Craniofacial 3D Morphometric Analysis with Smartphone-Based Photogrammetry
<p>Materials: (<b>a</b>) PhotoMeDAS working system; (<b>b</b>) PhotoMeDAS data capture.</p> "> Figure 2
<p>Academia 50 3D scanner: (<b>a</b>) instrument; (<b>b</b>) technical specifications taken from <a href="https://www.creaform3d.com/" target="_blank">https://www.creaform3d.com/</a> (accessed on 11 October 2023).</p> "> Figure 3
<p>3D data: (<b>a</b>) Point cloud visualisation in Agisoft Metashape; (<b>b</b>) 3D model obtained with Academia 50 and imported into CloudCompare.</p> "> Figure 4
<p>Workflow schema. The red arrow represents the reference model workflow, and the black arrow represents the workflow under evaluation.</p> "> Figure 5
<p>Coded cap and three stickers for PhotoMeDAS and circular stickers for the 3D scanner.</p> "> Figure 6
<p>(<b>a</b>) Calibration processing in VXelement software v. 8.0.0, for the scanner calibration process, align the red lines with the green boxes; (<b>b</b>) Screenshot during the scanning data acquisition.</p> "> Figure 7
<p>Galaxy S22: (<b>a</b>) Data acquisition strips, the red arrows represent the planned path using the smartphone; (<b>b</b>) PhotoMeDAS app, the red circle represents the focus area used by the app for sticker identification; (<b>c</b>) Camera mode, the square represents the smartphone’s automatic focus; (<b>d</b>) Video mode.</p> "> Figure 8
<p>Code for converting video to frame.</p> "> Figure 9
<p>Comparison of input images: (<b>a</b>) Zoom in of an image obtained with the camera (4000 × 3000 pix); (<b>b</b>) Zoom in of an image obtained with the video (1080 × 1920 pix).</p> "> Figure 10
<p>Photogrammetric and videogrammetry processing.</p> "> Figure 11
<p>Set up in Agisoft Metashape: (<b>a</b>) Photo Alignment; (<b>b</b>) Dense Point Cloud Generation.</p> "> Figure 12
<p>Final photogrammetric exterior orientation (alignment) used to create the 3D model presented in <a href="#sensors-24-00230-f010" class="html-fig">Figure 10</a>. The black lines represent the camera’s projection center, and the blue areas represent the photography coverage area.</p> "> Figure 13
<p>PhotoMeDAS model referencing: (<b>a</b>) PhotoMeDAS 3D model before referencing; (<b>b</b>) referenced model. The term ‘reference entities’ refers to the main model with its coordinate system, whereas ‘entities to be aligned’ refer to the model that will be adjusted to match the primary reference system. A scaling factor is used to adjust the model to the dimensions of the reference model, and the RMS error represents the discrepancy between them. The scaling factor is employed to standardise the 3D models and achieve homogenisation.</p> "> Figure 14
<p>Front view after meshing and texturing:(<b>a</b>) Academia 50 scanner; (<b>b</b>) Photogrammetry; (<b>c</b>) Videogrammetry.</p> "> Figure 15
<p>C2M results among 3D models: (<b>a</b>) Scanner/Photogrammetry; (<b>b</b>) Scanner/Videogrammetry; (<b>c</b>) Scanner/PhotoMeDAS.</p> "> Figure 16
