Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane
"> Figure 1
<p>Interdigitated capacitor sensor: (<b>a</b>) schematic diagram of IDC sensing element; (<b>b</b>) simplified electrical circuit of the IDC; and (<b>c</b>) analogy of <a href="#sensors-16-00265-f001" class="html-fig">Figure 1</a>b.</p> "> Figure 2
<p>Representation of solvatochromism by: (<b>a</b>) energy band diagram of positive solvatochromism; (<b>b</b>) energy band diagram of negative Solvatochromism; (<b>c</b>) spectrum diagram of positive solvatochromism; and (<b>d</b>) spectrum diagram of neagative solvatochromism.</p> "> Figure 3
<p>SEM images of the preparead IDE (<b>a</b>) Top view without sensing membrane; and (<b>b</b>) cross-sectional view of the IDE with sensing membrane.</p> "> Figure 4
<p>Experimental setup: (<b>a</b>) schematic diagram of the IDC glucose biosening system; (<b>b</b>) photograph of the various parts of the proposed IDC biosensing system; and (<b>c</b>) schematic diagram for measuring the optical properties of different sensing solution under different concentrations of glucose solution.</p> "> Figure 5
<p>Optical absorption performance of the different dye containing glucose solution: (<b>a</b>) Auramine O; (<b>b</b>) Nile-red; (<b>c</b>) Reichardt’s dye; and (<b>d</b>) Rhodamine B.</p> "> Figure 6
<p>Response of the designed IDC glucose biosensing system: (<b>a</b>) change in phase shift of different concentrations of glucose solution; and (<b>b</b>) variation in the capacitance.</p> "> Figure 7
<p>Response of the different sensing elements under: (<b>a</b>) glucose solution; and (<b>b</b>) sucrose solution.</p> "> Figure 8
<p>Resopnse of the IDC glucose biosensing system for various dye-containing sensing membranes: (<b>a</b>) sensitivity; and (<b>b</b>) linearity.</p> "> Figure 9
<p>Response of the proposed IDC glucose biosensing system: (<b>a</b>) response and recovery times; and (<b>b</b>) response <span class="html-italic">vs.</span> recovery times at different concentrations of glucose for Nile-red-containing IDC sensing element.</p> ">
Abstract
:1. Introduction
2. Principle of Operation and Theory
3. Experimental Details
3.1. Preparation Process of the Interdigitated Electrode
3.2. Preparation Process of the Sensing Solution and the Interdigitated Glucose Biosensing Element
3.3. Detection Process of the Designed IDC Glucose Biosensing System
4. Results and Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Diagnosis and Classification of Diabetes Mellitus, Definition and description of diabetes mellitus, American diabetes association. Available online: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613584/ (accessed on 7 January 2016).
- Diabetes mellitus and diabetic retinopathy. Available online: http://www.aapos.org/terms/conditions/42 (accessed on 7 January 2016).
- Epidemiology of diabetes mellitus. Available online: https://en.wikipedia.org/wiki/Epidemiology_of_ diabetes_mellitus#cite_note-2 (accessed on 7 January 2016).
- Diabetes mellitus. Available online: https://en.wikipedia.org/wiki/Diabetes_mellitus (accessed on 7 January 2016).
- Endoa, H.; Yonemori, Y.; Hibi, K.; Ren, H.; Hayashi, T.; Tsugawa, W.; Sode, K. Wireless enzyme sensor system for real-time monitoring of blood glucose levels in fish. Biosens. Bioelectron. 2009, 24, 1417–1423. [Google Scholar] [CrossRef] [PubMed]
- Gooding, J.J.; Yang, W.; Situmorang, M. Bioanalytical experiments for the undergraduate laboratory: Monitoring glucose in sports drinks. J. Chem. Educ. 2001, 78, 788–790. [Google Scholar] [CrossRef]
- Wang, X.D.; Chen, H.X.; Zhou, T.Y.; Lin, Z.J.; Zeng, J.B.; Xie, Z.X.; Chena, X.; Wong, K.Y.; Chen, G.N.; Wang, X.R. Optical colorimetric sensor strip for direct readout glucose measurement. Biosens. Bioelectron. 2009, 24, 3702–3705. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, M.A.; Kimizuka, N.; Yoshihara, M.; Endo, T. New colorimetric detection of glucose by means of electron-accepting indicators: Ligand substitution of [Fe(acac)3−n(phen)n]n+ complexes triggered by electron transfer from glucose oxidase. Chem. Eur. J. 2002, 8, 5580–5584. [Google Scholar] [CrossRef]
- Mahadeva, S.K.; Kim, J. Conductometric glucose biosensor made with cellulose and tin oxide hybrid nanocomposite. Sens. Actuators B Chem. 2011, 157, 177–182. [Google Scholar] [CrossRef]
- Toghill, K.E.; Compton, R.G. Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. Int. J. Electrochem. Sc. 2010, 5, 1246–1301. [Google Scholar]
- Pickup, J.C.; Hussain, F.; Evans, N.D.; Rolinski, O.J.; Birch, D.J.S. Fluorescence-based glucose sensors. Biosens. Bioelectron. 2005, 20, 2555–2565. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Q.; Lu, Y.L.; Hsu, C.C. Fabrication of glucose fiber sensor based on immobilized GOD technique for rapid measurement. Opt. Express 2010, 18, 27560–27566. [Google Scholar] [CrossRef] [PubMed]
