A Preliminary Analysis of Wind Retrieval, Based on GF-3 Wave Mode Data
<p>Incidence angle histogram of the data set.</p> "> Figure 2
<p>Azimuth angle histogram of the data set.</p> "> Figure 3
<p>Wind speed histogram of the data set.</p> "> Figure 4
<p>Relationship between simulated NRCS and values obtained directly from images.</p> "> Figure 5
<p>(<b>a</b>) the relationship between <math display="inline"> <semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>HV</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics> </math>, denoised <math display="inline"> <semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>HV</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics> </math>, noise floor and wind speed. (<b>b</b>) the difference between <math display="inline"> <semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>HV</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics> </math> and denoised <math display="inline"> <semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>HV</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics> </math>.</p> "> Figure 6
<p>Relationship between NRCS and wind speed (different colors represent different incidence angle).</p> "> Figure 7
<p>Relationship between cross-pol NRCS and azimuth angle at wind speed 4–6 m/s (<b>a</b>), 6–8 m/s (<b>b</b>), 8–10 m/s (<b>c</b>) and >10 m/s (<b>d</b>).</p> "> Figure 8
<p>PR as a function of incidence angle (different colors represent different wind speed).</p> "> Figure 9
<p>Comparison between Model 1 and other PR models.</p> "> Figure 10
<p>(<b>a</b>,<b>b</b>) represent the variation between PR and azimuth angle and different color shows different wind speed. (<b>c</b>,<b>d</b>) show the relationship between PR and wind speed. Different color represents different azimuth. (<b>a</b>,<b>c</b>) are at incidence angle 39.6°. (<b>b</b>,<b>d</b>) are at incidence angle 41.6°.</p> "> Figure 11
<p>The relationship between PR and wind speed of beam 205 data in downwind.</p> "> Figure 12
<p>Distribution of Amazon rainforest <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> <mo>.</mo> </mrow> </semantics> </math></p> "> Figure 13
<p>Comparison of ERA-Interim U10 with SAR-derived wind speeds which use CMOD4 (<b>a</b>), CMOD_IFR2 (<b>b</b>), CMOD5 (<b>c</b>) and CMOD5.N (<b>d</b>).</p> "> Figure 13 Cont.
<p>Comparison of ERA-Interim U10 with SAR-derived wind speeds which use CMOD4 (<b>a</b>), CMOD_IFR2 (<b>b</b>), CMOD5 (<b>c</b>) and CMOD5.N (<b>d</b>).</p> "> Figure 14
<p>Comparison of four different PR models based on testing set where (<b>a</b>) represents PR Model1, (<b>b</b>) represents PR Model2, (<b>c</b>) represents model proposed by Ren and (<b>d</b>) represents model proposed by Zhang.</p> ">
Abstract
:1. Introduction
2. Description of Datasets
2.1. GF-3 SAR Wave Mode Images
2.2. Other Validation Sources
3. Experiments and Analysis
3.1. Calibration Method Based on Ocean Wind
3.2. Analysis of Wind Sensitivity for Cross-Pol NRCS
3.3. Development of PR Models
4. Validation and Results
4.1. Results of Ocean Calibration
4.2. Validation of Wind Retrieval for Cross-Polarization
4.3. Validation of PR Models Using Testing Set
5. Discussion
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Beams | Constants |
---|---|
202 | 28.966 |
203 | 28.738 |
206 | 28.366 |
207 | 27.836 |
208 | 27.105 |
209 | 27.538 |
210 | 27.854 |
211 | 27.809 |
Abbreviations | Full Name |
---|---|
GF-3 | Gaofen-3 |
NOAA | National Oceanic and Atmospheric Administration |
SAR | Synthetic Aperture Radar |
ECMWF | European Centre for Medium-Range Weather Forecasts |
GMFs | empirical Geophysical Model Functions |
NRCS | normalized radar cross-section |
PR | polarization ratio |
NOC | Numerical Ocean Calibration |