<p>Zoning of the head: (<b>a</b>) Right Side Parietal Zone, ZPR; (<b>b</b>) Left Side Parietal Zone, ZPL; (<b>c</b>) Frontal Zone, ZF; (<b>d</b>) Posterior Zone, ZP; (<b>e</b>) Face Zone, ZF.</p> "> Figure 17
<p>Average distance bias (dots) and ranges (+/− 1σ) with respect to the Academia 50 models.</p> "> Figure 18
<p>Comparison—Model J: (<b>a</b>) Academia 50; (<b>b</b>) Photogrammetry; (<b>c</b>) Videogrammetry; (<b>d</b>) PhotoMeDAS highlighting the deformation with an ideal head.</p> "> Figure 19
<p>Comparison areas: (<b>a</b>) Identification of the area covered by the coded cap; (<b>b</b>) Area delineation for comparing approaches.</p> "> Figure 20
<p>Texturing comparison—Model J: (<b>a</b>) Academia 50; (<b>b</b>) Photogrammetry; (<b>c</b>) Videogrammetry.</p> "> Figure 21
<p>Extracted target coordinates from the 3D models: (<b>a</b>) Academia 50; (<b>b</b>) Texturised model from the camera; (<b>c</b>) Texturised model from the video; (<b>d</b>) PhotoMeDAS coordinates. The yellow point represents an anatomical point in the 3D models. The red arrow indicates an example of an anatomical point in the skull, and the orange arrow indicates a facial anatomical point.</p> "> Figure 22
<p>Mean distances on anatomical head reference points between models.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. PhotoMeDAS App
2.2. Smartphone Data Acquisition (Photographs and Video)
2.3. 3D Scanner
2.4. Agisoft Metashape
2.5. CloudCompare
2.6. Volunteers
3. Workflow
3.1. Data Acquisition
3.2. 3D Scanning Data Acquisition
3.3. Data Acquisition with the Smartphone in Camera and Video Modes
3.4. Data Acquisition with PhotoMeDAS
3.5. Data Treatment
3.6. Selection of Images for the Photogrammetric Processing
3.7. Photogrammetric and Videogrammetry Processing
3.8. Model Referencing
3.9. Visual Comparison of Meshing and Texturing
3.10. Anatomical Landmarks on the Head
4. Results
4.1. Processing Time
4.2. Comparison of 3D Mesh
4.3. Number of Faces of the 3D Models
4.4. Anatomical Reference Points
4.5. Student’s T and Anatomical Reference Points
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tibesar, R.J.; Scott, A.R. Syndromic Craniofacial Disorders. Facial Plast. Surg. Clin. N. Am. 2023, 32, 141–156. [Google Scholar] [CrossRef] [PubMed]
- Leipner, A.; Obertová, Z.; Wermuth, M.; Thali, M.; Ottiker, T.; Sieberth, T. 3D mug shot—3D head models from photogrammetry for forensic identification. Forensic Sci. Int. 2019, 300, 6–12. [Google Scholar] [CrossRef]
- Benz, L.; Ampanozi, G.; Franckenberg, S.; Massini, F.; Sieberth, T. Forensic examination of living persons in 3D models. Forensic Sci. Int. 2022, 335, 111286. [Google Scholar] [CrossRef] [PubMed]
- González, G.; Collazo, M.E.; Vázquez, A.N.; Hoffmann, M.; Ruíz, L.; Larrosa, A. Alteraciones de la forma del cráneo. Arch. Pediatr. Urug. 2010, 81, 30–33. [Google Scholar]
- Velez-Van-Meerbeke, A.; Coy, L.C. Craneosinostosis y deformidades posicionales del cráneo: Revisión crítica acerca del manejo. Acta Neurol. Colomb. 2018, 34, 204–214. [Google Scholar] [CrossRef]
