA StyleAngelaki, C., Tsolis, A., Bakogianni, S., & Alexandridis, A. A. (2024). Embroidered Transmission Lines with Conductive Yarns: Challenges, Modeling, Fabrication, and Experimental Performance Assessment. Sensors, 24(21), 6961. https://doi.org/10.3390/s24216961