CAST | China Academy of Space Technology |
SLC | single look complex |
SNR | signal-to-noise ratio |
References
- Bergeron, T.; Bernier, M.; Chokmani, K.; Lessard-Fontaine, A.; Lafrance, G.; Beaucage, P. Wind Speed Estimation Using Polarimetric RADARSAT-2 Images: Finding the Best Polarization and Polarization Ratio. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 896–904. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W.; Vachon, P.W.; Li, X.; Pichel, W.G.; Guo, J.; He, Y. Ocean Vector Winds Retrieval from C-Band Fully Polarimetric SAR Measurements. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4252–4261. [Google Scholar] [CrossRef]
- Moon, W.M.; Staples, G.; Kim, D.J.; Park, S.E.; Park, K.A. RADARSAT-2 and Coastal Applications: Surface Wind, Waterline, and Intertidal Flat Roughness. Proc. IEEE 2010, 98, 800–815. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Zheng, Q.; Gu, X.; Pichel, W.G.; Li, Z. Comparison of Ocean-Surface Winds Retrieved from QuikSCAT Scatterometer and Radarsat-1 SAR in Offshore Waters of the U.S. West Coast. IEEE Geosci. Remote Sens. Lett. 2010, 8, 163–167. [Google Scholar] [CrossRef]
- Rivas, M.B.; Stoffelen, A.; Zadelhoff, G.J.V. The Benefit of HH and VV Polarizations in Retrieving Extreme Wind Speeds for an ASCAT-Type Scatterometer. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4273–4280. [Google Scholar] [CrossRef]
- Xu, Q.; Lin, H.; Li, X.; Zuo, J.; Zheng, Q.; Pichel, W.G.; Liu, Y. Assessment of an analytical model for sea surface wind speed retrieval from spaceborne SAR. Int. J. Remote Sens. 2010, 31, 993–1008. [Google Scholar] [CrossRef]
- Horstmann, J.; Koch, W.; Lehner, S.; Tonboe, R. Wind retrieval over the ocean using synthetic aperture radar with C-band HH polarization. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2122–2131. [Google Scholar] [CrossRef]
- Plant, W.J. A two-scale model of short wind-generated waves and scatterometry. J. Geophys. Res. Oceans 1986, 91, 10735–10749. [Google Scholar] [CrossRef]
- Romeiser, R.; Schmidt, A.; Alpers, W. A three-scale composite surface model for the ocean wave–radar modulation transfer function. J. Geophys. Res. Oceans 1994, 99, 9785–9801. [Google Scholar] [CrossRef]
- Romeiser, R.; Alpers, W. An improved composite surface model for the radar backscattering cross section of the ocean surface: 2. Model response to surface roughness variations and the radar imaging of underwater bottom topography. J. Geophys. Res. Oceans 1997, 102, 25251–25267. [Google Scholar] [CrossRef]
- Zou, Q.; He, Y.; Perrie, W.; Vachon, P.W. Wind-Vector Estimation for RADARSAT-1 SAR Images: Validation of Wind-Direction Estimates Based Upon Geometry Diversity. IEEE Geosci. Remote Sens. Lett. 2007, 4, 176–180. [Google Scholar] [CrossRef]
- Stoffelen, A.; Anderson, D. Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. J. Geophys. Res. Oceans 1997, 102, 5767–5780. [Google Scholar] [CrossRef]
- Quilfen, Y.; Chapron, B.; Elfouhaily, T.; Katsaros, K.; Tournadre, J. Observation of tropical cyclones by high-resolution scatterometry. J. Geophys. Res. Atmos. 1998, 103, 7767–7786. [Google Scholar] [CrossRef]
- Hersbach, H.; Stoffelen, A.; Haan, S.D. An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res. Oceans 2007, 112. [Google Scholar] [CrossRef]
- Hersbach, H. Comparison of C-Band Scatterometer CMOD5.N Equivalent Neutral Winds with ECMWF. J. Atmos. Ocean. Technol. 2010, 27, 721–736. [Google Scholar] [CrossRef]
- Monaldo, F.M.; Thompson, D.R.; Pichel, W.G.; Clemente-Colon, P. A systematic comparison of QuikSCAT and SAR ocean surface wind speeds. IEEE Trans. Geosci. Remote Sens. 2004, 42, 283–291. [Google Scholar] [CrossRef]