- da Costa, M.D.S.; Nicacio, J.M.; Dastoli, P.A.; Suriano, I.C.; Sarmento, S.G.P.; Barbosa, M.M.; Moron, A.F. Alterations in skull base anatomy in intrauterine and postnatal repaired myelomeningoceles. Child’s Nerv. Syst. 2020, 36, 2757–2763. [Google Scholar] [CrossRef] [PubMed]
- Calandrelli, R.; D’apolito, G.; Massimi, L.; Gaudino, S.; Visconti, E.; Pelo, S.; Di Rocco, C.; Colosimo, C. Quantitative analysis of craniofacial dysmorphology in infants with anterior synostotic plagiocephaly. Child’s Nerv. Syst. 2016, 32, 2339–2349. [Google Scholar] [CrossRef]
- Lo, A.-L.; Hallac, R.R.; Chen, S.-H.; Hsu, K.-H.; Wang, S.-W.; Chen, C.-H.; Lien, R.-Y.; Lo, L.-J.; Chou, P.-Y. Craniofacial Growth and Asymmetry in Newborns: A Longitudinal 3D Assessment. Int. J. Environ. Res. Public Health 2022, 19, 12133. [Google Scholar] [CrossRef]
- Fulton, G.K.; Blessing, M.S.; Evans, K.N. Craniofacial Conditions. In Avery’s Diseases of the Newborn; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Gabrick, K.S.; Wu, R.T.; Singh, A.B.; Bartlett, S.P.; Taylor, J.A.; Persing, J.A.; Alperovich, M.M. Assessing Facial Asymmetry in Postoperative Patients with Unilateral Coronal Craniosynostosis. J. Craniofacial Surg. 2020, 31, 1000–1005. [Google Scholar] [CrossRef]
- Martini, M.; Klausing, A.; Messing-Jünger, M.; Lüchters, G. The self-defining axis of symmetry: A new method to determine optimal symmetry and its application and limitation in craniofacial surgery. J. Cranio-Maxillofac. Surg. 2017, 45, 1558–1565. [Google Scholar] [CrossRef]
- Kumar, A.; Kaur, A.; Kumar, M. Face detection techniques: A review. Artif. Intell. Rev. 2019, 52, 927–948. [Google Scholar] [CrossRef]
- Porto, L.F.; Lima, L.N.C.; Flores, M.R.P.; Valsecchi, A.; Ibanez, O.; Palhares, C.E.M.; Vidal, F.d.B. Automatic cephalometric landmarks detection on frontal faces: An approach based on supervised learning techniques. Digit. Investig. 2019, 30, 108–116. [Google Scholar] [CrossRef]
- Beaumont, C.A.; Knoops, P.G.; Borghi, A.; Jeelani, N.O.; Koudstaal, M.J.; Schievano, S.; Dunaway, D.J.; Rodriguez-Florez, N. Three-dimensional surface scanners compared with standard anthropometric measurements for head shape. J. Cranio-Maxillofac. Surg. 2017, 45, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Shah, P. B2-1 Effect of the accuracy of 3D head scanners in product design development. Jpn. J. Ergon. 2017, 53 (Suppl. S2), S372–S375. [Google Scholar] [CrossRef]
- Shah, P.B.; Luximon, Y. Review on 3D scanners for head and face modeling. In Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Hong, T.C.; Ma’Aram, A.; Boon, O.J. High-accuracy Cloud Point Scanning Method based on a Dual Laser 3D Scanner for Head Profile. Malays. J. Fundam. Appl. Sci. 2022, 18, 558–569. [Google Scholar] [CrossRef]