- Villar, I.D.; Matias, I.R.; Arregui, F.J.; Corres, J.M. Fiber optic glucose biosensor. Opt. Eng. 2006, 45, 104401–104406. [Google Scholar] [CrossRef]
- Corres, J.M.; Sanz, A.; Arregui, F.J.; Matías, I.R.; Roca, J. Fiber optic glucose sensor based on bionanofilms. Sens. Actuators B Chem. 2008, 131, 633–639. [Google Scholar] [CrossRef]
- Ozana, N.; Arbel, N.; Beiderman, Y.; Mico, V.; Sanz, M.; Garcia, J.; Anand, A.; Javidi, B.; Epstein, Y.; Zalevsky, Z. Improved noncontact optical sensor for detection of glucose concentration and indication of dehydration level. Biomed. Opt. Express 2014, 5, 1926–1940. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, S.; Schultz, J.S. A miniature optical glucose sensor based on affinity binding. Nat. Biotechnol. 1984, 2, 885–890. [Google Scholar] [CrossRef]
- Binu, S.; Mahadevan Pillai, V.P.; Pradeepkumar, V.; Padhy, B.B.; Joseph, C.S.; Chandrasekaran, N. Fibre optic glucose sensor. Mater. Sci. Eng. C 2009, 29, 183–186. [Google Scholar] [CrossRef]
- Liao, C.W.; Chou, J.C.; Sun, T.P.; Hsiung, S.K.; Hsieh, J.H. Preliminary investigations on a glucose biosensor based on the potentiometric principle. Sens. Actuators B Chem. 2007, 123, 720–726. [Google Scholar] [CrossRef]
- Usman Ali, S.M.; Nur, O.; Willander, M.; Danielssonb, B. A fast and sensitive potentiometric glucose microsensor based on glucose oxidase coated ZnO nanowires grown on a thin silver wire. Sens. Actuators B Chem. 2010, 145, 869–874. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, C.; Zhang, J.; Bai, W. Potentiometric glucose biosensor based on core–shell Fe3O4–enzyme–polypyrrole nano particles. Biosens. Bioelectron. 2014, 51, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Ngeontae, W.; Janrungroatsakul, W.; Maneewattanapinyo, P.; Ekgasit, S.; Aeungmaitrepirom, W.; Tuntulani, T. Novel potentiometric approach in glucose biosensor using silver nanoparticles as redox marker. Sens. Actuators B Chem. 2009, 137, 320–326. [Google Scholar] [CrossRef]
- Rassaei, L.; Marken, F. Pulse-voltammetric glucose detection at gold junction electrodes. Anal. Chem. 2010, 82, 7063–7067. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Hong, L.; Lu, J.; Hu, J.; Yang, Y.; Yuan, J.; Niu, L. A novel amperometric glucose sensor based on PtIr nanoparticles uniformly dispersed on carbon nanotubes. Electrochim. Acta 2013, 91, 353–360. [Google Scholar] [CrossRef]
- Gao, Z.D.; Qu, Y.; Li, T.; Shrestha, N. K.; Song, Y.Y. Development of amperometric glucose biosensor based on prussian blue functionlized TiO2 nanotube arrays. Sci. Rep. 2014, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Al-Issa, Y.; Njagi, J.; Schuckers, S.C.; Suni, I.I. Amperometric bioelectronic tongue for glucose determination. Sens. Bio-Sens. Res. 2015, 3, 31–37. [Google Scholar] [CrossRef]
- Miao, F.; Tao, B.; Sun, L.; Liu, T.; You, J.; Wang, L.; Chu, P.K. Amperometric glucose sensor based on 3D ordered nickel–palladium nanomaterial supported by silicon MCP array. Sens. Actuators B Chem. 2009, 141, 338–342. [Google Scholar] [CrossRef]
- Periasamy, A.P.; Chang, Y.J.; Chen, S.M. Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 2011, 80, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Abdel Hameed, R.M. Amperometric glucose sensor based on nickel nanoparticles/carbon Vulcan XC-72R. Biosens. Bioelectron. 2013, 47, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Samphao, A.; Butmee, P.; Jitcharoen, J.; Švorc, Ĺ.; Raber, G.; Kalcher, K. Flow-injection amperometric determination of glucose using a biosensor based on immobilization of glucose oxidase on to Au seeds decorated on core Fe3O4 nanoparticles. Talanta 2015, 142, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Y.; Chou, C.M.; Chen, T.H.; Chiou, P.C.; Hsiao, V.K.S.; Ching, C.T.S.; Sun, T.P. Enhanced sensitivity using microfluidic, interdigitated microelectrode based capacitance glucose sensor measured at 4 MHz. J. Electrochem. Soc. 2014, 161, B102–B105. [Google Scholar] [CrossRef]
- Ali, S.M.U.; Nur, O.; Willander, M.; Danielsson, B. Glucose detection with a commercial MOSFET using a ZnO nanowires extended gate. IEEE Trans. Nanotechnol. 2009, 8, 678–683. [Google Scholar]
- Khan, Md.R.R.; Kang, S.W. Highly sensitive multi-channel IDC sensor array for low concentration taste detection. Sensors 2015, 15, 13201–13221. [Google Scholar] [CrossRef] [PubMed]
- Cell Constant of Interdigitated Electrodes. Available online: http://www.mosaic-industries.com/ embedded-systems/instrumentation/conductivity-meter/microfabricated-planar-interdigitatedelectrodes-cell-constant (accessed on 7 January 2016).
