Wearable IoT Smart-Log Patch: An Edge Computing-Based Bayesian Deep Learning Network System for Multi Access Physical Monitoring System
<p>Ultra-thin flexible patch array for physical monitoring.</p> "> Figure 2
<p>Wearable smart log patch with Internet of Things (IoT) sensor in edge computing environment.</p> "> Figure 3
<p>Bayesian deep learning structural block.</p> "> Figure 4
<p>Electro cardiogram (ECG) tracing.</p> "> Figure 5
<p>IoT data acquisition sensor architecture.</p> "> Figure 6
<p>Accuracy factor of IoT sensor.</p> "> Figure 7
<p>Mean residual error estimation analysis for the smart log patch.</p> "> Figure 8
<p>Estimation using mean residual square error analysis.</p> "> Figure 9
<p>IoT data transmission delay factor of edge computing on Bayesian deep learning network (EC-BDLN).</p> "> Figure 10
<p>Energy utilization factor of EC-BDLN.</p> ">
Abstract
:1. Introduction
- Improper space time relation on IoT devices in data processing leads to high noise data, which suffers errors, inaccurate data transmission in multi access physical monitoring systems, and network congestion with more cost and more energy [10].
Contribution
- A novel optimized neutral network with densely connected layer for determining the temperature imbalance in health;
- Bayesian deep learning network for accurate prediction of improper working of organs, which are integrated in Wearable IoT smart patch for data processing;
- Complete physical monitoring system using multimedia technology with edge computing using agile learning for real-time data analysis using IoT sensors;
- Streamlined efficient model to identify the various signal patterns of the human physical activities using edge computing on Bayesian neural network.
2. Related Works
3. Edge Computing on Bayesian Deep Learning Network for Physical Education System Using Multimedia Technology
- Expert diagnosis;
- Cloud storage for online diagnosis.
Algorithm 1.Deep learning-assisted IoT System Routing Mode-I Operation for data processing |
Initialize inputs MPX, MNX; |
\ * the MPX, MNX indicated the number of PMOS and NMOS used in the design*\ |
Output S, D, SL; |
\* The S (Snooze), D (Dynamic), SL (Sleep) mode of operation used*\ |
Begin |
Set1: If (S=Logic ‘0’) |
MP1|MP3|MP5 =Logic ‘1’; |
Else |
MN1|MP4 =Logic ‘1’; |
Set2: If (S|SL=Logic ‘0’) |
MN1|MP1|MP3 =Logic ‘1’; |
Else |
MP1|MP3|MP5 =Logic ‘1’; |
Else |
MN2|MP4 =Logic ‘1’; |
Set3: If (S|SL=Logic ‘0’) |
MP2|MP3|MN3 =Logic ‘1’; |
Else if(S= Logic ‘1’ &&SL=Logic ‘0’) |
MP2|MP3|MP5 =Logic ‘1’; |
Else |
Switch (Set-1); |
\* Snooze mode due low swing which occurs at Vdd*\ |
End |
- is the Gaussian restricted activation function;
- —visible neurons;
- —hidden neurons;
- —standard deviation of the Gaussian restricted activation function;
- —weight of the neuron.
Algorithm 2. Agile learning of Bayesian networks for congestion check in wearable system |
Initial: Time T= () |
Ensure: No congestion on Prediction data for |
While (Logic “1”) for prediction check |
If (j<n) then |
M (O) =S (D); |
//*M (O) = is the memory output layer//* |
//*S (D) = Input datasets which are stored//* |
S (D) = |
Return (No_Congestion) |
If () |
M (O) = D(C) |
//*D(C) = Data Congestion//* |
Return (Congestion) |
Break |
M (O) = Return (prediction check) |
End if |
End if |
End While |
End begin |
- ;
- ;
- ;
- .
