A Novel Nanowire Assembly Process for the Fabrication of CO Sensor
<p>Schematic diagram of the combing process. Nanowires array before (<b>a</b>) and after combing (<b>b</b>). (<b>c</b>) A single brush hair of the makeup brush; the inset shows the makeup brush used in practice.</p> "> Figure 2
<p>Simplified process flow diagram of the assembly of nanowire on the silicon substrate and nanodevice fabrication. (<b>a</b>) Drip a drop of the suspension on the substrate; (<b>b</b>) combing process after 24 h; (<b>c</b>) bake on hot plate for ~10 min at 500 °C; (<b>d</b>) remove the photoresist and not adhered nanowires by acetone; (<b>e</b>) standard electron-beam lithography and metal deposition.</p> "> Figure 3
<p>(<b>a</b>) FESEM image of four nanowires arrays; (<b>b</b>) the zoom-in image of the first column; and (<b>c</b>) the angle distribution of ZnO nanowire in the first column.</p> "> Figure 4
<p>FESEM images of the device: (<b>a</b>) ZnO nanowires device with finger shape Au electrodes after the process of nanowire assembly on the Si substrate (red dotted line denotes the finger shape electrodes); and (<b>b</b>) the zoom-in image of the device.</p> "> Figure 5
<p>Characteristics testing results of ZnO nanowire device: (<b>a</b>) I–V characteristics; (<b>b</b>) ultraviolet characteristics at the bias voltage of 0.5 V; (<b>c</b>) rising process with the light; and (<b>d</b>) the decaying process of the current without the light (the solid curves represent fitting curve based on Equation (3)).</p> "> Figure 6
<p>Evolution of nanodevice current with respect to the concentration of CO gas at 200 °C (inset is the zoom-in image when the CO concentration is 50 ppm).</p> "> Figure 7
<p>Schematics of ZnO CO sensor sensing mechanism.</p> "> Figure 8
<p>Relationship of sensitivity with respect to concentration of CO at different operating temperatures.</p> ">
Abstract
:1. Introduction
2. Experiment
2.1. Assembly Mechanism of Nanowires Using the Combing Process
2.2. Fabrication of ZnO Nanowire Device
3. Results and Discussion
3.1. ZnO Nanowires Assembly and Nanowires Device
3.2. Characteristics Testing of ZnO Nanowire Device
3.3. Gas sensing Properties of the ZnO Nanowire Assembly
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Friedman, R.S.; Mcalpine, M.C.; Ricketts, D.S.; Ham, D.; Lieber, C.M. Nanotechnology: High-speed integrated nanowire circuits. Nature 2005, 434, 1085. [Google Scholar] [CrossRef] [PubMed]
- Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H.J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657. [Google Scholar] [CrossRef] [PubMed]
- Lieber, C.M.; Wang, Z.L. Functional Nanowires. MRS Bull. 2007, 32, 99–108. [Google Scholar] [CrossRef]
- Huang, Y.; Duan, X.; Wei, Q.; Lieber, C.M. Directed assembly of one-dimensional nanostructures into functional networks. Science 2001, 291, 630–633. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.U.; Chen, C.; Lin, K.H.; Fang, Y.; Lieber, C.M. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. USA 2005, 102, 3208–3212. [Google Scholar] [CrossRef] [PubMed]
- Kaps, S.; Bhowmick, S.; Gröttrup, J.; Hrkac, V.; Stauffer, D.; Guo, H.; Warren, O.L.; Adam, J.; Kienle, L.; Minor, A.M.; et al. Piezoresistive response of quasi-one-dimensional ZnO nanowires using an in situ electromechanical device. Acs Omega 2017, 2, 2985–2993. [Google Scholar] [CrossRef]
- Sirbuly, D.J.; Law, M.; Haoquan, Y.A.; Yang, P. Semiconductor nanowires for subwavelength photonics integration. J. Phys. Chem. B 2005, 109, 15190–15213. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Li, Z.; Li, X.; Pisano, A.P.; Williams, R.S. Towards the silicon nanowire-based sensor for intracellular biochemical detection. Biosens. Bioelectron. 2007, 22, 2065–2070. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.; Li, Q.H.; Chen, Y.J.; Wang, T.H.; He, X.L.; Li, J.P.; Lin, C.L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 2004, 84, 3654–3656. [Google Scholar] [CrossRef]
- Lind, E.; Persson, A.I.; Samuelson, L.; Wernersson, L.E. Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor. Nano Lett. 2006, 6, 1842–1846. [Google Scholar] [CrossRef] [PubMed]