- Salahzadeh, Z.; Maroufi, N.; Ahmadi, A.; Behtash, H.; Razmjoo, A.; Gohari, M.; Parnianpour, M. Assessment of forward head posture in females: Observational and photogrammetry methods. J. Back Musculoskelet. Rehabil. 2014, 27, 131–139. [Google Scholar] [CrossRef]
- Hsung, T.-C.; Lo, J.; Li, T.-S.; Cheung, L.-K. Automatic detection and reproduction of natural head position in stereo-photogrammetry. PLoS ONE 2015, 10, e0130877. [Google Scholar] [CrossRef]
- Barbero-García, I.; Lerma, J.L.; Mora-Navarro, G. Fully automatic smartphone-based photogrammetric 3D modelling of infant’s heads for cranial deformation analysis. ISPRS J. Photogramm. Remote Sens. 2020, 166, 268–277. [Google Scholar] [CrossRef]
- Jaud, M.; Bertin, S.; Beauverger, M.; Augereau, E.; Delacourt, C. RTK GNSS-Assisted Terrestrial SfM Photogrammetry without GCP: Application to Coastal Morphodynamics Monitoring. Remote Sens. 2020, 12, 1889. [Google Scholar] [CrossRef]
- Fang, K.; Zhang, J.; Tang, H.; Hu, X.; Yuan, H.; Wang, X.; An, P.; Ding, B. A quick and low-cost smartphone photogrammetry method for obtaining 3D particle size and shape. Eng. Geol. 2023, 322, 107170. [Google Scholar] [CrossRef]
- Corradetti, A.; Seers, T.; Mercuri, M.; Calligaris, C.; Busetti, A.; Zini, L. Benchmarking Different SfM-MVS Photogrammetric and iOS LiDAR Acquisition Methods for the Digital Preservation of a Short-Lived Excavation: A Case Study from an Area of Sinkhole Related Subsidence. Remote Sens. 2022, 14, 5187. [Google Scholar] [CrossRef]
- Matuzevičius, D.; Serackis, A. Three-dimensional human head reconstruction using smartphone-based close-range video photogrammetry. Appl. Sci. 2022, 12, 229. [Google Scholar] [CrossRef]
- Quinzi, V.; Polizzi, A.; Ronsivalle, V.; Santonocito, S.; Conforte, C.; Manenti, R.J.; Isola, G.; Giudice, A.L. Facial Scanning Accuracy with Stereophotogrammetry and Smartphone Technology in Children: A Systematic Review. Children 2022, 9, 1390. [Google Scholar] [CrossRef] [PubMed]
- Barbero-García, I.; Pierdicca, R.; Paolanti, M.; Felicetti, A.; Lerma, J.L. Combining machine learning and close-range photogrammetry for infant’s head 3D measurement: A smartphone-based solution. Measurement 2021, 182, 109686. [Google Scholar] [CrossRef]
- Baselga, S.; Mora-Navarro, G.; Lerma, J.L. Assessment of Cranial Deformation Indices by Automatic Smartphone-Based Photogrammetric Modelling. Appl. Sci. 2022, 12, 11499. [Google Scholar] [CrossRef]
- SAMSUNG. Samsung Galaxy S22. Available online: https://www.samsung.com/es/smartphones/galaxy-s22/specs/ (accessed on 1 October 2023).
- ACADEMIA 50. Available online: https://www.creaform3d.com/es/acerca-de-creaform/sala-de-prensa/comunicados-de-prensa/creaform-incluye-el-escaner-3d-academia-50 (accessed on 11 October 2023).
- Agisoft. Available online: https://www.agisoft.com (accessed on 11 October 2023).
- CloudCompare. Available online: https://www.danielgm.net/cc/ (accessed on 11 October 2023).
- Creaform3d. Available online: https://www.creaform3d.com/es/soluciones-de-metrologia/plataformas-de-software-de-aplicaciones-3d (accessed on 1 October 2023).