4. Experimental Analysis
- C1- Snooze mode = Logic ‘1′ it makes the transistor MN1, MP4 = ON;
- C2-Snooze = Logic ‘0′ and Sleep = Logic ‘0′ it makes the transistor MN2, MP1, MP3 = ON;
- C3- drowsy = Logic ‘1′ and sleep = Logic ‘0′MP3, MP2, MN2 = ON.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shakeel, P.M.; Baskar, S.; Dhulipala, V.S.; Mishra, S.; Jaber, M.M. Maintaining security and privacy in health care system using learning based Deep-Q-Networks. J. Med. Syst. 2018, 42, 186. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cheng, S.; Zhou, X.; Mao, Y.; Li, Y.; Long, G.; Long, X. Construction of medical equipment-based doctor health monitoring system. J. Med. Syst. 2019, 43, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malasinghe, L.P.; Ramzan, N.; Dahal, K. Remote patient monitoring: A comprehensive study. J. Ambient Intell. Humaniz. Comput. 2019, 10, 57–76. [Google Scholar] [CrossRef]
- Sridhar, K.P.; Baskar, S.; Shakeel, P.M.; Dhulipala, V.S. Developing brain abnormality recognize system using multi-objective pattern producing neural network. J. Ambient. Intell. Humaniz. Comput. 2018, 1–9. [Google Scholar] [CrossRef]
- Maria, A.R.; Sever, P. MIoT Applications for Wearable Technologies Used for Health Monitoring. In Proceedings of the 2018 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Iasi, Romania, 28–30 June 2018; pp. 1–4. [Google Scholar]
- Manogaran, G.; Varatharajan, R.; Lopez, D.; Kumar, P.M.; Sundarasekar, R.; Thota, C. A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system. Future Gener. Comput. Syst. 2018, 82, 375–387. [Google Scholar] [CrossRef]
- Shakeel, P.M.; Baskar, S.; Dhulipala, V.S.; Jaber, M.M. Cloud based framework for diagnosis of diabetes mellitus using K-means clustering. Health Inf. Sci. Syst. 2018, 6, 16. [Google Scholar] [CrossRef]
- Yacchirema, D.; Sarabia-Jácome, D.; Palau, C.E.; Esteve, M. System for monitoring and supporting the treatment of sleep apnea using IoT and big data. Pervasive Mob. Comput. 2018, 50, 25–40. [Google Scholar] [CrossRef]
- Erdeniz, S.P.; Maglogiannis, I.; Menychtas, A.; Felfernig, A.; Tran, T.N.T. Recommender systems for IoT enabled m-health applications. In Proceedings of the IFIP International Conference on Artificial Intelligence Applications and Innovations, Rhodes, Greece, 25–27 May 2018; Springer: Cham, Switzerland, 2018; pp. 227–237. [Google Scholar]
- Ma, X.; Wang, Z.; Zhou, S.; Wen, H.; Zhang, Y. Intelligent healthcare systems assisted by data analytics and mobile computing. Wirel. Commun. Mob. Comput. 2018, 2018. [Google Scholar] [CrossRef]
- Shakeel, P.M.; Manogaran, G. Prostate cancer classification from prostate biomedical data using ant rough set algorithm with radial trained extreme learning neural network. Health Technol. 2018, 1–9. [Google Scholar] [CrossRef]
- Kollmitz, M.; Eitel, A.; Vasquez, A.; Burgard, W. Deep 3D perception of people and their mobility aids. Robot. Auton. Syst. 2019, 114, 29–40. [Google Scholar] [CrossRef]
- Zitnik, M.; Nguyen, F.; Wang, B.; Leskovec, J.; Goldenberg, A.; Hoffman, M.M. Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities. Inf. Fusion 2019, 50, 71–91. [Google Scholar] [CrossRef] [PubMed]
- Bodenhagen, L.; Suvei, S.D.; Juel, W.K.; Brander, E.; Krüger, N. Robot technology for future welfare: Meeting upcoming societal challenges—An outlook with offset in the development in Scandinavia. Health Technol. 2019, 19, 197–218. [Google Scholar] [CrossRef]