- Santra, S.; Guha, P.K.; Ali, S.Z.; Hiralal, P.; Unalan, H.E.; Covington, J.A.; Amaratunga, G.A.J.; Milne, W.I.; Gardner, J.W.; Udrea, F. ZnO nanowires grown on SOI CMOS substrate for ethanol sensing. Sens. Actuators B Chem. 2010, 146, 559–565. [Google Scholar] [CrossRef]
- Ahn, M.W.; Park, K.S.; Heo, J.H.; Park, J.G.; Kim, D.W.; Choi, K.J.; Lee, J.H.; Hong, S.H. Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett. 2008, 93, 263103. [Google Scholar] [CrossRef]
- Smith, P.A.; Nordquist, C.D.; Jackson, T.N.; Mayer, T.S.; Martin, B.R.; Mbindyo, J.; Mallouk, T.E. Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 2000, 77, 1399–1401. [Google Scholar] [CrossRef]
- Yang, P. Nanotechnology: Wires on water. Nature 2003, 425, 243–244. [Google Scholar] [CrossRef] [PubMed]
- Kim, F.; Kwan, S.; Akana, J.; Yang, P. Langmuir-blodgett nanorod assembly. J. Am. Chem. Soc. 2001, 123, 4360–4361. [Google Scholar] [CrossRef] [PubMed]
- Whang, D.; Jin, S.; Wu, Y.; Lieber, C.M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 2003, 3, 253–256. [Google Scholar] [CrossRef]
- Mai, L.; Gu, Y.; Han, C.; Hu, B.; Chen, W.; Zhang, P.; Xu, L.; Guo, W.; Dai, Y. Orientated Langmuir-blodgett assembly of VO2 nanowires. Nano Lett. 2009, 9, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Yerushalmi, R.; Jacobson, Z.A.; Ho, J.C.; Fan, Z.; Javey, A. Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. Appl. Phys. Lett. 2007, 91. [Google Scholar] [CrossRef]
- Fan, Z.; Ho, J.C.; Jacobson, Z.A.; Yerushalmi, R.; Alley, R.L.; Razavi, H.; Javey, A. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 2008, 8, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.L.; Widmer-Cooper, A.; Toney, M.F.; Geissler, P.L.; Alivisatos, A.P. Device-scale perpendicular alignment of colloidal nanorods. Nano Lett. 2010, 10, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Quinto-Su, P.A.; Gonzalez-Avila, S.R.; Wu, T.; Ohl, C.D. Controlled Manipulation and in Situ Mechanical Measurement of Single Co Nanowire with a Laser-Induced Cavitation Bubble. Nano Lett. 2010, 10, 3846–3851. [Google Scholar] [CrossRef] [PubMed]
- Pauzauskie, P.J.; Radenovic, A.; Trepagnier, E.; Shroff, H.; Yang, P.; Liphardt, J. Optical trapping and integration of semiconductor nanowire assemblies in water. Nat. Mater. 2006, 5, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Alaferdov, A.V.; Savu, R.; Rackauskas, T.A.; Rackauskas, S.; Canesqui, M.A.; de Lara, D.S.; Setti, G.O.; Joanni, E.; De Trindade, G.M.; Lima, U.B.; et al. A wearable, highly stable, strain and bending sensor based on high aspect ratio graphite nanobelts. Nanotechnology 2016, 27. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Whang, D.; Mcalpine, M.C.; Friedman, R.S.; Wu, Y.; Lieber, C.M. Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 2004, 4, 915–919. [Google Scholar] [CrossRef]
- Janotti, A.; Van de Walle, C.G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009, 72. [Google Scholar] [CrossRef]
- Mishra, Y.K.; Adelung, R. ZnO tetrapod materials for functional applications. Mater. Today 2017. [Google Scholar] [CrossRef]
- Hsueh, T.J.; Chen, Y.W.; Chang, S.J.; Wang, S.F.; Hsu, C.L.; Lin, Y.R.; Lin, T.S.; Chen, I.C. ZnO nanowire-based CO sensors prepared on patterned ZnO:Ga/SiO2/Si templates. Sens. Actuators B Chem. 2007, 125, 498–503. [Google Scholar] [CrossRef]
- Engelen, J.B.C.; Abelmann, L.; Elwenspoek, M.C. Optimized comb drive finger shape for shock-resistant actuation. In Proceedings of the 23rd IEEE International Conference on Micro Electro Mechanical Systems, Hong Kong, China, 24–28 January 2010; Volume 20, pp. 1147–1150. [Google Scholar]
- Blatter, G.; Greuter, F. Carrier transport through grain boundaries in semiconductors. Phys. Rev. B 1986, 33, 3952. [Google Scholar] [CrossRef]
- Mahan, G.D.; Levinson, L.M.; Philipp, H.R. Theory of conduction in ZnO varistors. J. Appl. Phys. 1979, 50, 2799–2812. [Google Scholar] [CrossRef]