- Monaldo, F.; Thompson, D. Implications of QuikSCAT and RADARSAT wind comparisons for SAR wind speed model functions. In Proceedings of the Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 3, pp. 1881–1883. [Google Scholar]
- Yang, X.; Li, X.; Pichel, W.G.; Li, Z. Comparison of Ocean Surface Winds from ENVISAT ASAR, MetOp ASCAT Scatterometer, Buoy Measurements, and NOGAPS Model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4743–4750. [Google Scholar] [CrossRef]
- Horstmann, J.; Koch, W. Ocean wind field retrieval using ENVISAT ASAR data. In Proceedings of the 2003 IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS ’03), Toulouse, France, 21–25 July 2003; pp. 3102–3104. [Google Scholar]
- Rodrigues, D.F.; Landau, L.; Junior, A.R.T.; Lanzillotti, R.; Miranda, F.P.D. Sea Wind Extraction from RADARSAT-2 and Scatterometer Data Over the Gulf of Mexico. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1007–1011. [Google Scholar] [CrossRef]
- Monaldo, F.M.; Thompson, D.R.; Pichel, W.G.; Clemente-Colon, P. Comparison of RADARSAT SAR-derived wind speeds with buoy and QuikSCAT measurements. In Proceedings of the Geoscience and Remote Sensing Symposium, Sydney, Australia, 9–13 July 2001; Volume 4, pp. 1759–1760. [Google Scholar]
- Horstmann, J.; Koch, W.; Lehner, S.; Tonboe, R. Coastal high-resolution wind fields retrieved from RADARSAT-1 ScanSAR. In Proceedings of the Geoscience and Remote Sensing Symposium, Sydney, Australia, 9–13 July 2001. [Google Scholar]
- Monaldo, F.; Jackson, C.; Li, X.; Pichel, W.G. Preliminary evaluation of Sentinel-1A wind speed retrievals. IEEE. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2638–2642. [Google Scholar] [CrossRef]
- Thompson, D.R.; Elfouhaily, T.M.; Chapron, B. Polarization ratio for microwave backscattering from the ocean surface at low to moderate incidence angles. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Seattle, WA, USA, 6–10 July 1998; pp. 1671–1673. [Google Scholar]
- Vachon, P.W.; Dobson, F.W. Wind retrieval from RADARSAT SAR images selection of a suitable C-band HH polarization wind retrieval model. Can. J. Remote Sens. 2000, 26, 2122–2131. [Google Scholar] [CrossRef]
- Monaldo, F.M.; Thompson, D.R.; Beal, R.C.; Pichel, W.G.; Clemente-Colon, P. Comparison of SAR-derived wind speed with model predictions and ocean buoy measurements. IEEE Trans. Geosci. Remote Sens. 2002, 39, 2587–2600. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W.G.; He, Y.J. Wind speed retrieval from RADARSAT-2 quad-polarization images using a new polarization ratio model. J. Geophys. Res. 2011, 116, 1318–1323. [Google Scholar] [CrossRef]
- Mouche, A.A.; Hauser, D.; Daloze, J.F.; Guerin, C. Dual polarization measurements at C-band over the ocean: Results from airborne radar observations and comparison with ENVISAT ASAR data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 753–769. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Mouche, A.; Shao, W.; Zhu, J.; Ren, L.; Xie, C. GF-3 SAR Ocean Wind Retrieval: The First View and Preliminary Assessment. Remote Sens. 2017, 9, 694. [Google Scholar] [CrossRef]
- Hwang, P.A.; Zhang, B.; Perrie, W. Depolarized radar return for breaking wave measurement and hurricane wind retrieval. Geophys. Res. Lett. 2010, 37, 70–75. [Google Scholar] [CrossRef]
- Hwang, P.A.; Zhang, B.; Toporkov, J.V.; Perrie, W. Comparison of composite Bragg theory and quad-polarization radar backscatter from RADARSAT-2: With applications to wave breaking and high wind retrieval. J. Geophys. Res. Oceans 2010, 115. [Google Scholar] [CrossRef]
- Vachon, P.W.; Wolfe, J. C-Band Cross-Polarization Wind Speed Retrieval. IEEE Geosci. Remote Sens. Lett. 2011, 8, 456–459. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W. Cross-Polarized Synthetic Aperture Radar: A New Potential Measurement Technique for Hurricanes. Bull. Am. Meteorol. Soc. 2011, 93, 531–541. [Google Scholar] [CrossRef]