- Yuan, Y.; Shi, Y.; Su, X.; Zou, X.; Luo, Q.; Feng, D.D.; Han, Z.G. Cancer type prediction based on copy number aberration and chromatin 3D structure with convolutional neural networks. BMC Genom. 2018, 19, 97. [Google Scholar] [CrossRef]
- Gomathi, P.; Baskar, S.; Shakeel, M.P.; Dhulipala, S.V. Numerical Function Optimization in Brain Tumor Regions Using Reconfigured Multi-Objective Bat Optimization Algorithm. J. Med. Imaging Health Inf. 2019, 9, 482–489. [Google Scholar] [CrossRef]
- Bull, L.; Manson, G.; Worden, K.; Dervilis, N. Active Learning Approaches to Structural Health Monitoring. In Proceedings of the Special Topics in Structural Dynamics, Orlando, FL, USA, 28–31 January 2019; Springer: Cham, Switzerland, 2019; Volume 5, pp. 157–159. [Google Scholar]
- Nweke, H.F.; Teh, Y.W.; Mujtaba, G.; Al-Garadi, M.A. Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions. Inf. Fusion 2019, 46, 147–170. [Google Scholar] [CrossRef]
- Bao, Y.; Tang, Z.; Li, H.; Zhang, Y. Computer vision and deep learning–based data anomaly detection method for structural health monitoring. Struct. Health Monit. 2019, 18, 401–421. [Google Scholar] [CrossRef]
- Heitner, B.; OBrien, E.J.; Yalamas, T.; Schoefs, F.; Leahy, C.; Décatoire, R. Updating probabilities of bridge reinforcement corrosion using health monitoring data. Eng. Struct. 2019, 190, 41–51. [Google Scholar] [CrossRef]
- Hogan, D.R.; Stevens, G.A.; Hosseinpoor, A.R.; Boerma, T. Monitoring universal health coverage within the Sustainable Development Goals: Development and baseline data for an index of essential health services. Lancet Glob. Health 2018, 6, e152–e168. [Google Scholar] [CrossRef]
- Shakeel, P.M.; Tobely, T.E.E.; Al-Feel, H.; Manogaran, G.; Baskar, S. Neural Network Based Brain Tumor Detection Using Wireless Infrared Imaging Sensor. IEEE Access 2019, 7, 5577–5588. [Google Scholar] [CrossRef]
- Gu, J.; Huang, R.; Jiang, L.; Qiao, G.; Du, X.; Guizani, M. A Fog Computing Solution for Context-Based Privacy Leakage Detection for Android Healthcare Devices. Sensors 2019, 19, 1184. [Google Scholar] [CrossRef]
- Davis, A.M.; Beaver, G.; Gillette, M.D.; Nelson, E.L.; Fleming, K.; Romine, R.S.; Murray, M. iAmHealthy: Rationale, design and application of a family-based mHealthpediatric obesity intervention for rural children. Contemp. Clin. Trials 2019, 78, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.J.; Segundo, D.B.D.R.; Junqueira, H.A.; Sabino, M.H.; Prince, R.M.; Al-Muhtadi, J.; De Albuquerque, V.H. Enabling technologies for the internet of health things. IEEE Access 2018, 6, 13129–13141. [Google Scholar] [CrossRef]
- Xie, Q.; Faust, K.; Van Ommeren, R.; Sheikh, A.; Djuric, U.; Diamandis, P. Deep learning for image analysis: Personalizing medicine closer to the point of care. Crit. Rev. Clin. Lab. Sci. 2019, 56, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Jiang, M.; Ouyang, W.; Ji, G.; Xie, H.; Rahmani, A.M.; Tenhunen, H. IoT-based remote pain monitoring system: From device to cloud platform. IEEE J. Biomed. Health Inform. 2017, 22, 1711–1719. [Google Scholar] [CrossRef] [PubMed]
- Bassoli, M.; Bianchi, V.; Munari, I. A plug and play IoT Wi-Fi smart home system for human monitoring. Electronics 2018, 7, 200. [Google Scholar] [CrossRef]
IoT Sensor | Usage | Representation of Datasets |