- Tzou, C.-H.J.; Artner, N.M.; Pona, I.; Hold, A.; Placheta, E.; Kropatsch, W.G.; Frey, M. Comparison of three-dimensional surface-imaging systems. J. Plast. Reconstr. Aesthetic Surg. 2014, 67, 489–497. [Google Scholar] [CrossRef]
- Barbero-García, I.; Lerma, J.L.; Marqués-Mateu, Á.; Miranda, P. Low-Cost Smartphone-Based Photogrammetry for the Analysis of Cranial Deformation in Infants. World Neurosurg. 2017, 102, 545–554. [Google Scholar] [CrossRef]
- Lerma, J.L.; Barbero-García, I.; Marqués-Mateu, Á.; Miranda, P. Smartphone-based video for 3D modelling: Application to infant’s cranial deformation analysis. Measurement 2018, 116, 299–306. [Google Scholar] [CrossRef]
- Jasińska, A.; Pyka, K.; Pastucha, E.; Midtiby, H.S. A Simple Way to Reduce 3D Model Deformation in Smartphone Photogrammetry. Sensors 2023, 23, 728. [Google Scholar] [CrossRef]
- Quispe-Enriquez, O.C.; Valero-Lanzuela, J.J.; Lerma, J.L. Smartphone photogrammetric assessment for head measurements. Sensors 2023, 23, 9008. [Google Scholar] [CrossRef]
- Mazzonetto, I.; Castellaro, M.; Cooper, R.J.; Brigadoi, S. Smartphone-based photogrammetry provides improved localization and registration of scalp-mounted neuroimaging sensors. Sci. Rep. 2022, 12, 10862. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Description |
---|---|
System | Operating System Android 12, Processor Exynos 2200 Octa-Core |
Connectivity | Mobile Network 5G, WIFI 802.11 a/b/g/n/ac, Bluetooth v5.0, NFC Yes |
Display | Size 6.1″, Resolution 2340 × 1080 px. |
Camera | For photogrammetry, 4000 × 3000 pixels; for videogrammetry, 1080 × 1920 pixels |
Memory | Internal 128 GB, RAM 8 GB |
Volunteer | 3D Scanner | Camera | Video | PhotoMeDAS | Age | Description |
---|---|---|---|---|---|---|
Model R (M R) | 3 min 58 s | 2 min 13 s | 1 min 18 s | 4 min | 1 year | Head mannequin |
Model J (M J) | 4 min 20 s | 2 min 01 s | 1 min 30 s | 4 min | 2 years | Head mannequin |
Volunteer 1 (V 1) | 1 min 55 s | 1 min 12 s | 1 min 10 s | 5 min | 3 years | Female |
Volunteer 2 (V 2) | 2 min 03 s | 1 min 50 s | 1 min 30 s | 5 min | 6 years | Male |
Volunteer 3 (V 3) | 2 min 36 s | 1 min 50 s | 1 min 07 s | 5 min | 14 years | Male |
Volunteer 4 (V 4) | 5 min 00 s | 2 min 30 s | 1 min 39 s | 5 min | 25 years | Male |
Volunteer 5 (V 5) | 2 min 57 s | 2 min 02 s | 1 min 20 s | 5 min | 27 years | Female |
Volunteer 6 (V 6) | 3 min 40 s | 2 min 59 s | 2 min 09 s | 5 min | 28 years | Male |
Model | M R | M J | V 1 | V 2 | V 3 | V 4 | V5 | V6 |
---|---|---|---|---|---|---|---|---|
Photogrammetry | 189 | 283 | 261 | 220 | 212 | 225 | 261 | 155 |
Videogrammetry | 139 | 118 | 66 | 102 | 108 | 138 | 108 | 175 |
Model | PhotoMeDAS | Photogrammetry | Videogrammetry | Academia 50 Scanner |
---|---|---|---|---|
M R | 3.5 min | 76.9 min | 11.4 min | (30–40) min |
M J | 3.0 min | 71.3 min | 10.2 min | (30–40) min |
V 1 | 8.2 min | 64.9 min | 16.2 min | (30–40) min |
V 2 | 12.2 min | 97.6 min | 9.2 min | (30–40) min |
V 3 | 11.1 min | 75.3 min | 8.1 min | (30–40) min |