- Hwang, P.A.; Perrie, W.; Zhang, B. Cross-Polarization Radar Backscattering from the Ocean Surface and Its Dependence on Wind Velocity. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2188–2192. [Google Scholar] [CrossRef]
- Hwang, P.A.; Stoffelen, A.; Zadelhoff, G.J.V.; Perrie, W.; Zhang, B.; Li, H.; Shen, H. Cross-polarization geophysical model function for C-band radar backscattering from the ocean surface and wind speed retrieval. J. Geophys. Res. Oceans 2015, 120, 893–909. [Google Scholar] [CrossRef]
- Shen, H.; Perrie, W.; He, Y.; Liu, G. Wind Speed Retrieval from VH Dual-Polarization RADARSAT-2 SAR Images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5820–5826. [Google Scholar] [CrossRef]
- Horstmann, J.; Falchetti, S.; Wackerman, C.; Maresca, S.; Caruso, M.J.; Graber, H.C. Tropical Cyclone Winds Retrieved from C-Band Cross-Polarized Synthetic Aperture Radar. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2887–2898. [Google Scholar] [CrossRef]
- Huang, L.; Liu, B.; Li, X.; Zhang, Z.; Yu, W. Technical Evaluation of Sentinel-1 IW Mode Cross-Pol Radar Backscattering from the Ocean Surface in Moderate Wind Condition. Remote Sens. 2017, 9, 854. [Google Scholar] [CrossRef]
- Horstmann, J.; Lehner, S. A new method for radiometric calibration of spaceborne SAR and its global monitoring. In Proceedings of the Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002. [Google Scholar]
- Stoffelen, A. A Simple Method for Calibration of a Scatterometer over the Ocean. J. Atmos. Ocean. Technol. 2010, 16, 275–282. [Google Scholar] [CrossRef]
- Verspeek, J.; Stoffelen, A.; Verhoef, A.; Portabella, M. Improved ASCAT Wind Retrieval Using NWP Ocean Calibration. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2488–2494. [Google Scholar] [CrossRef]
- Zhu, J.; Dong, X.; Yun, R. Calibration and validation of the HY-2 scatterometer backscatter measurements over ocean. In Proceedings of the 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 4382–4385. [Google Scholar]
- Sun, J.L.; Yu, W.D.; Deng, Y.K. The SAR payload design and performance for the GF-3 mission. Sensors 2017, 17, 2419. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Sheng, Y.; Sun, J. Preliminary Assessment of Wind and Wave Retrieval from Chinese Gaofen-3 SAR Imagery. Sensors 2017, 17, 1705. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Yang, J.; Mouche, A.; Wang, H.; Wang, J.; Zheng, G.; Zhang, H. Preliminary Analysis of Chinese GF-3 SAR Quad-Polarization Measurements to Extract Winds in Each Polarization. Remote Sens. 2017, 9, 1215. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Yang, J.; Ren, L.; Zhu, J.; Yuan, X.; Xie, C. Empirical Algorithm for Significant Wave Height Retrieval from Wave Mode Data Provided by the Chinese Satellite Gaofen-3. Remote Sens. 2018, 10, 363. [Google Scholar] [CrossRef]
- Shao, W.; Yuan, X.; Sheng, Y.; Sun, J.; Zhou, W.; Zhang, Q. Development of Wind Speed Retrieval from Cross-Polarization Chinese Gaofen-3 Synthetic Aperture Radar in Typhoons. Sensors 2018, 18, 412. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Li, P.; Yang, J.; Zhao, J.; Zhao, L.; Shi, L. Polarimetric Calibration and Quality Assessment of the GF-3 Satellite Images. Sensors 2018, 18, 403. [Google Scholar] [CrossRef] [PubMed]
- Horstmann, J.; Schiller, H.; Schulz-Stellenfleth, J.; Lehner, S. Global wind speed retrieval from SAR. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2277–2286. [Google Scholar] [CrossRef]
- ECMWF ERA-Interim Daily. Available online: http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/ (accessed on 1 May 2017).