- Reichardt, C. Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 1994, 94, 2319–2358. [Google Scholar] [CrossRef]
- Deye, J.F.; Berger, T.A.; Anderson, A.G. Nile Red as a solvatochromic dye for measuring solvent strength in normal liquids and mixtures of normal liquids with supercritical and near critical fluids. Anal. Chem. 1990, 62, 615–622. [Google Scholar] [CrossRef]
- Buncel, E.; Rajagopal, S. Solvatochromism and solvent polarity scales. Acc. Chem. Res. 1990, 23, 226–231. [Google Scholar] [CrossRef]
- Khan, Md.R.R.; Kang, S.W. A high sensitivity and wide dynamic range fiber-optic sensor for low-concentration VOC gas detection. Sensors 2014, 14, 23321–23336. [Google Scholar] [CrossRef] [PubMed]
- Khan, Md.R.R.; Kang, S.W. Highly sensitive fiber-optic volatile organic compound gas sensor using a solvatochromic-dye containing polymer waveguide based on pulse-width modulation technique. Sens. Lett. 2015, 13, 663–668. [Google Scholar] [CrossRef]
- Khan, Md.R.R.; Kang, B.H.; Lee, S.W.; Kim, S.H.; Yeom, S.H.; Lee, S.H.; Kang, S.W. Fiber-optic multi-sensor array for detection of low concentration volatile organic compounds. Opt. Express 2013, 21, 20119–20130. [Google Scholar] [CrossRef] [PubMed]
- Physiology of Taste. Available online: http://www.vivo.colostate.edu/hbooks/pathphys/digestion/ pregastric/taste.html (accessed on 7 January 2016).
- Blood Sugar Level Ranges. Available online: http://www.diabetes.co.uk/diabetes_care/blood-sugar- level-ranges.html (accessed on 7 January 2016).
- Majumdar, S.; Adhikari, B. Taste sensing with polyacrylamide grafted cellulose. J. Sci. Ind. Res. 2006, 65, 237–243. [Google Scholar]
- Park, J.W.; Lee, C.; Jang, J. High-performance field-effect transistor-type glucose biosensor based on nanohybrids of carboxylated polypyrrole nanotube wrapped graphene sheet transducer. Sens. Actuators B Chem. 2015, 208, 532–537. [Google Scholar] [CrossRef]
- Saxl, T.; Khan, F.; Ferla, M.; Birch, D.; Pickup, J. A fluorescence lifetime-based fibre-optic glucose sensor using glucose/galactose-binding protein. Analyst 2011, 136, 968–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toko, K. Biomimetic Sensor Technology; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Electronic Tongue Systems for Food and Environmental Applications. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.3110&rep=rep1&type=pdf (accessed on 7 January 2016).
Obs. No. | Relative Voltage (mV) | Standard Deviation of the Relative Voltage |
---|---|---|
1 | 26.994 | |
2 | 27.029 | 0.023 |
3 | 27.029 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.R.R.; Khalilian, A.; Kang, S.-W. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane. Sensors 2016, 16, 265. https://doi.org/10.3390/s16020265
Khan MRR, Khalilian A, Kang S-W. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane. Sensors. 2016; 16(2):265. https://doi.org/10.3390/s16020265
Chicago/Turabian StyleKhan, Md. Rajibur Rahaman, Alireza Khalilian, and Shin-Won Kang. 2016. "Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane" Sensors 16, no. 2: 265. https://doi.org/10.3390/s16020265
APA StyleKhan, M. R. R., Khalilian, A., & Kang, S.-W. (2016). Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane. Sensors, 16(2), 265. https://doi.org/10.3390/s16020265