- Rackauskas, S.; Mustonen, K.; Järvinen, T.; Mattila, M.; Klimova, O.; Jiang, H.; Tolochko, O.; Lipsanen, H.; Kauppinen, E.I.; Nasibulin, A.G. Synthesis of ZnO tetrapods for flexible and transparent UV sensors. Nanotechnology 2012, 23, 095502. [Google Scholar] [CrossRef] [PubMed]
- Harnack, O.; Pacholski, C.; Weller, H.; Yasuda, A.; Wessels, J.M. Rectifying Behavior of Electrically Aligned ZnO Nanorods. Nano Lett. 2003, 3, 1097–1101. [Google Scholar] [CrossRef]
- Zhang, D.H. Fast photoresponse and the related change of crystallite barriers for ZnO films deposited by RF sputtering. J. Phys. D Appl. Phys. 1995, 28, 1273. [Google Scholar] [CrossRef]
- Choi, K.J.; Jang, H.W. One-dimensional oxide nanostructures as gas-sensing materials: Review and issues. Sensors 2010, 10, 4083–4099. [Google Scholar] [CrossRef] [PubMed]
- Lupan, O.; Shishiyanu, S.; Chow, L.; Shishiyanu, T. Nanostructured zinc oxide gas sensors by successive ionic layer adsorption and reaction method and rapid photothermal processing. Thin Solid Films 2008, 516, 3338–3345. [Google Scholar] [CrossRef]
- Wöllenstein, J.; Plaza, J.A.; Cané, C.; Min, Y.; Böttner, H.; Tuller, H.L. A novel single chip thin film metal oxide array. Sens. Actuators B Chem. 2003, 93, 350–355. [Google Scholar] [CrossRef]
- Mitzner, K.D.; Sternhagen, J.; Galipeau, D.W. Development of a micromachined hazardous gas sensor array. Sens. Actuators B Chem. 2003, 93, 92–99. [Google Scholar] [CrossRef]
- Rackauskas, S.; Barbero, N.; Barolo, C.; Viscardi, G. ZnO Nanowire Application in Chemoresistive Sensing: A Review. Nanomaterials 2017, 7, 381. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Hu, J.Q.; Wang, J.H.; Ong, C.H.; Zhu, F.R. Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sens. Actuators B Chem. 2006, 115, 247–251. [Google Scholar] [CrossRef]
- Moon, C.S.; Kim, H.R.; Auchterlonie, G. Highly sensitive and fast responding CO sensor using SnO2 nanosheets. Sens. Actuators B Chem. 2008, 131, 556–564. [Google Scholar] [CrossRef]
- Shishiyanu, S.T.; Shishiyanu, T.S.; Lupan, O.I. Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor. Sens. Actuators B Chem. 2005, 107, 379–386. [Google Scholar] [CrossRef]
- Tsiulyanu, D.; Marian, S.; Liess, H.D.; Eisele, I. Effect of annealing and temperature on the NO2 sensing properties of tellurium based films. Sens. Actuators B Chem. 2004, 100, 380–386. [Google Scholar] [CrossRef]
- Hsueh, T.J.; Chen, Y.W.; Chang, S.J.; Wang, S.F.; Hsu, C.L.; Lin, Y.R.; Lin, T.S.; Chen, I.C. ZnO nanowire-based CO sensors prepared at various temperatures. J. Electrochem. Soc. 2007, 154, J393–J396. [Google Scholar] [CrossRef]
- Fan, Z.; Lu, J.G. Gate-refreshable nanowire chemical sensors. Appl. Phys. Lett. 2005, 86, 123510. [Google Scholar] [CrossRef]
- Moseley, P.T. Solid state gas sensors. Meas. Sci. Technol. 1997, 8, 223. [Google Scholar] [CrossRef]
- Takata, M.; Tsubone, D.; Yanagida, H. Dependence of Electrical Conductivity of ZnO on Degree of Sintering. J. Am. Ceram. Soc. 1976, 59, 4–8. [Google Scholar] [CrossRef]
- Morrison, S.R. Mechanism of Semiconductor Gas Sensor Operation. Sens. Actuators B Chem. 1987, 11, 283–287. [Google Scholar] [CrossRef]
- Chang, J.F.; Kuo, H.H.; Leu, I.C.; Hon, M.H. The effects of thickness and operation temperature on ZnO: Al thin film CO gas sensor. Sens. Actuators B Chem. 2002, 84, 258–264. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, B.; Yang, S.; Liu, T.; Vazinishayan, A. A Novel Nanowire Assembly Process for the Fabrication of CO Sensor. Sensors 2018, 18, 1234. https://doi.org/10.3390/s18041234
Cheng B, Yang S, Liu T, Vazinishayan A. A Novel Nanowire Assembly Process for the Fabrication of CO Sensor. Sensors. 2018; 18(4):1234. https://doi.org/10.3390/s18041234
Chicago/Turabian StyleCheng, Biyao, Shuming Yang, Tao Liu, and Ali Vazinishayan. 2018. "A Novel Nanowire Assembly Process for the Fabrication of CO Sensor" Sensors 18, no. 4: 1234. https://doi.org/10.3390/s18041234
APA StyleCheng, B., Yang, S., Liu, T., & Vazinishayan, A. (2018). A Novel Nanowire Assembly Process for the Fabrication of CO Sensor. Sensors, 18(4), 1234. https://doi.org/10.3390/s18041234