- Birrer, I.J.; Bracalente, E.M.; Dome, G.J.; Sweet, J.; Berthold, G. σ° Signature of the Amazon Rain Forest Obtained from the Seasat Scatterometer. IEEE Trans. Geosci. Remote Sens. 2007, GE-20, 11–17. [Google Scholar] [CrossRef]
- Hawkins, R.; Attema, E.; Crapolicchio, R.; Lecomte, P.; Closa, J.; Meadows, P.J.; Srivastava, S.K. Stability of Amazon Backscatter at C-Band: Spaceborne Results from ERS-1/2 and RADARSAT-1. In Proceedings of the CEOS SAR Workshop, Toulouse, France, 26–29 October 1999; Volume ESA-SP450. [Google Scholar]
- Shao, W.; Sun, J.; Guan, C.; Sun, Z. A Method for Sea Surface Wind Field Retrieval from SAR Image Mode Data. J. Ocean Univ. China 2014, 13, 198–204. [Google Scholar] [CrossRef]
- Raney, R.K.; Freeman, T.; Hawkins, R.W.; Bamler, R. A plea for radar brightness. In Proceedings of the Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation. International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; Volume 2, pp. 1090–1092. [Google Scholar]
Imaging Mode | Incidence Angle (°) | Polarization | Resolution (m) | Swath (km) |
---|---|---|---|---|
WAV | 20–50 | HH + VV + HV + VH | 10 | 5 |
Oceans | Pacific | Atlantic | Indian |
---|---|---|---|
Distribution | March, April, September, October, November, December | April, May, June | March, April |
Cofficient | Fitted Values |
---|---|
A | 0.02985 |
B | 0.09727 |
C | 0.305 |
Coefficients | Fitted Values |
---|---|
0.1715 | |
0.06242 | |
−0.4342 | |
0.9331 | |
0.03606 | |
−2.44 | |
0.000393 | |
0.1912 | |
1.119 |
RMSE (m/s) | Bias (m/s) | R-Square | |
---|---|---|---|
Mine | 1.4990 | −0.1605 | 0.6310 |
Vachon | 1.6043 | 0.2191 | 0.5773 |
Zhang | 1.6227 | −0.0106 | 0.5675 |
Ren | 2.0371 | −1.1586 | 0.3184 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Han, B.; Yuan, X.; Lei, B.; Ding, C.; Yao, Y.; Chen, Q. A Preliminary Analysis of Wind Retrieval, Based on GF-3 Wave Mode Data. Sensors 2018, 18, 1604. https://doi.org/10.3390/s18051604
Wang L, Han B, Yuan X, Lei B, Ding C, Yao Y, Chen Q. A Preliminary Analysis of Wind Retrieval, Based on GF-3 Wave Mode Data. Sensors. 2018; 18(5):1604. https://doi.org/10.3390/s18051604
Chicago/Turabian StyleWang, Lei, Bing Han, Xinzhe Yuan, Bin Lei, Chibiao Ding, Yulin Yao, and Qi Chen. 2018. "A Preliminary Analysis of Wind Retrieval, Based on GF-3 Wave Mode Data" Sensors 18, no. 5: 1604. https://doi.org/10.3390/s18051604
APA StyleWang, L., Han, B., Yuan, X., Lei, B., Ding, C., Yao, Y., & Chen, Q. (2018). A Preliminary Analysis of Wind Retrieval, Based on GF-3 Wave Mode Data. Sensors, 18(5), 1604. https://doi.org/10.3390/s18051604