V 4 | 3.3 min | 115.1 min | 13.6 min | (30–40) min |
V 5 | 7.2 min | 235.9 min | 10.0 min | (30–40) min |
V 6 | 4.8 min | 86.2 min | 17.3 min | (30–40) min |
Volunteer | Photogrammetry | Videogrammetry | PhotoMeDAS | |||
---|---|---|---|---|---|---|
(mm) | σ (mm) | (mm) | σ (mm) | (mm) | σ (mm) | |
M R | 0.00 | 0.66 | 0.14 | 0.88 | 0.82 | 0.66 |
M J | 0.19 | 0.63 | 0.20 | 0.84 | 0.02 | 2.17 |
V 1 | 0.15 | 0.87 | 0.18 | 1.26 | 0.06 | 0.75 |
V 2 | 1.26 | 4.18 | 2.34 | 3.66 | 0.36 | 1.48 |
V 3 | 0.04 | 1.09 | 0.08 | 1.09 | 0.02 | 0.71 |
V 4 | 0.07 | 1.12 | 0.21 | 1.80 | 0.15 | 0.36 |
V 5 | 0.02 | 0.71 | 0.25 | 0.94 | 1.38 | 1.02 |
V 6 | 0.05 | 1.05 | 0.36 | 1.02 | 0.34 | 0.62 |
Average | 0.22 | 1.29 | 0.47 | 1.44 | 0.39 | 0.97 |
Volunteer | Academia 50 | Photogrammetry | Videogrammetry | PhotoMeDAS |
---|---|---|---|---|
M R | 301,986 | 391,965 | 111,849 | 1038 |
M J | 332,552 | 461,530 | 98,119 | 1045 |
V 1 | 392,642 | 565,065 | 111,672 | 1031 |
V 2 | 420,262 | 588,931 | 98,745 | 1041 |
V 3 | 408,642 | 319,257 | 75,626 | 1030 |
V 4 | 460,980 | 447,549 | 79,580 | 1041 |
V 5 | 429,127 | 650,590 | 82,852 | 1047 |
V 6 | 411,820 | 278,301 | 60,027 | 1039 |
Volunteer | Photogrammetry | Videogrammetry | PhotoMeDAS | |||
---|---|---|---|---|---|---|
(mm) | σ (mm) | (mm) | σ (mm) | (mm) | σ (mm) | |
M R | 0.35 | 0.23 | 0.45 | 0.29 | 1.37 | 0.56 |
M J | 0.39 | 0.29 | 0.35 | 0.14 | 1.88 | 0.84 |
V 1 | 0.92 | 0.64 | 1.20 | 0.94 | 1.21 | 0.47 |
V 2 | 5.55 | 3.07 | 5.16 | 2.77 | 2.94 | 1.45 |
V 3 | 1.59 | 0.83 | 1.50 | 0.74 | 0.95 | 0.16 |
V 4 | 0.96 | 0.38 | 2.50 | 0.81 | 1.19 | 0.67 |
V 5 | 0.58 | 0.24 | 0.80 | 0.29 | 1.38 | 0.48 |
V 6 | 0.95 | 0.42 | 1.11 | 0.73 | 0.88 | 0.36 |
Average | 1.41 | 0.76 | 1.64 | 0.84 | 1.47 | 0.62 |
Average without V 2 | 0.82 | 0.43 | 1.13 | 0.56 | 1.26 | 0.50 |
Approaches | 0 mm | 0.25 mm | 0.5 mm | 0.75 mm | 1 mm | 1.25 mm |
---|---|---|---|---|---|---|
Photogrammetry | 0.000 | 0.000 | <0.001 | 0.238 | - | - |
Videogrammetry | 0.000 | 0.000 | <0.001 | 0.000 | 0.142 | - |
PhotoMeDAS | 0.000 | 0.000 | <0.001 | 0.000 | 0.000 | 0.827 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quispe-Enriquez, O.C.; Valero-Lanzuela, J.J.; Lerma, J.L. Craniofacial 3D Morphometric Analysis with Smartphone-Based Photogrammetry. Sensors 2024, 24, 230. https://doi.org/10.3390/s24010230
Quispe-Enriquez OC, Valero-Lanzuela JJ, Lerma JL. Craniofacial 3D Morphometric Analysis with Smartphone-Based Photogrammetry. Sensors. 2024; 24(1):230. https://doi.org/10.3390/s24010230
Chicago/Turabian StyleQuispe-Enriquez, Omar C., Juan José Valero-Lanzuela, and José Luis Lerma. 2024. "Craniofacial 3D Morphometric Analysis with Smartphone-Based Photogrammetry" Sensors 24, no. 1: 230. https://doi.org/10.3390/s24010230
APA StyleQuispe-Enriquez, O. C., Valero-Lanzuela, J. J., & Lerma, J. L. (2024). Craniofacial 3D Morphometric Analysis with Smartphone-Based Photogrammetry. Sensors, 24(1), 230. https://doi.org/10.3390/s24010230