---|---|---|
Blood Pressure | Through Photo-plethysmo-graph (PPG) pressure and temperature of the body has been monitored. PPG is the optical technique that analyses the micro vascular bed of the tissue. | |
Body Temperature | ||
ECG | Electrical activity of heart over the period of time includes contraction and relaxation | |
EEG | To check the brain activity of the person | |
EMG | Electrical activity of the muscles | |
Pressure | Based on pulse transit time, the body pressure is monitored | |
Visual | To check the interpretation of objects and data | |
Respiration | To check the breathing patters of a person | |
Accelerator gyroscope | To analyse the inclination of the body |
System Routing Mode-I | ||
---|---|---|
Sleep | Snooze | Function |
Logic-′1′ | Undetermined | Dynamic |
Logic-′0′ | Logic-′0′ | Sleep |
Logic-′0′ | Logic-′1′ | Snooze |
Symbol of Sensors | IoT Sensor Signal Check on The Leg and Hand |
---|---|
S1 | Analyse the Left lower palm |
S2 | Analyse the Left upper palm |
S3 | Analyse the Right upper palm |
S4 | Analyse the Right lower palm |
S5 | Analyse the Left lower heel |
S6 | Analyse the Left upper heel |
S7 | Analyse the Right upper heel |
S8 | Analyse the Right lower heel |
S9 | Centre of the backside below spinal cord |
S10, S11, S12 | Calf region (Right and Left) |
Characteristic | Model-1 (as Shown in the Figure 1) |
---|---|
Voltage | 0.9 V |
Chip dimension | 5 mm |
Clock Speed | 120 Mhz |
Build in Wi-Fi and Bluetooth | Yes |
Digital I/O Pins | 14 Numbers |
Number of sensors | 12 Numbers |
Energy Utilization (Joule) | |||||
---|---|---|---|---|---|
Number of Sensors | CCT | RNA | CNA | CPM | EC-BDLN |
S1 | 4.5 | 5.1 | 2.88 | 1.88 | 1.1 |
S2 | 4.8 | 5.7 | 3.31 | 2.31 | 2.1 |
S3 | 5.1 | 6.2 | 3.32 | 2.32 | 2.0 |
S4 | 5.8 | 6.6 | 3.58 | 2.58 | 1.9 |
S5 | 5.3 | 7.4 | 4.61 | 3.61 | 1.4 |
S6 | 7.2 | 7.9 | 5.78 | 3.78 | 1.2 |
S7 | 8.2 | 9.3 | 5.93 | 3.93 | 1.1 |
S8 | 7.1 | 6.0 | 5.1 | 3.44 | 0.9 |
S9 | 6.5 | 6.1 | 4.9 | 2.33 | 0.77 |
S10 | 5.5 | 5.3 | 4.6 | 2.1 | 0.65 |
S11 | 5.3 | 5.1 | 4.5 | 3.2 | 0.5 |
S12 | 5.1 | 4.8 | 4.0 | 3.0 | 0.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manogaran, G.; Shakeel, P.M.; Fouad, H.; Nam, Y.; Baskar, S.; Chilamkurti, N.; Sundarasekar, R. Wearable IoT Smart-Log Patch: An Edge Computing-Based Bayesian Deep Learning Network System for Multi Access Physical Monitoring System. Sensors 2019, 19, 3030. https://doi.org/10.3390/s19133030
Manogaran G, Shakeel PM, Fouad H, Nam Y, Baskar S, Chilamkurti N, Sundarasekar R. Wearable IoT Smart-Log Patch: An Edge Computing-Based Bayesian Deep Learning Network System for Multi Access Physical Monitoring System. Sensors. 2019; 19(13):3030. https://doi.org/10.3390/s19133030
Chicago/Turabian StyleManogaran, Gunasekaran, P. Mohamed Shakeel, H. Fouad, Yunyoung Nam, S. Baskar, Naveen Chilamkurti, and Revathi Sundarasekar. 2019. "Wearable IoT Smart-Log Patch: An Edge Computing-Based Bayesian Deep Learning Network System for Multi Access Physical Monitoring System" Sensors 19, no. 13: 3030. https://doi.org/10.3390/s19133030
APA StyleManogaran, G., Shakeel, P. M., Fouad, H., Nam, Y., Baskar, S., Chilamkurti, N., & Sundarasekar, R. (2019). Wearable IoT Smart-Log Patch: An Edge Computing-Based Bayesian Deep Learning Network System for Multi Access Physical Monitoring System. Sensors, 19(13), 3030. https://doi.org/10.3390/s19133030